Skip to main content

Computational Modeling of the Spine

  • Chapter
  • First Online:
Shape Analysis in Medical Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 14))

  • 2103 Accesses

Abstract

Modeling of the human spine requires the extension from single object modeling to object ensembles. The spine consists of a constellation of vertebrae where the individual vertebrae show a complex shape. While most neighbouring vertebrae look very similar, their shape changes significantly along the spine. Due to these challenges, more sophisticated model formulations are needed that go beyond shape modeling of vertebrae. In this article, we combine several high-level models of the spine into one common framework. The individual vertebrae are represented as a set of models covering shape, gradient and appearance information as well as relative location and orientation. By encoding further anatomical information into the shape representation of the individual vertebrae, e.g., important anatomical regions or significant landmarks, clinically relevant parameters can be easily derived from the shape models. The spine is expressed as a sequence of rigid transformations between vertebrae and different statistical methods can be used to cover the variability of spinal curvatures. For selected applications that are vertebra labelling in limited field of view scans and segmentation in both CT and MRI, we show how this comprehensive framework can be used for an automatic image interpretation of medical images of the spine. Furthermore, the problem of change assessment for osteoporotic fracture detection is tackled with this framework as an example for CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alomari R, Corso J, Chaudhary V, Dhillon G (2010) Computer-aided diagnosis of lumbar disc pathology from clinical lower spine MRI. Int J Comput Assist Radiol Surg 5(3):287–293

    Article  Google Scholar 

  2. Aslan M, Abdelmunim H, Farag A, Arnold B, Mostafa E, Xiang P (2011) A new shape based segmentation framework using statistical and variational methods. In: Proceedings of ICIP

    Google Scholar 

  3. Aslan M, Ali A, Arnold B, Fahmi R, Farag A, Xiang P (2009) Segmentation of trabecular bones from vertebral bodies in volumetric CT spine images. In: Proceedings of ICIP, pp 3385–3388

    Google Scholar 

  4. Aslan M, Ali A, Chen D, Arnold B, Farag A, Xiang P (2010) 3D vertebrae segmentation using graph cuts with shape prior constraints. In: Proceedings of ICIP, pp 2193–2196

    Google Scholar 

  5. Aslan M, Ali A, Farag A, Rara H, Arnold B, Xiang P (2010) 3D vertebral body segmentation using shape based graph cuts. In: Proceedings of ICPR, pp 3951–3954

    Google Scholar 

  6. Ballard D (1981) Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111–122

    Google Scholar 

  7. Bauer JS et al (2006) Detection of osteoporotic vertebral fractures using multidetector CT. Osteoporos Int 17(4):608–615. doi:10.1007/s00198-005-0023-8

    Article  Google Scholar 

  8. Boisvert J, Cheriet F, Pennec X, Labelle H, Ayache N (2008) Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans Med Imaging 27(4):557–568

    Article  Google Scholar 

  9. Boisvert J, Pennec X, Ayache N, Labelle H, Cheriet F (2006) 3D anatomical variability assessment of the scoliotic spine using statistics on lie groups. In: Proceedings of ISBI, pp 750–753

    Google Scholar 

  10. Boisvert J, Pennec X, Labelle H, Cheriet F, Ayache N (2006) Principal spine shape deformation modes using Riemannian geometry and articulated modes. In: Proceedings of AMDO, pp 346–355

    Google Scholar 

  11. Corso J, Alomari R, Chaudhary V (2008) Lumbar disc localization and labeling with a probabilistic model on both pixel and object features. In: Proceedings of MICCAI, vol LNCS 5241, pp 202–210

    Google Scholar 

  12. Davis B, Fletcher P, Bullitt E, Joshi S (2007) Population shape regression from random design data. In: ICCV, pp 1–7

    Google Scholar 

  13. Genant H et al (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148

    Article  Google Scholar 

  14. Glocker B, Feulner J, Criminisi A, Haynor DR, Konukoglu E (2012) Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Proceedings of MICCAI

    Google Scholar 

  15. Jerebko A, Schmidt G, Zhou X, Bi J, Anand V, Liu J, Schoenberg S, Schmuecking I, Kiefer B, Krishnan A (2007) Robust parametric modeling approach based on domain knowledge for computer aided detection of vertebrae column metastases in MRI. In: Proceedings of IPMI, pp 713–725

    Google Scholar 

  16. Kadoury S, Cheriet F, Labelle H (2008) A statistical image-based approach for the 3D reconstruction of the scoliotic spine from biplanar radiographs. In: Proceedings of ISBI, pp 660–663

    Google Scholar 

  17. Kadoury S, Cheriet F, Labelle H (2009) Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models. IEEE Trans Med Imaging 28(9):1422–1435

    Article  Google Scholar 

  18. Kadoury S, Cheriet F, Labelle H (2009) Segmentation of scoliotic spine silhouettes from enhanced biplanar X-rays using a prior knowledge bayesian framework. In: Proceedings of ISBI, pp 478–481

    Google Scholar 

  19. Kadoury S, Cheriet F, Labelle H (2010) Self-calibration of biplanar radiographic images through geometric spine shape descriptors. IEEE Trans Biomed Eng 57(7):1663–1675

    Article  Google Scholar 

  20. Kadoury S, Labelle H, Paragios N (2011) Automatic inference of articulated spine models in CT images using high-order markov random fields. Med Image Anal 15(4):426–437

    Article  Google Scholar 

  21. Kadoury S, Labelle H, Paragios N (2013) Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans Med Imaging 32(7):1227–1238

    Article  Google Scholar 

  22. Kadoury S, Paragios N (2009) Surface/volume-based articulated 3D spine inference through markov random fields. In: Proceedings of MICCAI, vol LNCS 5762, pp 92–99

    Google Scholar 

  23. Klinder T, Lorenz C, von Berg J, Dries S, Bülow T, Ostermann J (2007) Automated model-based rib cage segmentation and labeling in CT images. In: Proceedings of MICCAI, vol LNCS 4792, pp 195–203

    Google Scholar 

  24. Klinder T, Ostermann J, Ehm M, Franz A, Kneser R, Lorenz C (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13(3):471–482

    Article  Google Scholar 

  25. Klinder T, Wolz R, Lorenz C, Franz A, Ostermann J (2008) Spine segmentation using articulated shape models. In: Proceedings of MICCAI, vol LNCS 5241, pp 227–234

    Google Scholar 

  26. Komodakis N, Tziritas G, Paragios N (2008) Performance vs computational efficiency for optimizing single and dynamic mrfs: setting the state of the art with primal dual strategies. CVIU 112(1):14–29

    Google Scholar 

  27. Lecron F, Boisvert J, Mahmoudi S, Labelle H, Benjelloun M (2012) Fast 3d spine reconstruction of postoperative patients using a multilevel statistical model. In: Proceedings of MICCAI, vol LNCS 7511, pp 446–453

    Google Scholar 

  28. Lorensen W, Cline H (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graphics 21:163–169

    Article  Google Scholar 

  29. Lorenz C, Netsch T, Klinder T, Müller D, Baum T, Bauer J, Noel P (2013) Change assessment for CT spine imaging. In: Proceedings of ISBI, pp 97–100

    Google Scholar 

  30. Ma J, Lu L, Zhan Y, Zhou X, Salganicoff M, Krishnan A (2010) Hierarchical segmentation and identification of thoracic vertebra using learning-based edge detection and coarse-to-fine deformable model. In: Proceedings of MICCAI, vol 6361, pp 19–27

    Google Scholar 

  31. Mastmeyer A, Engelke K, Fuchs C, Kalender W (2006) A hierarchical 3d segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal 10(4):560–577

    Article  Google Scholar 

  32. Müller D et al (2008) Significance of sagittal reformations in routine thoracic and abdominal multislice CT studies for detecting osteoporotic fractures and other spine abnormalities. Eur Radiol 18(8):1696–1702

    Article  Google Scholar 

  33. Nadaraya EA (1964) On estimating regression. Theory Probab Appl 10:186–190

    Article  Google Scholar 

  34. Rother C, Kohli P, Feng W, Jia J (2009) Minimizing sparse higher order energy functions of discrete variables. In: CVPR, pp 1382–1389

    Google Scholar 

  35. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326

    Article  Google Scholar 

  36. Schmidt S, Kappes J, Bergtholdt M, Pekar V, Dries S, Bystrov D, Schnörr C (2007) Spine detection and labeling using a parts-based graphical model. In: Proceedings of Image Processing in Medical Imaging, vol LNCS 4584, pp 122–133

    Google Scholar 

  37. Tan S, Yao J, Ward M, Yao L, Summers R (2008) Computer aided evaluation of ankylosing spondylitis using high-resolution CT. IEEE Trans Med Imaging 27(9):1252–1267

    Article  Google Scholar 

  38. Wiese T, Burns J, Yao J, Summers R (2011) Computer-aided detection of sclerotic bone metastases in the spine using watershed algorithm and support vector machines. In: Proceedings of ISBI, pp 152–155

    Google Scholar 

  39. Wiese T, Yao J, Burns J, Summers R (2012) Detection of sclerotic bone metastases in the spine using watershed algorithm and graph cut. In: Proceedings of SPIE Medical, Imaging, vol 8315, pp 8315121–8315128

    Google Scholar 

  40. Yao J, Burns J, Munoz H, Summers R (2012) Detection of vertebral body fractures based on cortical shell unwrapping. In: Proceedings of MICCAI, vol LNCS 7512, pp 509–516

    Google Scholar 

  41. Yao J, Burns J, Wiese T, Summers R (2012) Quantitative vertebral compression fracture evaluation using a height compass. In: Proceedings of SPIE, vol 8315, pp 83151X1–83151X8

    Google Scholar 

  42. Yao J, O’Connor S, Summers R (2006) Automated spinal column extraction and partitioning. In: Proceedings of ISBI, pp 390–393

    Google Scholar 

  43. Zhan Y, Maneesh D, Harder M, Zhou X (2012) Robust MR spine detection using hierarchical learning and local articulated model. In: Proceedings of MICCAI, vol LNCS 7510, pp 141–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Klinder .

Editor information

Editors and Affiliations

Appendix

Appendix

The conversion between the two representations of rotation is described by Rodrigues’ formula:

$$\begin{aligned} R = I + \sin (\theta ) C({\mathbf {n}}) + (1-\cos (\theta ))C({\mathbf {n}})^2 \end{aligned}$$
(32)

with \(C({\mathbf {n}}) = \left[ \begin{array}{ccc} 0 &{} -n_z &{} n_y \\ n_z &{} 0 &{} -n_x \\ -n_y &{} n_x &{} 0 \\ \end{array} \right] \).

The inverse map (from a rotation matrix to a rotation vector) is given by the following equations [8]:

$$\begin{aligned} \theta = \arccos \left( \frac{tr(R)-1}{2}\right) \ \ \ \mathrm{{and}} \ \ \ {C(\mathbf {n})} = \frac{R-R^T}{2\sin (\theta )}. \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klinder, T., Kadoury, S., Lorenz, C. (2014). Computational Modeling of the Spine. In: Li, S., Tavares, J. (eds) Shape Analysis in Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-03813-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03813-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03812-4

  • Online ISBN: 978-3-319-03813-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics