Skip to main content

Lignocellulosic Biomass and Microbial Genome Engineering for Sustainable Ethanol Production: An Overview

  • Chapter
  • First Online:
Sustainable Ethanol and Climate Change

Abstract

In the last few decades, various scientific and technological developments in the fermentation process have significantly contributed to the progress of the ethanol industry worldwide. These major contributions have expanded our view about fermentation in first- and second-generation ethanol production. Currently, advanced technologies are available to produce ethanol from lignocellulosic biomass (LCB) such as sugarcane, sugar beet, corn, and other feedstocks. The LCB is composed of various 5- (e.g., arabinose and xylose) and 6- (e.g., glucose, galactose, and mannose) carbon sugars. The efficiency of ethanol processing needs to be enhanced further to meet the Sustainable Development Goals (SDGs) of the United Nations. Conventional genome modification techniques like mutation and selection are being extensively employed to over-produce ethanol through microbial fermentation. In addition to conventional techniques, this chapter evaluates the potential application of clustered regularly interspaced short palindromic repeats (CRISPR) associated genome engineering of potential microbes for enhanced ethanol efficiency. The CRISPR/Cas9 is a groundbreaking technology and has engineered microbial genomes for desirable traits in an efficient and advanced way. Genome alterations of various microbes including bacteria, fungi, algae, and Saccharomyces cerevisiae have been accomplished through this technique for various applications. In this chapter, we summarized the major discoveries of CRISPR/Cas9-mediated genome editing in microorganisms and deliberate how these discoveries can be utilized for the sustainability and enhancement of ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adsul M, Ghule J, Singh R, Shaikh H, Bastawde K, Gokhale D et al (2004) Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydr Polym 57(1):67–72

    Article  Google Scholar 

  • Ahmed MJK, Ahmaruzzaman M (2016) A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J Water Process Eng 10:39–47

    Article  Google Scholar 

  • Ali Z, Ali S, Tashkandi M, Zaidi SS-e-A, Mahfouz MM (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. 6: 26912. https://doi.org/10.1038/srep26912. https://www.nature.com/articles/srep26912#supplementary-information

  • Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82(4):340–349

    Article  Google Scholar 

  • Almeida JR, Modig T, Röder A, Lidén G, Gorwa-Grauslund MF (2008) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnol Biofuels 1(1):12

    Article  Google Scholar 

  • Arshad M (2010) Bioethanol: A sustainable and environment friendly solution for Pakistan. Sci Vis 16(1 & 2):25–30

    Google Scholar 

  • Arshad M (2017) Clean and sustainable energy technologies. In: Rasul M (eds) Clean energy for sustainable development, pp 73–89

    Google Scholar 

  • Arshad M, Ahmed S, Zia MA, Rajoka MI (2014) Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses. Appl Biochem Biotechnol 1–10

    Google Scholar 

  • Arshad M, Hussain T, Iqbal M, Abbas M (2017) Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Braz J Microbiol 48(3):403–409

    Google Scholar 

  • Arshad M, Khan ZM, Khalil-ur-Rehman SFA, Rajoka MI (2008) Optimization of process variables for minimization of by product formation during fermentation of blackstrap molasses to ethanol at industrial scale. Lett Appl Microbiol 47:410–414

    Article  Google Scholar 

  • Arshad M, Zia MA, Shah FA, Ahmad M (2018) An overview of biofuel. In: Arshad M (eds. Perspectives on water usage for biofuels production. Springer, Cham

    Google Scholar 

  • Bååth H, Gällerspång A, Hallsby G, Lundström A, Löfgren P, Nilsson M et al (2002) Remote sensing, field survey, and long-term forecasting: an efficient combination for local assessments of forest fuels. Biomass Bioenergy 22(3):145–157

    Article  Google Scholar 

  • Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88

    Article  Google Scholar 

  • Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875

    Article  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  Google Scholar 

  • Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T et al (2010) Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuel Bioprod Bior 4(1):77–93

    Article  Google Scholar 

  • Bhatia L, Paliwal S (2011) Ethanol producing potential of Pachysolen tannophilus from sugarcane bagasse. Int J Biotechnol Bioeng Res 2(2):271–276

    Google Scholar 

  • Bhatia SK, Kim SH, Yoon JJ, Yang YH (2017) Current status and strategies for second generation biofuel production using microbial systems. Energy Convers Manag 148:1142–1156

    Article  Google Scholar 

  • Bhatia SK, Lee BR, Sathiyanarayanan G, Song HS, Kim J, Jeon JM et al (2016) Biomass-derived molecules modulate the behavior of Streptomyces coelicolor for antibiotic production. 3 Biotech 6(2):223

    Google Scholar 

  • Bhutto AW, Bazmi AA, Zahedi G (2011) Greener energy: issues and challenges for Pakistan—biomass energy prospective. Renew Sustain Energy Rev 15(6):3207–3219

    Article  Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T, Plöger A, Schmidt AS (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioenergy 49(5):568–577

    Article  Google Scholar 

  • Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9(5):609–620

    Article  Google Scholar 

  • Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S et al (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci 108(33):13752–13757

    Article  Google Scholar 

  • Cardona C, Quintero J, Paz I (2010) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101(13):4754–4766

    Article  Google Scholar 

  • Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98(12):2415–2457

    Article  Google Scholar 

  • Caspeta L, Caro-Bermúdez MA, Ponce-Noyola T, Martinez A (2014) Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl Energy 113:277–286

    Google Scholar 

  • Chandel AK, Da Silva SS, Singh OV (2013) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenergy Res 6(1):388–401

    Article  Google Scholar 

  • Chang WR, Hwang JJ, Wu W (2017) Environmental impact and sustainability study on biofuels for transportation applications. Renew Sustain Energy Rev 67:277–288

    Article  Google Scholar 

  • Cheng NH, Liu JZ, Liu X, Wu Q, Thompson SM, Lin J et al (2011) Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response. J Biol Chem 286(23):20398–20406

    Article  Google Scholar 

  • Chanouf Farm Biofire (2018) Impact Journalism Day. https://www.un.org/sustainabledevelopment/blog/2018/07/chanouf-farm-biofire/

  • Chernova N, Kiseleva S (2014) Efficiency of the biodiesel production from microalgae. Therm Eng 61(6):399–405

    Article  Google Scholar 

  • Coyle W (2007) The future of biofuels: a global perspective. Amber Waves 5(5):24

    Google Scholar 

  • d’Espaux L, Mendez-Perez D, Li R, Keasling JD (2015) Synthetic biology for microbial production of lipid-based biofuels. Curr Opin Chem Biol 29:58–65

    Article  Google Scholar 

  • Dalawai N, Krupa K, Nadkarni S, Bharani S, Harinikumar K (2017) Screening of efficient ethanol tolerant yeast strain for production of ethanol. Int J Pure App Biosci 5(1):744–752

    Article  Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sourc 27(4):327–337

    Article  Google Scholar 

  • Dien BS, Nichols NN, O'bryan PJ, Bothast RJ (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84(1–9):181–196

    Google Scholar 

  • Dunlop MJ (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4(1):32

    Article  Google Scholar 

  • Enhancing the Impact of Energy Efficiency and Renewable Energy Policies. International Energy Agency (2018). https://www.iea.org/newsroom/news/2018/march/enhancing-the-impact-of-energy-efficiency-and-renewable-energy-policies.html

  • Faraco V, Hadar Y (2011) The potential of lignocellulosic ethanol production in the mediterranean basin. Renew Sustain Energy Rev 15(1):252–266

    Article  Google Scholar 

  • Ferreira S, Duarte AP, Ribeiro MH, Queiroz JA, Domingues FC (2009) Response surface optimization of enzymatic hydrolysis of Cistus ladanifer and Cytisus striatus for bioethanol production. Biochem Eng J 45(3):192–200

    Article  Google Scholar 

  • Fulton L, Howes T, Hardy J (2004) Biofuels for transport: an international perspective. International Energy Agency, Paris, France

    Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  Google Scholar 

  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X et al (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87(1–2):99–110

    Article  Google Scholar 

  • Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    Article  Google Scholar 

  • Ghosh P, Westhoff P, Debnath D (2019) Biofuels, food security, and sustainability. In: Biofuels, bioenergy and food security. Academic Press, pp 211–229

    Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  Google Scholar 

  • IPCC (2018) Report on global warming of 1.5 ºC

    Google Scholar 

  • Gonçalves AL, Simões M (2017) Metabolic engineering of Escherichia coli for higher alcohols production: an environmentally friendly alternative to fossil fuels. Renew Sustain Energy Rev 77:580–589

    Article  Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567

    Article  Google Scholar 

  • Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. Lignocellulose conversion, Springer, pp 21–38

    Google Scholar 

  • Harel A (2009) Noritech seaweed biotechnology Inc. Algae World Conference, Rotterdam, NL

    Google Scholar 

  • Hayat S, Maheshwari P, Wani AS, Irfan M, Alyemeni MN, Ahmad A (2012) Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol Biochem 53:61–68

    Article  Google Scholar 

  • Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145(1–2):138–151

    Article  Google Scholar 

  • Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18

    Article  Google Scholar 

  • Horwitz AA, Walter JM, Schubert MG, Kung SH, Hawkins K, Platt DM et al (2015) Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst 1(1):88–96

    Article  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559

    Article  Google Scholar 

  • Jhunjhunwala S, van Zelm MC, Peak MM, Cutchin S, Riblet R, van Dongen JJ et al (2008) The 3D structure of the immunoglobulin heavy-chain locus: implications for long-range genomic interactions. Cell 133(2):265–279

    Article  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  Google Scholar 

  • Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crops Prod 20(1):103–110

    Article  Google Scholar 

  • Kalogeris E, Christakopoulos P, Katapodis P, Alexiou A, Vlachou S, Kekos D et al (2003) Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes. Process Biochem 38(7):1099–1104

    Article  Google Scholar 

  • Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: current findings determine research priorities. Sci World J

    Google Scholar 

  • Kim S, Baek SH, Lee K, Hahn JS (2013) Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Microb Cell Fact 12(1):14

    Article  Google Scholar 

  • Kim S, Lee MJ, Kim H, Kang M, Kim JS (2011) Preassembled zinc-finger arrays for rapid construction of ZFNs. Nat Methods 8(1):7

    Article  Google Scholar 

  • Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z et al (2015) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33(12):1293–1298

    Article  Google Scholar 

  • Klinke HB, Thomsen A, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26

    Article  Google Scholar 

  • Kumar A, Usmani Z, Kumar V (2017) Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J Environ Manage 190:20–27

    Article  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G et al (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24(3–4):151–159

    Article  Google Scholar 

  • Lewis JA, Elkon IM, McGee MA, Higbee AJ, Gasch AP (2010) Exploiting natural variation in Saccharomyces cerevisiae to identify genes for increased ethanol resistance. Genetics 186(4):1197–1205

    Article  Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    Article  Google Scholar 

  • Liu ZL, Weber SA, Cotta MA, Li SZ (2012) A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. Bioresour Technol 104:410–416

    Article  Google Scholar 

  • López M, Nichols N, Dien B, Moreno J, Bothast R (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64(1):125–131

    Article  Google Scholar 

  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  Google Scholar 

  • Ma M, Liu LZ (2010a) Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae. BMC Microbiol 10(1):169

    Article  Google Scholar 

  • Ma M, Liu ZL (2010b) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87(3):829–845

    Article  Google Scholar 

  • Mena-Violante HG, Olalde-Portugal V (2007) Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci Hort 113(1):103–106

    Article  Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339

    Article  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2011) A tale nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143

    Article  Google Scholar 

  • Monte J, Carvalho W, Milagres A (2010) Use of a mixture of thermophilic enzymes produced by the fungus Thermoascus aurantiacus to enhance the enzymatic hydrolysis of the sugarcane bagasse cellulose. Am J Agri Biol Sci 5(4):468–476

    Article  Google Scholar 

  • Neves MAD, Kimura T, Shimizu N, Nakajima N (2007) State of the art and future trends of bioethanol production. Dyn Biochem Proc Biotechnol Mol Biol 29:1–14

    Google Scholar 

  • Nigam J (2002) Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast. J Biotechnol 97(2):107–116

    Article  Google Scholar 

  • Ocreto MB (2013) Delignification of lignocellulosic biomass for bioethanol production. USM R&D J 21(1):1–20

    Google Scholar 

  • Öhgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42(5):834–839

    Article  Google Scholar 

  • Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98(13):2503–2510

    Article  Google Scholar 

  • World Health Organization (2015) Food and agriculture organization of the United Nations. Probiotics in food: Health and nutritional properties and guidelines for evaluation. Fao Food and Nutrition, Rome

    Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Google Scholar 

  • Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod 18(1):37–45

    Article  Google Scholar 

  • Park Y, Kang S, Lee J, Hong S, Kim S (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58(6):761–766

    Article  Google Scholar 

  • Pham LJ, Halos SC (1990) Intergeneric protoplast fusion of Trichoderma reesei RUT C-30 and Penicillium funiculosum Thom MG-171 for improved cellulase production. Ann N Y Acad Sci 613(1):575–581

    Article  Google Scholar 

  • Qureshi N, Dien B, Liu S, Saha B, Hector R, Cotta M et al (2012) Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose. Biotechnol Prog 28(5):1167–1178

    Google Scholar 

  • Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91

    Article  Google Scholar 

  • Rouches E, Herpoël-Gimbert I, Steyer J, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sustain Energy Rev 59:179–198

    Article  Google Scholar 

  • Rutherford BJ, Dahl RH, Price RE, Szmidt HL, Benke PI, Mukhopadhyay A et al (2010) Functional genomic study of exogenous n-butanol stress in Escherichia coli. Appl Environ Microbiol 76(6):1935–1945

    Article  Google Scholar 

  • Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40(12):3693–3700

    Article  Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5(4):337–353

    Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  Google Scholar 

  • Saratale GD, Saratale RG, Lo YC, Chang JS (2010) Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and its applications for cellulosic biohydrogen production. Biotechnol Prog 26(2):406–416

    Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37(1):19–27

    Article  Google Scholar 

  • Saxena J, Saini A, Ravi I, Chandra S, Garg V (2015) Consortium of phosphate-solubilizing bacteria and fungi for promotion of growth and yield of chickpea (Cicer arietinum). J Crop Improv 29(3):353–369

    Article  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329(5991):559–562

    Article  Google Scholar 

  • Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S et al (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  Google Scholar 

  • Silva DD, Arruda PV, Dussán KJ, Felipe MG (2014) Adaptation of Scheffersomyces stipitis cells as a strategy to the improvement of ethanol production from sugarcane bagasse hemicellulosic hydrolysate. Chem Eng 38

    Google Scholar 

  • Silva DDV, Dussán KJ, Hernández V, da Silva SS, Cardona CA, de Almeida Felipe MdG (2016) Effect of volumetric oxygen transfer coefficient (kLa) on ethanol production performance by Scheffersomyces stipitis on hemicellulosic sugarcane bagasse hydrolysate. Biochem Eng J 112:249–257

    Google Scholar 

  • Singh P, Suman A, Tiwari P, Arya N, Gaur A, Shrivastava A (2008) Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol 24(5):667–673

    Article  Google Scholar 

  • Singhania RR, Patel AK, Pandey A, Ganansounou E (2017) Genetic modification: a tool for enhancing beta-glucosidase production for biofuel application. Bioresour Technol

    Google Scholar 

  • Slininger PJ, Shea-Andersh MA, Thompson SR, Dien BS, Kurtzman CP, Balan V et al (2015) Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid-and base-pretreated biomass hydrolyzate at high solids loading. Biotechnol Biofuels 8(1):60

    Article  Google Scholar 

  • Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P et al (2006) A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Res 34(22):e149–e149

    Article  Google Scholar 

  • Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150

    Article  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  Google Scholar 

  • Sunna A, Gibbs MD, Chin CW, Nelson PJ, Bergquist PL (2000) A gene encoding a novel multidomain β-1, 4-mannanase from Caldibacillus cellulovorans and action of the recombinant enzyme on kraft pulp. Appl Environ Microbiol 66(2):664–670

    Article  Google Scholar 

  • Szczodrak J, Fiedurek J (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10(5–6):367–375

    Article  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101(13):4744–4753

    Article  Google Scholar 

  • Ulaganathan K, Goud S, Reddy M, Kayalvili U (2017) Genome engineering for breaking barriers in lignocellulosic bioethanol production. Renew Sustain Energy Rev 74:1080–1107

    Article  Google Scholar 

  • Voloshin RA, Rodionova MV, Zharmukhamedov SK, Veziroglu TN, Allakhverdiev SI (2016) Biofuel production from plant and algal biomass. Int J Hydrog Energy 41(39):17257–17273

    Article  Google Scholar 

  • Wagaba H, Patil BL, Mukasa S, Alicai T, Fauquet CM, Taylor NJ (2016) Artificial microRNA-derived resistance to Cassava brown streak disease. J Virol Methods 231:38–43

    Article  Google Scholar 

  • Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26(1):1–27

    Article  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338

    Article  Google Scholar 

  • Wu WH, Hung WC, Lo KY, Chen YH, Wan HP, Cheng KC (2016) Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. Bioresour Technol 201:27–32

    Article  Google Scholar 

  • Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC et al (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Sci Rep 5:11491

    Article  Google Scholar 

  • Zabed H, Sahu J, Boyce A, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev 66:751–774

    Article  Google Scholar 

  • Zhao XQ, Zi LH, Bai FW, Lin HL, Hao XM, Yue GJ et al (2011) Bioethanol from lignocellulosic biomass. In: Biotechnology in China III: Biofuels bioenergy, Springer, pp 25–51

    Google Scholar 

  • Zheng Y, Pan Z, Zhang R (2009) Overview of biomass pretreatment for cellulosic ethanol production. Int J Agric Biol Eng 2(3):51–68

    Google Scholar 

  • Zhou C, Zhu L, Ma Z, Wang J (2017) Bacillus amyloliquefaciens SAY09 increases cadmium resistance in Plants by activation of auxin-mediated signaling pathways. Genes 8(7):173

    Article  Google Scholar 

  • Zhou S, Yomano L, Shanmugam K, Ingram L (2005) Fermentation of 10%(w/v) sugar to D (−)-lactate by engineered Escherichia coli. Biotechnol Lett 27(23–24):1891–1896

    Article  Google Scholar 

  • Zhu J, Pan X (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour Technol 101(13):4992–5002

    Article  Google Scholar 

  • Zhu J, Pan X, Wang G, Gleisner R (2009) Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour Technol 100(8):2411–2418

    Article  Google Scholar 

  • Zhu J, Wang G, Pan X, Gleisner R (2009) Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification. Chem Eng Sci 64(3):474–485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noman, M. et al. (2021). Lignocellulosic Biomass and Microbial Genome Engineering for Sustainable Ethanol Production: An Overview. In: Arshad, M. (eds) Sustainable Ethanol and Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-59280-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59280-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59279-0

  • Online ISBN: 978-3-030-59280-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics