Skip to main content

Spine Detection and Labeling Using a Parts-Based Graphical Model

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Abstract

The detection and extraction of complex anatomical structures usually involves a trade-off between the complexity of local feature extraction and classification, and the complexity and performance of the subsequent structural inference from the viewpoint of combinatorial optimization. Concerning the latter, computationally efficient methods are of particular interest that return the globally-optimal structure.

We present an efficient method for part-based localization of anatomical structures which embeds contextual shape knowledge in a probabilistic graphical model. It allows for robust detection even when some of the part detections are missing. The application scenario for our statistical evaluation is spine detection and labeling in magnetic resonance images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peng, Z., Zhong, J., Wee, W., Lee, J.h.: Automated vertebra detection and segmentation from the whole spine MR images. In: Proc. Engineering in Medicine and Biology, IEEE-EMBS 2005, pp. 2527–2530 (2005)

    Google Scholar 

  2. Weiss, K.L., Storrs, J.M., Banto, R.B.: Automated spine survey iterative scan technique. Radiology 239(1), 255–262 (2006)

    Article  Google Scholar 

  3. Vrtovec, T., Ourselin, S., Gomes, L., Likar, B., Pernus, F.: Generation of curved planar reformations from magnetic resonance images of the spine. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 135–143. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Active shape models – their training and application. Comp. Vision Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  5. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)

    Google Scholar 

  6. Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60, 135–164 (2004)

    Article  Google Scholar 

  7. Abi-Nahed, J., Jolly, M.P., Yang, G.Z.: Robust active shape models: A robust, generic and simple automatic segmentation tool. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 1–8. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. International Journal of Computer Vision 61, 55–79 (2005)

    Article  Google Scholar 

  9. Pham, T.V., Smeulders, A.W.M.: Object recognition with uncertain geometry and uncertain part detection. Computer Vision and Image Understanding 99(2), 241–258 (2005)

    Article  Google Scholar 

  10. Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: ECCV (1). pp. 18–32 (2000)

    Google Scholar 

  11. Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). vol. 2, p. 264 (2003)

    Google Scholar 

  12. Amit, Y.: Graphical shape templates for automatic anatomy detection with applications to MRI brain scans. IEEE Trans. Med. Imaging 16(1), 28–40 (1997)

    Article  Google Scholar 

  13. Bergtholdt, M., Kappes, J.H., Schnörr, C.: Learning of graphical models and efficient inference for object class recognition. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) Pattern Recognition. LNCS, vol. 4174, pp. 273–283. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)

    Article  Google Scholar 

  15. Minoux, M.: Mathematical programming: theory and algorithms. Wiley, Chichester (1986)

    MATH  Google Scholar 

  16. Pakzad, P., Anantharam, V.: Estimation and marginalization using Kikuchi approximation methods. Neural Computation 17(8), 1836–1873 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Schmidt, S. et al. (2007). Spine Detection and Labeling Using a Parts-Based Graphical Model. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics