Skip to main content

Learning a Statistical Full Spine Model from Partial Observations

  • Conference paper
  • First Online:
Shape in Medical Imaging (ShapeMI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12474))

Included in the following conference series:

Abstract

The study of the morphology of the human spine has attracted research attention for its many potential applications, such as image segmentation, bio-mechanics or pathology detection. However, as of today there is no publicly available statistical model of the 3D surface of the full spine. This is mainly due to the lack of openly available 3D data where the full spine is imaged and segmented. In this paper we propose to learn a statistical surface model of the full-spine (7 cervical, 12 thoracic and 5 lumbar vertebrae) from partial and incomplete views of the spine. In order to deal with the partial observations we use probabilistic principal component analysis (PPCA) to learn a surface shape model of the full spine. Quantitative evaluation demonstrates that the obtained model faithfully captures the shape of the population in a low dimensional space and generalizes to left out data. Furthermore, we show that the model faithfully captures the global correlations among the vertebrae shape. Given a partial observation of the spine, i.e. a few vertebrae, the model can predict the shape of unseen vertebrae with a mean error under 3 mm. The full-spine statistical model is trained on the VerSe 2019 public dataset and is publicly made available to the community for non-commercial purposes. (https://gitlab.inria.fr/spine/spine_model)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arun, K.S., Thomas, S.H., Steven, D.B.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 5, 698–700 (1987)

    Google Scholar 

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)

    Google Scholar 

  3. Bogo, F., Black, M.J., Loper, M., Romero, J.: Detailed full-body reconstructions of moving people from monocular RGB-D sequences. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2300–2308 (2015)

    Google Scholar 

  4. Bossa, M.N., Olmos, S.: Multi-object statistical pose+ shape models. In: 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1204–1207. IEEE (2007)

    Google Scholar 

  5. Bruners, P., et al.: Electromagnetic tracking for CT-guided spine interventions: phantom, ex-vivo and in-vivo results. Eur. Radiol. 19(4), 990–994 (2009). https://doi.org/10.1007/s00330-008-1227-z

    Article  Google Scholar 

  6. Campbell, J.Q., Petrella, A.J.: Automated finite element modeling of the lumbar spine: using a statistical shape model to generate a virtual population of models. J. Biomech. 49(13), 2593–2599 (2016)

    Article  Google Scholar 

  7. Cai, Y., Osman, S., Sharma, M., Landis, M., Li, S.: Multi-modality vertebra recognition in arbitrary views using 3D deformable hierarchical model. IEEE Trans. Med. Imaging 34(8), 1676–1693 (2015)

    Article  Google Scholar 

  8. Castro-Mateos, I., Pozo, J.M., Pereañez, M., Lekadir, K., Lazary, A., Frangi, A.F.: Statistical interspace models (SIMs): application to robust 3D spine segmentation. IEEE Trans. Med. Imaging 34(8), 1663–1675 (2015)

    Article  Google Scholar 

  9. Glocker, B., Feulner, J., Criminisi, A., Haynor, D.R., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_73

    Chapter  Google Scholar 

  10. Heimann, T., Meinzer, H.-P.: Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  11. Hollenbeck, J.F.M., Cain, C.M., Fattor, J.A., Rullkoetter, P.J., Laz, P.J.: Statistical shape modeling characterizes three-dimensional shape and alignment variability in the lumbar spine. J. Biomech. 69, 146–155 (2018)

    Article  Google Scholar 

  12. Kadoury, S., Labelle, H., Paragios, N.: Automatic inference of articulated spine models in CT images using high-order Markov random fields. Med. Image Anal. 15(4), 426–437 (2011)

    Article  Google Scholar 

  13. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13(3), 471–482 (2009)

    Article  Google Scholar 

  14. Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: A framework for automated spine and vertebrae interpolation-based detection and model-based segmentation. IEEE Trans. Med. Imaging 34(8), 1649–1662 (2015)

    Article  Google Scholar 

  15. Kirschner, M., Becker, M., Wesarg, S.: 3D active shape model segmentation with nonlinear shape priors. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 492–499. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_60

    Chapter  Google Scholar 

  16. Lüthi, M., Albrecht, T., Vetter, T.: Building shape models from lousy data. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 1–8. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04271-3_1

    Chapter  Google Scholar 

  17. Mirzaalian, H., Wels, M., Heimann, T., Kelm, B.M., Suehling. M.: Fast and robust 3D vertebra segmentation using statistical shape models. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3379–3382. IEEE (2013)

    Google Scholar 

  18. Probabilistic PCA python implementation. https://github.com/shergreen/pyppca

  19. Rasoulian, A., Rohling, R., Abolmaesumi, P.: Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+ pose model. IEEE Trans. Med. Imaging 32(10), 1890–1900 (2013)

    Article  Google Scholar 

  20. Ruiz-España, S., Domingo, J., Díaz-Parra, A., Dura, E., D’Ocón-Alcañiz, V., Arana, E., Moratal, D.: Automatic segmentation of the spine by means of a probabilistic atlas with a special focus on ribs suppression. Med. Phys. 44(9), 4695–4707 (2017)

    Article  Google Scholar 

  21. Sekuboyina, et al.: VerSe: A Vertebrae Labelling and Segmentation Benchmark. arXiv eprint: 2001.09193. arXiv:2001.09193 (2020)

  22. Seifert, S.: Hierarchical parsing and semantic navigation of full body CT data. In: Medical Imaging 2009: Image Processing. International Society for Optics and Photonics (2009)

    Google Scholar 

  23. Schmidt, S., Kappes, J., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., Schnörr, C.: Spine detection and labeling using a parts-based graphical model. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 122–133. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_11

    Chapter  Google Scholar 

  24. Stacklies, W., Redestig, H., Scholz, M., Walther, D., Selbig, J.: pcaMethods–a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23(9), 1164–1167 (2007)

    Article  Google Scholar 

  25. Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 61(3), 611–622 (1999)

    Article  MathSciNet  Google Scholar 

  26. Zhan, Y., Maneesh, D., Harder, M., Zhou, X.S.: Robust MR spine detection using hierarchical learning and local articulated model. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 141–148. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, D., Keller, M., Boyer, E., Black, M., Pujades, S. (2020). Learning a Statistical Full Spine Model from Partial Observations. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds) Shape in Medical Imaging. ShapeMI 2020. Lecture Notes in Computer Science(), vol 12474. Springer, Cham. https://doi.org/10.1007/978-3-030-61056-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61056-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61055-5

  • Online ISBN: 978-3-030-61056-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics