Skip to main content
Log in

Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

With an ever-increasing number of applications in many advanced fields, gas sensors are becoming indispensable devices in our daily life. Among different types of gas sensors, conductometric metal oxide semiconductor (MOS) gas sensors are found to be the most appealing for advanced applications in the automotive, biomedical, environmental, and safety sectors because of the their high sensitivity, reduced size, and low cost. To improve their sensing characteristics, new metal oxide-based nanostructures have thus been proposed in recent years as sensing materials. In this review, we extensively review gas-sensing properties of core@ shell nanocomposites in which metals as the core and metal oxides as the shell structure, both of nanometer sizes, are assembled into a single metal@metal oxide core–shell. These nanostructures not only combine the properties of both noble metals and metal oxides, but also bring unique synergetic functions in comparison with single-component materials. Up-dated achievements in the synthesis and characterization of metal@metal oxide core–shell nanostructures as well as their use in MOS sensors are here reported with the main objective of providing an overview about their gas-sensing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Abu-Zied BM, Asiri AM (2014) An investigation of the thermal decomposition of silver acetate as a precursor for nano-sized Ag-catalyst. Thermochim Acta 581:110–117. doi:10.1016/j.tca.2014.02.020

    Article  Google Scholar 

  • Ahmad T, Wani IA, Lone IF, Ganguly A, Manzoor N, Ahmad A, Ahmed J, Al-Shihri AS (2013) Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater Res Bull 48:12–20. doi:10.1016/j.materresbull.2012.09.069

    Article  Google Scholar 

  • Amarjargal A, Tijing LD, Im I-T, Kim CS (2013) Simultaneous preparation of Ag/Fe3O4 core–shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chem Eng J 226:243–254. doi:10.1016/j.cej.2013.04.054

    Article  Google Scholar 

  • An Y, Yang L, Hou J, Liu Z, Peng B (2014) Synthesis and characterization of carbon nanotubes-treated Ag@TiO2 core–shell nanocomposites with highly enhanced photocatalytic performance. Opt Mater 36:1390–1395. doi:10.1016/j.optmat.2014.03.038

    Article  Google Scholar 

  • Angkaew S, Limsuwan P (2012) Preparation of silver-titanium dioxide core–shell (Ag@TiO2) nanoparticles: effect of Ti-Ag mole ratio. Procedia Eng 32:649–655. doi:10.1016/j.proeng.2012.01.1322

    Article  Google Scholar 

  • Anshup TP (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478

    Article  Google Scholar 

  • Antony J, Nutting J, Baer DR, Meyer D, Sharma A, Qiang Y (2006) Size-dependent specific surface area of nanoporous film assembled by core–shell iron nanoclusters. J Nanomater 2006:1–4. doi:10.1155/JNM/2006/54961

    Article  Google Scholar 

  • Askeland DR, Fulay PP (2009) Essentials of materials science and engineering, 2nd edn. Cengage Learning

  • Augustine AK, Nampoori VPN, Kailasnath M (2014) Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. Optik Intern J Light Electron Optics 125:6696–6699. doi:10.1016/j.ijleo.2014.08.075

    Article  Google Scholar 

  • Balouria V, Kumar A, Samanta S, Singha A, Debnath AK, Mahajan A, Bedi RK, Aswal DK, Gupta SK (2013) Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens Actuators B Chem 181:471–478. doi:10.1016/j.snb.2013.02.013

    Article  Google Scholar 

  • Barazzouk S, Tandon RP, Hotchandani S (2006) MoO3-based sensor for NO, NO2 and CH4 detection. Sens Actuators B 119:691–694

    Article  Google Scholar 

  • Barreca D, Gasparotto A, Tondello E (2011) Metal/oxide interfaces in inorganic nanosystems: what’s going on and what’s next? J Mater Chem 21:1648–1654. doi:10.1039/C0JM02448A

    Article  Google Scholar 

  • Bârsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35

    Article  Google Scholar 

  • Bârsan N, Hübner M, Weimar U (2011) Conduction mechanisms in SnO2 based polycrystalline thick film gas sensors exposed to CO and H2 in different oxygen backgrounds. Sens Actuators B Chem 157:510–517. doi:10.1016/j.snb.2011.05.011

    Article  Google Scholar 

  • Blosi M (2010) Eur. Pat Patent application number WO 2010/100107 PCT/EP2010/052534

  • Blosi M, Albonetti S, Ortelli CostaAL, Ortolani L, Dondi M (2014) Green and easily scalable microwave synthesis of noble metal nanosols (Au, Ag, Cu, Pd) usable as catalysts. New J Chem 38:140

    Article  Google Scholar 

  • Brattain J, Bardeen WH (1952) Surface properties of germanium. Bell Syst Tech J 32:1

    Article  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  • Cabot A, Dieguez A, Rodríguez A, Morante JR, Bârsan N (2001) Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances where and how stay the catalytic atoms? Sens Actuators B 79:98–106

  • Callister WD, (2001) Fundamentals of materials science and engineering, 5th edn. Wiley, New York

  • Cannilla C, Bonura G, Frusteri F, Spadaro D, Trocino S, Neri G (2014) Development of an ammonia sensor based on silver nanoparticles in a poly-methacrylic acid matrix. J Mater Chem C 2:5778–5786

    Article  Google Scholar 

  • Cargnello M, Wieder NL, Montini T, Gorte RJ, Fornasiero P (2009) Synthesis of dispersible Pd@CeO2 core–shell nanostructures by self-assembly. J Am Chem Soc 132:1402–1409. doi:10.1021/ja909131k

    Article  Google Scholar 

  • Carter CB, Norton MG (2007) Ceramic materials science and engineering. Springer, New York

  • Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–12

    Article  Google Scholar 

  • Çelebi MS, Pekmez K, Özyörük H, Yıldız A (2008) Electrochemical synthesis of Pd particles on poly(vinylferrocenium). Catal Commun 9:2175–2178. doi:10.1016/j.catcom.2008.04.027

    Article  Google Scholar 

  • Chang CC, Wu HL, Kuo CH, Huang MH (2008) Hydrothermal synthesis of monodispersed octahedral Gold nanocrystals with five different size ranges and their self-assembled structures. Chem Mater 20:7570–7574. doi:10.1021/cm8021984

    Article  Google Scholar 

  • Chen X (2013) Core/shell structured silica spheres with controllable thickness of mesoporous shell and its adsorption, drug storage and release properties. Colloids Surf A 428:79–85. doi:10.1016/j.colsurfa.2013.03.038

    Article  Google Scholar 

  • Chen CW, Arai K, Yamamoto K, Serizawa T, Akashi M (2000) Temperature and pH dependence of the catalytic activity of colloidal platinum nanoparticles stabilized by poly[(vinylamine)-co-(N-vinylisobutyramide). Macromol Chem Phys 201:2811–2819. doi:10.1002/1521-3935(20001201)201:18<2811::AID-MACP2811>3.0.CO;2-0

    Article  Google Scholar 

  • Chen S, Li J, Qian K, Xu W, Lu Y, Huang W, Yu S (2010) Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Res 3:244–255. doi:10.1007/s12274-010-1027-z

    Article  Google Scholar 

  • Chen X, Mi F, Zhang H, Zhang H (2012) Facile synthesis of a novel magnetic core–shell hierarchical composite submicrospheres Fe3O4@CuNiAl-LDH under ambient conditions. Mater Lett 69:48–51. doi:10.1016/j.matlet.2011.11.052

    Article  Google Scholar 

  • Chen C, Lee SH, Cho M, Lee Y (2015) Core–shell CuO@TiO2 nanorods as a highly stable anode material for lithium-ion batteries. Mater Lett 140:111–114. doi:10.1016/j.matlet.2014.10.138

    Article  Google Scholar 

  • Cheng KL (2006) The negative charge of nanoparticles. Microchem J 82:119–120. doi:10.1016/j.microc.2005.11.002

    Article  Google Scholar 

  • Cheng B, Le Y, Yu J (2010) Preparation and enhanced photocatalytic activity of Ag@TiO2 core–shell nanocomposite nanowires. J Hazard Mater 177:971–977. doi:10.1016/j.jhazmat.2010.01.013

    Article  Google Scholar 

  • Cheviron P, Gouanvéa F, Espuchea E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym 108:291–298

    Article  Google Scholar 

  • Choi JK, Hwang IS, Kim SJ, Park JS, Park SS, Jeong Y, Kang YC, Lee JH (2010) Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers. Sens Actuators B Chem 150:191–199. doi:10.1016/j.snb.2010.07.013

    Article  Google Scholar 

  • Chou SM, Teoh LG, Lai WH, Su YH, Hon MH (2006) ZnO: Al thin film gas sensor for detection of ethanol vapor. Sensors 6:1420–1427

    Article  Google Scholar 

  • Chou KS, Lin MY, Wu HH (2013) Studies on the removal of 2-propanol by Ag@Fe2O3 core–shell structured catalyst. J Taiwan Inst Chem Eng 44:228–232. doi:10.1016/j.jtice.2012.10.007

    Article  Google Scholar 

  • Chung FC, Wu RJ, Cheng FC (2014a) Fabrication of a Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 190:1–7. doi:10.1016/j.snb.2013.08.037

    Article  Google Scholar 

  • Chung FC, Zhu Z, Luo PY, Wu RJ, Li W (2014b) Au@ZnO core–shell structure for gaseous formaldehyde sensing at room temperature. Sens Actuators B Chem 199:314–319. doi:10.1016/j.snb.2014.04.004

    Article  Google Scholar 

  • Corriu R, Anh NT (2009) Molecular chemistry of sol-gel derived nanomaterials. Wiley, New York

  • Cui Q, Xia B, Mitzscherling S, Masic A, Li L, Bargheer M, Möhwald H (2015) Preparation of gold nanostars and their study in selective catalytic reactions. Colloids Surf A 465:20–25. doi:10.1016/j.colsurfa.2014.10.028

    Article  Google Scholar 

  • Cullity BD (1956) Elements of X-ray diffraction. Addison-wesley publishing company, Inc, New York

  • Cuong ND, Hoa TT, Khieu DQ, Lam TD, Hoa ND, Hieu NV (2012) Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan. J Alloy Compd 523:120–126

    Article  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  Google Scholar 

  • Darroudi M, Khorsand Zak A, Muhamad MR, Huang NM, Hakimi M (2012) Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater Lett 66:117–120. doi:10.1016/j.matlet.2011.08.016

    Article  Google Scholar 

  • Das S, Sinha S, Das B, Suar S, Parashar SK, Mohapatra M, Mishra A, Tripathy SK (2014) Microwave assisted hydrothermal synthesis of well-dispersed and thermally stable Ag@SnO2 core–shell nanocomposites for propane sensing applications. J Mater Sci Mater Electron 25:217–223. doi:10.1007/s10854-013-1575-6

    Article  Google Scholar 

  • Das S, Sinha S, Suar M, Yun SI, Mishra A, Tripathy SK (2015) Solar-photocatalytic disinfection of Vibrio cholerae by using Ag@ZnO core–shell structure nanocomposites. J Photochem Photobiol B 142:68–76. doi:10.1016/j.jphotobiol.2014.10.021

    Article  Google Scholar 

  • Di Natale C, Paolesse R, Martinelli E, Capuano R (2014) Solid-state gas sensors for breath analysis: a review. Anal Chim Acta 824:1–17. doi:10.1016/j.aca.2014.03.014

    Article  Google Scholar 

  • Du JJ, Chen C, Gan YL, Zhang RH, Yang CY, Zhou XW (2014) Facile one-pot hydrothermal synthesis of Pt nanoparticles and their electrocatalytic performance. Int J Hydrog Energy 39:17634–17637. doi:10.1016/j.ijhydene.2014.08.044

    Article  Google Scholar 

  • Eastoe J, Hollamby MJ, Hudson L (2006) Recent advances in nanoparticle synthesis with reversed micelles. Adv Colloid Interface Sci 128–130:5–15. doi:10.1016/j.cis.2006.11.009

    Article  Google Scholar 

  • Eranna G (2012) Metal oxide nanostructures as gas sensing devices, 1st edn. CRC Press, New York

  • Esmaeili-Zare M, Salavati-Niasari M, Sobhani A (2014) Sonochemical synthesis of HgSe nanoparticles: effect of metal salt, reaction time and reductant agent. J Ind Eng Chem 20:3518–3523. doi:10.1016/j.jiec.2013.12.044

    Article  Google Scholar 

  • Esumi K, Matsumoto T, Seto Y, Yoshimura T (2005) Preparation of gold–, gold/silver–dendrimer nanocomposites in the presence of benzoin in ethanol by UV irradiation. J Colloid Interface Sci 284:199–203. doi:10.1016/j.jcis.2004.09.020

    Article  Google Scholar 

  • Fang Q, He G, Cai WP, Zhang JY, Boyd IW (2004) Palladium nanoparticles on silicon by photo-reduction using 172 nm excimer UV lamps. Appl Surf Sci 226:7–11. doi:10.1016/j.apsusc.2003.12.014

    Article  Google Scholar 

  • Fendler JH (1998) Nanoparticles and nanostructured films: preparation, characterization and applications. Wiley, New Jersy

  • Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50. doi:10.1002/smll.200500261

    Article  Google Scholar 

  • Fujimoto T, Terauchi SY, Umehara H, Kojima I, Henderson W (2001) Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem Mater 13:1057–1060. doi:10.1021/cm000910f

    Article  Google Scholar 

  • Furnstner A (1995) Active metals: preparation, characterization, application. VCH, New York

  • García MA, Ruiz-González ML, Fuente GF, Crespo P, González JM, Llopis J, Calbet JM, Vallet-Regí M, Hernando A (2007) Ferromagnetism in twinned Pt nanoparticles obtained by laser ablation. Chem Mater 19:889–893. doi:10.1021/cm061740v

    Article  Google Scholar 

  • Ghodselahi T, Vesaghi MA (2011) Localized surface plasmon resonance of Cu@Cu2O core–shell nanoparticles: absorption, scattering and luminescence. Phys B 406:2678–2683. doi:10.1016/j.physb.2011.03.082

    Article  Google Scholar 

  • Goebl J, Joo JB, Dahl M, Yin Y (2014) Synthesis of tailored Au@TiO2 core–shell nanoparticles for photocatalytic reforming of ethanol. Catal Today 225:90–95

    Article  Google Scholar 

  • González-Ruiz V, Olives AI, Martín MA (2015) Core–shell particles lead the way to renewing high-performance liquid chromatography. TrAC Trends Anal Chem 64:17–28. doi:10.1016/j.trac.2014.08.008

    Article  Google Scholar 

  • Grote F, Wen L, Lei Y (2014) Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. J Power Sources 256:37–42. doi:10.1016/j.jpowsour.2013.12.029

    Article  Google Scholar 

  • Gu H, Wang Z, Hu Y (2012) Hydrogen gas sensors based on semiconductor oxide nanostructures sensors 12:5517–5550

    Google Scholar 

  • Guo P, Ye W, Qin W, Wang Q, Guo X, Lu C, Zhao X (2012) Preparation and characterization of nanostructured Pd with high electrocatalytic activity. Colloids Surf A 395:75–81. doi:10.1016/j.colsurfa.2011.12.008

    Article  Google Scholar 

  • Gyger F, Sackmann A, Hübner M, Bockstaller P, Gerthsen D, Henning L, Jan-Dierk G, Nicolae B, Udo W, Claus F (2014) Pd@SnO2 and SnO2@Pd Core@Shell Nanocomposite Sensors. Part Part Syst Charact 31:591–596. doi:10.1002/ppsc.201300241

    Article  Google Scholar 

  • Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79:4215–4221

    Article  Google Scholar 

  • Han CH, Hong DW, Kim IJ, Gwak J, Han SD, Singh KC (2007) Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sens Actuators B 128:320–325

  • Han J, Liu Z, Yadian B, Huang Y, Guo K, Liu Z, Wang B, Li Y, Ting C (2014) Synthesis of metal sulfide sensitized zinc oxide-based core/shell/shell nanorods and their photoelectrochemical properties. J Power Sources 268:388–396. doi:10.1016/j.jpowsour.2014.06.060

    Article  Google Scholar 

  • Hashmi S (2014) Comprehensive materials processing, vol 13. Springer, New York

  • Heiland G (1954) Zum einfluss von wasserstoff auf die elektrische leitfähigkeit von ZnO-kristallen. ZPhysik 138:549–564

    Google Scholar 

  • Hsu SH, Chen YP, Ye CC, Tseng IL, Chao L-C, Yu HZ (2014) Synthesis and photo-sensing properties of Zn–ZnO core–shell nanofibers. Sens Actuators B Chem 204:175–182. doi:10.1016/j.snb.2014.07.081

    Article  Google Scholar 

  • Huang BR, Lin JC (2012) Core–shell structure of zinc oxide/indium oxide nanorod based hydrogen sensors. Sens Actuators B 174:389–393

    Article  Google Scholar 

  • Huang X, Tang S, Zhang H, Zhou Z, Zheng N (2009) Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals. J Am Chem Soc 131:13916–13917

    Article  Google Scholar 

  • Huang X, Zhao Z, Fan J, Tan Y, Zheng N (2011) Amine-assisted synthesis of concave polyhedral platinum nanocrystals having 411 high-index facets. J Am Chem Soc 133:4718–4721

    Article  Google Scholar 

  • Jakubik WP (2011) Surface acoustic wave-based gas sensors. Thin Solid Films 520:986–993. doi:10.1016/j.tsf.2011.04.174

    Article  Google Scholar 

  • Jana NR, Wang ZL, Pal T (2000) Redox catalytic properties of palladium nanoparticles: surfactant and electron donor–acceptor effects. Langmuir 16:2457–2463. doi:10.1021/la990507r

    Article  Google Scholar 

  • Jaaniso R, Tan OK (2013) Semiconductor gas sensors. Woodhead publishing group, New York

  • Jankiewicz BJ, Jamoila D, Choma J, Jaroniec M (2012) Silica–metal core–shell nanostructures. Adv Colloid Interface Sci 170:28–47

    Article  Google Scholar 

  • Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17:236–246. doi:10.1016/j.mattod.2014.04.026

    Article  Google Scholar 

  • Johnston RL, Wilcoxon JP (2012) Metal nanoparticles and nanoalloys. Elsevier, Amsterdam

  • Joseph S, Mathew B (2014) Microwave-assisted facile synthesis of silver nanoparticles in aqueous medium and investigation of their catalytic and antibacterial activities. J Mol Liq 197:346–352. doi:10.1016/j.molliq.2014.06.008

    Article  Google Scholar 

  • Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci 91:1038–1052

    Google Scholar 

  • Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860

    Article  Google Scholar 

  • Karaagac H, Parlak M, Aygun LE, Ghaffari M, Biyikli N, Okyay AK (2013) A baseball-bat-like CdTe/TiO2 nanorods-based heterojunction core–shell solar cell. Scripta Mater 69:323–326. doi:10.1016/j.scriptamat.2013.05.012

    Article  Google Scholar 

  • Kassavetis S, Kaziannis S, Pliatsikas N, Avgeropoulos A, Karantzalis AE, Kosmidis C, Lidorikis E, Patsalas P (2015) Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation. Appl Surf Sci 336:262–266. doi:10.1016/j.apsusc.2014.11.171

    Article  Google Scholar 

  • Khafagy RM (2011) Synthesis, characterization, magnetic and electrical properties of the novel conductive and magnetic Polyaniline/MgFe2O4 nanocomposite having the core–shell structure. J Alloy Compd 509:9849–9857. doi:10.1016/j.jallcom.2011.07.008

    Article  Google Scholar 

  • Khan Z, Al-Thabaiti SA, Obaid AY, Al-Youbi AO (2011) Preparation and characterization of silver nanoparticles by chemical reduction method. Colloids Surf B 82:513–517. doi:10.1016/j.colsurfb.2010.10.008

    Article  Google Scholar 

  • Khanna VK (2012) Nanosensors physical, chemical, and biological, 1st edn. CRC Press, New York

  • Kharissova OV, Rasika Dias HV, Kharisov BI, Perez BO, Jimenez Perez VM (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31:240–248

    Article  Google Scholar 

  • Kibis LS, Stadnichenko AI, Pajetnov EM, Koscheev SV, Zaykovskii VI, Boronin AI (2010) The investigation of oxidized silver nanoparticles prepared by thermal evaporation and radio-frequency sputtering of metallic silver under oxygen. Appl Surf Sci 257:404–413. doi:10.1016/j.apsusc.2010.07.002

    Article  Google Scholar 

  • Kim HJ, Lee JH (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens Actuators B Chem 192:607–627. doi:10.1016/j.snb.2013.11.005

    Article  Google Scholar 

  • Kim ID, Rothschild A, Tuller HL (2013a) Advances and new directions in gas-sensing devices. Acta Mater 61:974–1000. doi:10.1016/j.actamat.2012.10.041

    Article  Google Scholar 

  • Kim YS, Rai P, Yu YT (2013b) Microwave assisted hydrothermal synthesis of Au@TiO2 core–shell nanoparticles for high temperature CO sensing applications. Sens Actuators B Chem 186:633–639. doi:10.1016/j.snb.2013.06.038

    Article  Google Scholar 

  • Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens Actuators B 209:180–185

    Article  Google Scholar 

  • Koo HY, Yi JH, Kim JH, Ko YN, Kang YC (2010) Effect of gas environment on the properties of silver–glass composite powders with core–shell structure prepared by spray pyrolysis. J Alloy Compd 492:723–730. doi:10.1016/j.jallcom.2009.12.027

    Article  Google Scholar 

  • Kou J, Bennett-Stamper C, Varma RS (2013) Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions. ACS Sustain Chem Eng 1:810–816. doi:10.1021/sc400007p

    Google Scholar 

  • Kulkarni SK (2013) Nanotechnology: principles and practices, 3rd edn. Springer, New York

    Google Scholar 

  • Kwon HW, Lim YM, Tripathy SK, Kim BG, Lee MS, Yu YT (2007) Synthesis of Au/TiO2 core–shell nanoparticles from titanium isopropoxide and thermal resistance effect of TiO2 shell. Jpn J Appl Phys 46:2567–2570

    Article  Google Scholar 

  • Lai J, Niu W, Luque R, Xu G (2015) Solvothermal synthesis of metal nanocrystals and their applications. Nano Today. doi:10.1016/j.nantod.2015.03.001

    Google Scholar 

  • Lee B, Komarneni S (2005) Chemical processing of ceramics, 2nd edn. CRC Press, New York

  • Lee CJ, Karim MR, Lee MS (2007) Synthesis and characterization of silver/thiophene nanocomposites by UV-irradiation method. Mater Lett 61:2675–2678. doi:10.1016/j.matlet.2006.10.021

    Article  Google Scholar 

  • Lee HJ, Lee DW, Lee KY (2011) Direct synthesis of hydrogen peroxide from hydrogen and oxygen over a Pd core-silica shell catalyst. Catal Commun 12:968–971

    Article  Google Scholar 

  • Leng Y (2008) Materials characterization: introduction to microscopic and spectroscopic methods. Wiley, New York

  • Li X, Zhou X, Guo H, Wang C, Liu J, Sun P, Liu F, Lu G (2014) Design of Au@ZnO yolk-shell nanospheres with enhanced gas sensing properties. ACS Appl Mater Interfaces 6:18661–18667. doi:10.1021/am5057322

    Article  Google Scholar 

  • Li X, Liu J, Guo H, Zhou X, Wang C, Sun P, Hu X, Lu G (2015) Au@In2O3 core–shell composites: a metal-semiconductor heterostructure for gas sensing applications. RSC Adv 5:545–551. doi:10.1039/C4RA12467G

    Article  Google Scholar 

  • Lim JK, Lanni C, Evarts ER, Lanni F, Tiltonand RD, Majetich SA (2011) Magnetophoresis of nanoparticles. ACS Nano 5:217–226

    Article  Google Scholar 

  • Lim JK, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8:381–395

    Article  Google Scholar 

  • Lin YK, Hsu YJ (2013) Preparation of M@Cu2O (M = Au, Ag, Pd) Core-shell nanocrystals by a facile citrate-chelating approach. 224th ECS Meeting, The Electrochemical Society

  • Lin J, Yu M, Lin C, Liu X (2007) Multiform oxide optical materials via the versatile pechini-type sol-gel process: synthesis and characteristics. J Phys Chem C 111:5835–5845

    Article  Google Scholar 

  • Lin YK, Chiang YJ, Hsu YJ (2014) Metal–Cu2O core–shell nanocrystals for gas sensing applications: effect of metal composition. Sens Actuators B Chem 204:190–196. doi:10.1016/j.snb.2014.07.094

    Article  Google Scholar 

  • Liu Y, Yan Z, Lan W, Huang C, Wang Y (2007) Fabrication and optical properties of 3D composite photonic crystals of core–shell structures. Appl Surf Sci 253:8571–8574. doi:10.1016/j.apsusc.2007.04.002

    Article  Google Scholar 

  • Liu H, Liu T, Dong X, Hua R, Zhu Z (2014) Preparation and enhanced photocatalytic activity of Ag-nanowires@SnO2 core–shell heterogeneous structures. Ceram Int 40:16671–16675. doi:10.1016/j.ceramint.2014.08.029

    Article  Google Scholar 

  • López-Quintela MA, Tojo C, Blanco MC, Garćia Rio L, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278. doi:10.1016/j.cocis.2004.05.029

    Article  Google Scholar 

  • Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C 111:7676–7681. doi:10.1021/jp070973m

    Article  Google Scholar 

  • Luo Y (2007) A simple microwave-based route for size-controlled preparation of colloidal Pt nanoparticles. Mater Lett 61:1873–1875. doi:10.1016/j.matlet.2006.07.166

    Article  Google Scholar 

  • Ma H, Yin B, Wang S, Jiao Y, Pan W, Huang S, Chen S, Meng F (2004) Synthesis of silver and gold nanoparticles by a novel electrochemical method. ChemPhysChem 5:68–75. doi:10.1002/cphc.200300900

    Article  Google Scholar 

  • Majhi SM, Rai P, Raj S, Chon B-S, Park K-K, Yu Y-T (2014) Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core–shell nanoreactors for gas sensor applications. ACS Appl Mater Interfaces 6:7491–7497. doi:10.1021/am5008694

    Article  Google Scholar 

  • Majumdar D, Kodas TT, Glicksman HD (1996) Gold particle generation by spray pyrolysis. Adv Mater 8(12):1020–1022

    Article  Google Scholar 

  • Manikam VR, Cheong KY, Razak KA (2011) Chemical reduction methods for synthesizing Ag and Al nanoparticles and their respective nanoalloys. Mater Sci Eng B 176:187–203. doi:10.1016/j.mseb.2010.11.006

    Article  Google Scholar 

  • Meir N, Plante I, Flomin K, Chockler E, Moshofsky B, Diab M, Volokh M, Mokari T (2013) Studying the chemical, optical and catalytic properties of noble metal (Pt, Pd, Ag, Au)-Cu2O core–shell nanostructures grown via a general approach. J Mater Chem A 1:1763–1769. doi:10.1039/C2TA00721E

    Article  Google Scholar 

  • Mélinon P, Begin-Colin S, Duvail JL, Gauffre F, Boime NH, Ledoux G, Plain J, Reiss P, Silly F, Warot-Fonrose B (2014) Engineered inorganic core/shell nanoparticles. Phys Rep 543:163–197. doi:10.1016/j.physrep.2014.05.003

    Article  Google Scholar 

  • Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi SG, Neri G (2015) Ag@α-Fe2O3 core–shell nanocomposites synthesis, characterization and gas sensing properties. Nanomaterials 5:737–749. doi:10.3390/nano5020737

    Article  Google Scholar 

  • Misra M, Kapur P, Singla ML (2014) Surface plasmon quenched of near band edge emission and enhanced visible photocatalytic activity of Au@ZnO core–shell nanostructure. Appl Catal B 150–151:605–611

    Article  Google Scholar 

  • Moon WJ, Yu JH, Choi GM (2001) Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sens Actuators B Chem 80:21–27. doi:10.1016/S0925-4005(01)00884-X

    Article  Google Scholar 

  • Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788–800. doi:10.1021/la9502711

    Article  Google Scholar 

  • Mulvaney P, Ya Y (2004) Synthesis of Au/TiO2 core–shell structure nanoparticles and the crystallinity of TiO2 shell. Mater Trans 45:964–967

    Article  Google Scholar 

  • Nakamura T, Takasaki K, Ito A, Sato S (2009) Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution. Appl Surf Sci 255:9630–9633. doi:10.1016/j.apsusc.2009.04.092

    Article  Google Scholar 

  • Nasretdinova GR, Fazleeva RR, Mukhitova RK, Nizameev IR, Kadirov MK, Ziganshina AY, Yanilkin VV (2015) Electrochemical synthesis of silver nanoparticles in solution. Electrochem Commun 50:69–72. doi:10.1016/j.elecom.2014.11.016

    Article  Google Scholar 

  • Neri G (2011) Better sensors through chemistry: some selected examples. Sensors and microsystems, lecture notes in electrical engineering, p 91

  • Neri G, Bonavita A, Micali G, Rizzo G, Callone E, Carturan G (2008) Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol–gel process for automotive applications. Sens Actuators B 132:224–233

  • Niemeyer D, Williams DE, Smith P, Pratt KF, Slater B, Catlow CRA, Stoneham AM (2002) Experimental and computational study of the gas-sensor behaviour and surface chemistry of the solid-solution Cr2-xTixO3 (x < 0.5). J Mater Chem 12:666–675

    Article  Google Scholar 

  • Nikolov AS, Nedyalkov NN, Nikov RG, Atanasov PA, Alexandrov MT (2011) Characterization of Ag and Au nanoparticles created by nanosecond pulsed laser ablation in double distilled water. Appl Surf Sci 257:5278–5282. doi:10.1016/j.apsusc.2010.10.146

    Article  Google Scholar 

  • Oldfield G, Ung T, Mulvaney P (2000) Au@SnO2 core–shell nanocapacitors. Adv Mater 12:1519–1522. doi:10.1002/1521-4095(200010)12:20<1519:AID-ADMA1519>3.0.CO;2-W

    Article  Google Scholar 

  • Olsen AW, Kafafi ZH (1991) Gold cluster-laden polydiacetylenes: novel materials for nonlinear optics. J Am Chem Soc 113:7758–7760

    Article  Google Scholar 

  • Park JE, Atobe M, Fuchigami T (2005) Sonochemical synthesis of conducting polymer–metal nanoparticles nanocomposite. Electrochim Acta 51:849–854. doi:10.1016/j.electacta.2005.04.052

    Article  Google Scholar 

  • Park S, Parka S, Lee S, Kim HW, Lee C (2014) Hydrogen sensing properties of multiple networked Nb2O5/ZnO core–shell nanorod sensors. Sens Actuators B Chem 202:840–845

    Article  Google Scholar 

  • Pasha MA, Poursalehi R, Vesaghi MA, Shafiekhani A (2010) The effect of temperature on the TCVD growth of CNTs from LPG over Pd nanoparticles prepared by laser ablation. Phys B 405:3468–3474. doi:10.1016/j.physb.2010.05.025

    Article  Google Scholar 

  • Pastoriza-Santos I, Koktysh DS, Mamedov AA, Giersig M, Kotov NA, Liz-Marzán LM (2000) One-pot synthesis of Ag@TiO2 core–shell nanoparticles and their layer-by-layer assembly. Langmuir 16:2731–2735. doi:10.1021/la991212g

    Article  Google Scholar 

  • Phani AR (1997) X-ray photoelectron spectroscopy studies on Pd doped SnO2 liquid petroleum gas sensor. Appl Phys Lett 71:2358–2360

    Article  Google Scholar 

  • Pluym TC, Lyons SW, Powell QH, Gurav AS, Kodas TT (1993) Palladium metal and palladium oxide particle production by spray pyrolysis. Mater Res Bull 28(3):369–376

    Article  Google Scholar 

  • Ponrouch A, Garbarino S, Bertin E, Guay D (2013) Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications. J Power Sources 221:228–231. doi:10.1016/j.jpowsour.2012.08.033

    Article  Google Scholar 

  • Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422

    Article  Google Scholar 

  • Qi J, Chen J, Li G, Li S, Gao Y, Tang Z (2012) Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation. Energy Environ Sci 5:8937–8941. doi:10.1039/C2EE22600F

    Article  Google Scholar 

  • Qin Y, Zhou Y, Li J, Ma J, Shi D, Chen J, Yang J (2014) Fabrication of hierarchical core–shell Au@ZnO heteroarchitectures initiated by heteroseed assembly for photocatalytic applications. J Colloid Interface Sci 418:171–177

  • Qiu XF, Xu JZ, Zhu JM, Zhu JJ, Xu S, Chen HY (2003) Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method. J Mater Res 18:1399–1404

    Article  Google Scholar 

  • Rabinal MK, Kalasad MN, Praveenkumar K, Bharadi VR, Bhikshavartimath AM (2013) Electrochemical synthesis and optical properties of organically capped silver nanoparticles. J Alloy Compd 562:43–47. doi:10.1016/j.jallcom.2013.01.043

    Article  Google Scholar 

  • Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. CRC Press, New York

    Google Scholar 

  • Rai P, Khan R, Raj S, Majhi SM, Park KK, Yu YT, Lee IH, Sekhar PK (2014a) Au@Cu2O core–shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance. Nanoscale 6:581–588. doi:10.1039/C3NR04118B

    Article  Google Scholar 

  • Rai P, Yoon JW, Jeong HM, Hwang SJ, Kwak CH, Lee JH (2014b) Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications. Nanoscale 6:8292–8299. doi:10.1039/C4NR01906G

    Article  Google Scholar 

  • Ramirez L, Chen C, Cargnello M, Murray CB, Fornasiero P, Gorte RJ (2014) Supported platinum-zinc oxide core–shell nanoparticle catalysts for methanol steam reforming. J Mater Chem A 2:19509–19514. doi:10.1039/C4TA04790G

    Article  Google Scholar 

  • Raut BT, Godse PR, Pawar SG, Chougule MA, Bandgar DK, Patil VB (2012) Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 45:94–100. doi:10.1016/j.measurement.2011.09.015

    Article  Google Scholar 

  • Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168

    Article  Google Scholar 

  • Reyesa JT, Peralta-Videa JR, Gardea-Torresdey JL (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503

    Article  Google Scholar 

  • Sakai T, Enomoto H, Sakai H, Abe M (2014) Hydrogen-assisted fabrication of spherical gold nanoparticles through sonochemical reduction of tetrachloride gold(III) ions in water. Ultrason Sonochem 21:946–950. doi:10.1016/j.ultsonch.2013.12.010

    Article  Google Scholar 

  • Sberveglleri G (1992) Gas sensors, principles, operation and developments. Springer-Science + Business Media, BV

  • Schmid G (1992) Large clusters and colloids metals in the embryonic state. Chem Rev 92:1709–1727

    Article  Google Scholar 

  • Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34:1502–1503. doi:10.1021/ac60191a001

    Article  Google Scholar 

  • Seol SK, Kim D, Jung S, Hwu Y (2011) Microwave synthesis of gold nanoparticles: effect of applied microwave power and solution pH Materials. Chem Phys 131:331–335. doi:10.1016/j.matchemphys.2011.09.050

    Google Scholar 

  • Shao D, Sun H, Xin G, Lian J, Sawyer S (2014) High quality ZnO–TiO2 core–shell nanowires for efficient ultraviolet sensing. Appl Surf Sci 314:872–876. doi:10.1016/j.apsusc.2014.06.182

    Article  Google Scholar 

  • Shard AG (2012) A straightforward method for interpreting XPS data from core–shell. Nanoparticles J Phys Chem C 116:16806–16813

    Article  Google Scholar 

  • Simon I, Baarsan N, Bauera M, Weimar U (2001) Micromachined metal oxide gas sensors: opportunities to improve sensor performance. Sens Actuators B 73:1–26

    Article  Google Scholar 

  • Sohn H, Calhoun RM, Sailor J, Trogler WC (2001) Detection of TNT and picric acid on surfaces and in seawater by using photoluminescent polysiloles. Angew Chem 13:2162–2166

    Article  Google Scholar 

  • Song X, Jun L, Li Z, Li S, Wang C (2008) Synthesis of polyacrylonitrile/Ag core–shell nanowire by an improved electroless plating method. Mater Lett 62:2681–2684. doi:10.1016/j.matlet.2008.01.014

    Article  Google Scholar 

  • Song H, Yu YT, Norby P (2009) Efficient complete oxidation of acetaldehyde into CO2 over Au/TiO2 core–shell nano catalyst under UV and visible light irradiation. J Nanosci Nanotechnol 9:1–7

    Article  Google Scholar 

  • Stopic S, Friedrich B, Schroeder M, Weirich TE (2013) Synthesis of TiO2 core/RuO2 shell particles using multistep ultrasonic spray pyrolysis. Mater Res Bull 48:3633–3635

    Article  Google Scholar 

  • Strobel R, Alfons A, Pratsinis SE (2006) Aerosol flame synthesis of catalysts. Adv Powder Technol 17:457–480. doi:10.1163/156855206778440525

    Article  Google Scholar 

  • Su S, Wu W, Gao BJ, Lub J, Fan C (2012) Nanomaterials-based sensors for applications in environmental monitoring. J Mater Chem 22:18101–18110

    Article  Google Scholar 

  • Sun L, Wei G, Song Y, Liu Z, Wang L, Li Z (2006) Solution-phase synthesis of Au@ZnO core–shell composites. Mater Lett 60:1291–1295. doi:10.1016/j.matlet.2005.11.017

    Article  Google Scholar 

  • Sun J, Li W, Zhang B, Li G, Jiang L, Chen Z, Zou R, Hu J (2014) 3D core/shell hierarchies of MnOOH ultrathin nanosheets grown on NiO nanosheet arrays for high-performance supercapacitors. Nano Energy 4:56–64. doi:10.1016/j.nanoen.2013.12.006

    Article  Google Scholar 

  • Taguchi N (1962) A metal oxide gas sensor. Japanese Patent 45-38200

  • Tajima K, Qiu F, Shin W, Izu N, Matsubara I, Murayama N (2003) Micromechanical fabrication of low-power thermoelectric hydrogen sensor. Sens Actuators B 108:973–978

  • Tavoli F, Alizadeh N (2013) Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sens Actuators B Chem 176:761–767. doi:10.1016/j.snb.2012.09.013

    Article  Google Scholar 

  • Tebizi-Tighilt F-Z, Zane F, Belhaneche-Bensemra N, Belhousse S, Sam S, Gabouze N-E (2013) Electrochemical gas sensors based on polypyrrole-porous silicon. Appl Surf Sci 269:180–183. doi:10.1016/j.apsusc.2012.10.080

    Article  Google Scholar 

  • Teng X, Yang H (2003) Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt@Fe2O3 core–shell nanoparticles. J Am Chem Soc 125:14559–14563. doi:10.1021/ja0376700

    Article  Google Scholar 

  • Tharsika T, Haseeb ASMA, Akbar SA, Sabri MFM, Hoong WY (2014) Enhanced ethanol gas sensing properties of SnO2-Core/ZnO-shell nanostructures. Sensors 14:14586–14600

    Article  Google Scholar 

  • Thatai S, Khurana P, Boken J, Prasad S, Kumar D (2014) Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem J 116:62–76. doi:10.1016/j.microc.2014.04.001

    Article  Google Scholar 

  • Tripathy SK, Kwon HW, Leem YM, Kim BG, Yu YT (2007) Ag@SnO2 core–shell structure nanocomposites. Chem Phys Lett 442:101–104

    Article  Google Scholar 

  • Tripathy SK, Jo JN, Wu XF, Yoon JM, Yu YT (2011) Synthesis and photocatalytic property of Metal@SnO2 core–shell structure nanocomposites. J Nanosci Nanotechnol 11:453–457. doi:10.1166/jnn.2011.3179

    Article  Google Scholar 

  • Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Synthesis of thermally stable monodispersed Au@SnO2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Analytical Methods 5:1456–1462. doi:10.1039/C3AY26549H

    Article  Google Scholar 

  • Trivino GC, Klabunde KJ, Brock Dale E (1987) Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media. Langmuir 3:986–992

    Article  Google Scholar 

  • Trocino S, Frontera P, Donato A, Busacca C, Scarpino LA, Antonucci P, Neri G (2014) Gas sensing properties under UV radiation of In2O3 nanostructures processed by electrospinning. Mater Chem Phys 147:35–41. doi:10.1016/j.matchemphys.2014.03.057

    Article  Google Scholar 

  • Tsai CH, Chen SY, Song JM, Chen IG, Lee HY (2013) Thermal stability of Cu@Ag core–shell nanoparticles. Corros Sci 74:123–129

    Article  Google Scholar 

  • Tsuji MHM, Nishizawa Y, Tsuji T (2003) Preparation of gold nanoplates by a microwave-polyol method. Chem Lett 32:1114–1115

    Article  Google Scholar 

  • Ung T, Liz-Marzán LM, Mulvaney P (1998) Controlled method for silica coating of silver colloids influence of coating on the rate of chemical reactions. Langmuir 14:3740–3748. doi:10.1021/la980047m

    Article  Google Scholar 

  • Wang RC, Li CH (2011) Cu, Cu–Cu2O core–shell, and hollow Cu2O nanodendrites: structural evolution and reverse surface-enhanced Raman scattering. Acta Mater 59:822–829. doi:10.1016/j.actamat.2010.10.029

    Article  Google Scholar 

  • Wang ZL, Harfenist SA, Whetten RL, Bentley J, Evans ND (1998) Bundling and interdigitation of adsorbed thiolate groups in self-assembled nanocrystal superlattices. J Phys Chem B 102:3068–3072

    Article  Google Scholar 

  • Wang YQ, Nikitin K, McComb DW (2008) Fabrication of Au–Cu2O core–shell nanocube heterostructures. Chem Phys Lett 456:202–205. doi:10.1016/j.cplett.2008.03.027

    Article  Google Scholar 

  • Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10:2088–2106

    Article  Google Scholar 

  • Wang H, Sun Z, Lu Q, Zeng F, Su D (2012) One-pot synthesis of (Au nanorod)–(metal sulfide) core–shell nanostructures with enhanced gas-sensing property. Small 8:1167–1172. doi:10.1002/smll.201102287

    Article  Google Scholar 

  • Wang L, Dou H, Lou Z, Zhang T (2013a) Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 5:2686–2691. doi:10.1039/C2NR33088A

    Article  Google Scholar 

  • Wang X, Liu D, Song S, Zhang H (2013b) Pt@CeO2 multicore@Shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications. J Am Chem Soc 135:15864–15872. doi:10.1021/ja4069134

    Article  Google Scholar 

  • Wang M, Shen M, Wang J, Wei G, Li H, Wang J (2014a) Cerium based shells with palladium cores encapsulated: an efficient catalyst for carbon monoxide oxidation. J Rare Earths 32:1114–1119. doi:10.1016/S1002-0721(14)60191-5

    Article  Google Scholar 

  • Wang Z, Li L, Han D, Gu F (2014b) CO oxidation on Au@CeO2 yolk–shell nanoparticles with high catalytic stability. Mater Lett 137:188–191. doi:10.1016/j.matlet.2014.08.155

    Article  Google Scholar 

  • Wang Y, Lin Y, Jiang D, Li F, Li C, Zhu L, Wen S, Ruan S (2015) Special nanostructure control of ethanol sensing characteristics based on Au@In2O3 sensor with good selectivity and rapid response. RSC Adv 5:9884–9890. doi:10.1039/C4RA14879G

    Article  Google Scholar 

  • Wei A, Pan L, Huang W (2011) Recent progress in the ZnO nanostructure-based sensors. Mater Sci Eng B 176:1409–1421

    Article  Google Scholar 

  • Westsson E, Koper GJM (2014) How to determine the core–shell nature in bimetallic catalyst particles? Catalysts 4:375–396

    Article  Google Scholar 

  • Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong C, KruefuV, Wisitsoraat A, Tuantranont A, Phanichphant S (2011) Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens Actuators B Chem 160:580–591. doi:10.1016/j.snb.2011.08.032

  • White LT (2000) Hazardous gas monitoring a guide for semiconductor and other hazardous occupancies. Noyes Publications/William Andrew Publishing, LLC, New York

  • Wu XF, Song HY, Yoon JM, Yu YT, Chen YF (2009) Synthesis of core–shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 11:6438–6447

    Article  Google Scholar 

  • Wu XF, Chen YF, Yoon JM, Yu YT (2010) Fabrication and properties of flower-shaped Pt@TiO2 core–shell nanoparticles. Mater Lett 64:2208–2210. doi:10.1016/j.matlet.2010.07.027

    Article  Google Scholar 

  • Wu RJ, Lin DJ, Yu MR, Chen MH, Lai HF (2013) Ag@SnO2 core–shell material for use in fast-response ethanol sensor at room operating temperature. Sens Actuators B Chem 178:185–191. doi:10.1016/j.snb.2012.12.052

    Article  Google Scholar 

  • Wu X, Shi X, Ji Y, Hou S, Liu W, Zhang H, Wen T, Yan J, Song M, Hu Z (2015) Plasmon enhancement effect in Au gold nanorods@Cu2O core–shell nanostructures and its use in probing defect states. Langmuir 31:1537–1546

    Article  Google Scholar 

  • Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sens Actuators B Chem 3:147–155. doi:10.1016/0925-4005(91)80207-Z

    Article  Google Scholar 

  • Xu L, Yin ML, Liu S (2014) Agx@WO3 core–shell nanostructure for LSP enhanced chemical sensors. Sci Rep 4. doi:10.1038/srep06745

  • Xu H, Li G, Liu N, Zhu K, Zhu G, Jin S (2015a) Ag @ hierarchical TiO2 core–shell nanostructures for enhanced photocatalysis. Mater Lett 142:324–327. doi:10.1016/j.matlet.2014.12.016

    Article  Google Scholar 

  • Xu L, Yin ML, Liu S (2015b) Superior sensor performance from Ag@WO3 core–shell nanostructure. J Alloy Compd 623:127–131. doi:10.1016/j.jallcom.2014.10.103

    Article  Google Scholar 

  • Yamazoe N, Shimanoe K (2009) New perspectives of gas sensor technology. Sens Actuators B 138:100–107

  • Yan W, Feng X, Chen X, Li X, Zhu J-J (2008) A selective dopamine biosensor based on AgCl@polyaniline core–shell nanocomposites. Bioelectrochemistry 72:21–27. doi:10.1016/j.bioelechem.2007.07.003

    Article  Google Scholar 

  • Yanagimotoa T, Yub YT, Kanekoa K (2012) Microstructure and CO gas sensing property of Au/SnO2 core–shell structure nanoparticles synthesized by precipitation method and microwave-assisted hydrothermal synthesis method. Sens Actuators B Chem 166–167:31–35

    Article  Google Scholar 

  • Yang SY, Kim SG (2004) Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis. Powder Technol 146(3):185–192

    Article  Google Scholar 

  • Yang J, Pan J (2012) Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Mater 60:4753–4758. doi:10.1016/j.actamat.2012.05.037

    Article  Google Scholar 

  • Yang S, Wang Y, Wang Q, Zhang R, Ding B (2007) UV irradiation induced formation of Au nanoparticles at room temperature: the case of pH values. Colloids Surf A 301:174–183. doi:10.1016/j.colsurfa.2006.12.051

    Article  Google Scholar 

  • Ye KH, Wang JY, Li N, Liu ZQ, Guo SH, Guo YP, Su YZ (2014) A facile way to synthesize Er2O3@ZnO core–shell nanorods for photoelectrochemical water splitting. Inorg Chem Commun 45:116–119. doi:10.1016/j.inoche.2014.04.018

    Article  Google Scholar 

  • Yoon JW, Kim HJ, Jeong HM, Lee JH (2014) Gas sensing characteristics of p-typeCr2O3 and Co3O4 nanofibers depending on inter-particle connectivity. Sens Actuators B 202:236–271

    Article  Google Scholar 

  • Yu YT, Dutta P (2011) Examination of Au/SnO2 core–shell architecture nanoparticle for low temperature gas sensing applications. Sens Actuators B Chem 157:444–449. doi:10.1016/j.snb.2011.04.088

    Article  Google Scholar 

  • Yu C, Yang K, Xie Y, Fan Q, Yu JC, Shu Q, Wang C (2013) Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5:2142–2151. doi:10.1039/C2NR33595F

    Article  Google Scholar 

  • Zeng Y, Zhang T, Yang H, Qiao L, Qi Q, Cao F, Zhang Y, Wang R (2009) Preparation of Cu–Zn/ZnO core–shell nanocomposite by wire electrical explosion and precipitation process in aqueous solution and CO sensing properties. Appl Surf Sci 255:4045–4049. doi:10.1016/j.apsusc.2008.10.079

    Article  Google Scholar 

  • Zhai H, Wang L, Li J, Han D, Wang H, Wang J, Liu X, Lin X, Li X, Gao M, Yang J (2014) Facile one-step synthesis and photoluminescence properties of Ag–ZnO core–shell structure. J Alloy Compd 600:146–150. doi:10.1016/j.jallcom.2014.02.092

    Article  Google Scholar 

  • Zhang J, Miremadi BK, Colbow K (1994) Effects of surface silver additives on tin oxide thin film gas sensors. J Mater Sci Lett 13:1048–1050

    Google Scholar 

  • Zhang E, Tang Y, Peng K, Guo C, Zhang Y (2008) Synthesis and magnetic properties of core–shell nanoparticles under hydrothermal conditions. Solid State Commun 148:496–500. doi:10.1016/j.ssc.2008.10.006

    Article  Google Scholar 

  • Zhang G, Liao Y, Baker I (2010) Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia. Mater Sci Eng C 30(1):92–97

    Article  Google Scholar 

  • Zhang L, Blom DA, Wang H (2011a) Au–Cu2O Core–shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem Mater 23:4587–4598. doi:10.1021/cm202078t

    Article  Google Scholar 

  • Zhang N, Fu X, Xu YJ (2011b) A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core–shell and yolk-shell structure and its application as a visible light photocatalyst. J Mater Chem 21:8152–8158. doi:10.1039/C1JM10100E

    Article  Google Scholar 

  • Zhang N, Liu S, Fu X, Xu Y-J (2011c) Synthesis of M@TiO2 (M = Au, Pd, Pt) core–shell nanocomposites with tunable photoreactivity. J Phys Chem C 115:9136–9145. doi:10.1021/jp2009989

    Article  Google Scholar 

  • Zhang L, Kim J, Zhang J, Nan F, Gauquelin N, Botton J, He P, Bashyam R, Knights S (2013) Ti4O7 supported Ru@Pt core–shell catalyst for CO-tolerance in PEM fuel cell hydrogen oxidation reaction. Appl Energy 103:507–513. doi:10.1016/j.apenergy.2012.10.017

    Article  Google Scholar 

  • Zhanjiang Z, Jinpel L (2012) Synthesis and characterization of silver nanoparticles by a sonochemical method. Rare Metal Mater Eng 41(10):1700–1705

    Article  Google Scholar 

  • Zheng W, Miao Q, Tang Y, Wei W, Xu J, Liu X, Qian Q, Xiao L, Huang B, Chen Q (2013) La(III)-doped ZnO/C nanofibers with core–shell structure by electrospinning–calcination technology. Mater Lett 98:94–97. doi:10.1016/j.matlet.2013.02.004

    Article  Google Scholar 

  • Zhu Z, Wu RJ (2014) The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. J Taiwan Inst Chem Eng. doi:10.1016/j.jtice.2014.12.022

    Google Scholar 

  • Zhu Z, Kao CT, Wu RJ (2014a) A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl Surf Sci 320:348–355

    Article  Google Scholar 

  • Zhu Z, Kao CT, Wu RJ (2014b) A highly sensitive ethanol sensor based on Ag@TiO2 nanoparticles at room temperature. Appl Surf Sci 320:348–355. doi:10.1016/j.apsusc.2014.09.108

    Article  Google Scholar 

Download references

Acknowledgments

The partial support of the Iran Nanotechnology Initiative Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Neri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, A., Janghorban, K., Hashemi, B. et al. Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review. J Nanopart Res 17, 371 (2015). https://doi.org/10.1007/s11051-015-3164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3164-5

Keywords

Navigation