Skip to main content

Plant Responses to Environmental Nickel Toxicity

  • Chapter
  • First Online:
Plant Micronutrients

Abstract

Nickel (Ni) is a heavy metal (HM) which is both beneficial and toxic to plants depending upon its concentration and period of exposure. It has been reported that optimum doses of Ni actually enhance plant growth by stimulating several physiological processes. Thus, Ni is regarded as a crucial micronutrient or beneficial trace element for the plant system. However, beyond the optimum dosage, the concentration of Ni can also become highly toxic and detrimental for plant growth, since it exerts the negative effects of HM toxicity. Uncontrolled anthropogenic activity and unplanned industrial waste processing have led to severe increase in the concentration of Ni in river waters that are popularly used for irrigation or even in the fields where agricultural crops are grown. As a result, Ni toxicity is a rising ecological problem which requires to be addressed immediately. This chapter briefly discusses the toxicity mediated by Ni in important crop and plant species and also the available reports in the current literature which describe the effective amelioration of Ni toxicity in plants. The aim of the review is to bring forward the severity of this growing environmental problem so that future scientific endeavors can be adopted to tackle it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aamer, M., Muhammad, U. H., Li, Z., Abid, A., Su, Q., Liu, Y., Adnan, R., Muhammad, A. U. K., Tahir, A. K., & Huang, G. (2018). Foliar application of glycine betaine (GB) alleviates the cadmium toxicity in spinach through reducing Cd uptake and improving the activity of antioxidant system. Applied Ecology and Environmental Research, 16, 7575–7583.

    Article  Google Scholar 

  • Ahmad, M. S., Ashraf, M., & Hussain, M. (2010). Phytotoxic effects of nickel on yield and concentration of macro- and micro-nutrients in sunflower (Helianthus annuus L.) achenes. Journal of Hazardous Materials, 10, 234–240.

    Google Scholar 

  • Ahmad, M. S. A., Hussain, M., Saddiq, R., & Alvi, A. K. (2007). Mungbean: A nickel indicator, accumulator or excluder. Bulletin of Environmental Contamination and Toxicology, 78, 319–324.

    Article  CAS  PubMed  Google Scholar 

  • Alloway, B. J. (1995). In B. J. Alloway (Ed.), Heavy metal in soils (2nd ed., pp. 25–34). London: Blackie Academic and Professional.

    Chapter  Google Scholar 

  • Anjum, S. A., Tanveer, M., Hussain, S., Shahzad, B., Ashraf, U., Fahad, S., Hassan, S., Jan, W., Saleem, M. F., Khan, I., Bajwa, A. A., Wang, L., Mehmood, A., Samad, R. A., & Tung, S. A. (2016). Osmoregulation and antioxidant production in maize under combined cadmium and arsenic stress. Environmental Science and Pollution Research, 23, 11864–11875.

    Article  CAS  PubMed  Google Scholar 

  • Aziz, H., Sabir, M., Ahmad, H. R., Aziz, T., Rehman, M. Z., Hakeen, K. R., & Ozturk, M. (2015). Alleviating effect of calcium on nickel toxicity in rice. Clean Soil Air Water, 42, 1–9.

    Google Scholar 

  • Banerjee, A., Ghosh, P., & Roychoudhury, A. (2019b). Salt acclimation differentially regulates the metabolites commonly involved in stress tolerance and aroma synthesis in indica rice cultivars. Plant Growth Regulation, 88, 87–97.

    Article  CAS  Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2018). Abiotic stress, generation of reactive oxygen species, and their consequences: An overview. In V. P. Singh, S. Singh, D. Tripathi, S. Mohan Prasad, & D. K. Chauhan (Eds.), Revisiting the role of reactive oxygen species (ROS) in plants: ROS Boon or bane for plants? (pp. 23–50). Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2019a). Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis. Plant Physiology and Biochemistry, 145, 164–173.

    Article  PubMed  CAS  Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2019b). Differential regulation of defence pathways in aromatic and non-aromatic indica rice cultivars towards fluoride toxicity. Plant Cell Reports, 38, 1217–1233.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2019c). Structural introspection of a putative fluoride transporter in plants. 3. Biotech, 9, 103.

    Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2019d). Fluorine: A biohazardous agent for plants and phytoremediation strategies for its removal from the environment. Biologia Plantarum, 63, 104–112.

    Article  CAS  Google Scholar 

  • Banerjee, A., & Roychoudhury, A. (2019e). Genetic engineering in plants for enhancing arsenic tolerance. In M. N. V. Prasad (Ed.), Transgenic plant technology for remediation of toxic metals and metalloids (pp. 463–476). London: Academic Press, Elsevier.

    Chapter  Google Scholar 

  • Banerjee, A., Roychoudhury, A., & Ghosh, P. (2019a). Differential fluoride uptake induces variable physiological damage in a non-aromatic and an aromatic indica rice cultivar. Plant Physiology and Biochemistry, 142, 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, A., Samanta, S., & Roychoudhury, A. (2020b). Spermine ameliorates prolonged fluoride toxicity in soil-grown rice seedlings by activating the antioxidant machinery and glyoxalase system. Ecotoxicology and Environmental Safety, 189, 109737. https://doi.org/10.1016/j.ecoenv.2019.109737.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, A., Samanta, S., Singh, A., & Roychoudhury, A. (2020a). Deciphering the molecular mechanism behind stimulated co-uptake of arsenic and fluoride from soil, associated toxicity, defence and glyoxalase machineries in arsenic-tolerant rice. Journal of Hazardous Materials, 390, 121978. https://doi.org/10.1016/j.jhazmat.2019.121978.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, A., Singh, A., & Roychoudhury, A. (2020c). Spermidine application reduces fluoride uptake and ameliorates physiological injuries in a susceptible rice cultivar by activating diverse regulators of the defense machinery. Environmental Science and Pollution Research, 26, 36598–36614. https://doi.org/10.1007/s11356-019-06711-9.

    Article  CAS  Google Scholar 

  • Banerjee, A., Tripathi, D. K., & Roychoudhury, A. (2019c). The karrikin ‘callisthenics’: Can compounds derived from smoke help in stress tolerance? Physiologia Plantarum, 165, 290–302.

    Article  CAS  PubMed  Google Scholar 

  • Bazihizina, N., Redwan, M., Taiti, C., Giordano, C., Monetti, E., Masi, E., Azzarello, E., & Mancuso, S. (2015). Root based responses account for Psidium guajava survival at high nickel concentration. Journal of Plant Physiology, 174, 137–146.

    Article  CAS  PubMed  Google Scholar 

  • Bhalerao, S. A., Amit, S. S., & Anukthi, C. P. (2015). Toxicity of nickel in plants. International Journal of Pure and Applied Bioscience, 3, 345–355.

    Google Scholar 

  • Bhardwaj, R., Arora, N., Sharma, P., & Arora, H. K. (2007). Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays. Asian Journal of Plant Sciences, 6, 765–772.

    Article  CAS  Google Scholar 

  • Bishnoi, N. R., Sheoran, I. S., & Singh, R. (1993). Influence of cadmium and nickel on photosynthesis and water relations in wheat leaves of differential insertion levels. Photosynthetica, 28, 473–479.

    CAS  Google Scholar 

  • Boisvert, S., Joly, D., Leclerc, S., Govindachary, S., Harnois, J., & Carpentier, R. (2007). Inhibition of the oxygen-evolving complex of photosystem-II and depletion of extrinsic polypeptides by nickel. Biometals, 20, 879–889.

    Article  CAS  PubMed  Google Scholar 

  • Briat, J. F., & Lebrun, M. (1999). Plant responses to metal toxicity. Comptes Rendus de l’Académie des Sciences, 322, 43–54.

    CAS  PubMed  Google Scholar 

  • Cempel, M., & Nikel, G. (2006). Nickel: A review of its sources and environmental toxicology. Polish Journal of Environmental Studies, 15, 375–382.

    CAS  Google Scholar 

  • Chen, Y., Li, X., & Shen, Z. (2004). Leaching and uptake of heavy metals by ten different species of plants during an EDTA assisted phytoextraction process. Chemosphere, 57, 187–196.

    Article  CAS  PubMed  Google Scholar 

  • Doganlar, Z. B., Cakmak, S., & Yanik, T. (2012). Metal uptake and physiological changes in Lemna gibba exposed to manganese and nickel. International Journal of Biology, 4, 148–157.

    Article  CAS  Google Scholar 

  • Dubey, D., & Pandey, A. (2011). Effect of nickel (Ni) on chlorophyll, lipid peroxidation and antioxidant enzymes activities in black gram (Vigna mungo) leaves. International Journal of Science and Nature, 2, 395–401.

    CAS  Google Scholar 

  • Duda-Chodak, A., & Baszczyk, U. (2008). The impact of nickel on human health. Journal of Elementology, 13, 685–696.

    Google Scholar 

  • EFSA (European Food Safety Authority). (2015). Scientific opinion on the risks to public health related to the presence of nickel in food and drinking water—EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal, 13, 4002.

    Google Scholar 

  • Freeman, J. L., Persans, M. W., Nieman, K., Albrecht, C., Peer, W., & Pickering, I. J. (2004). Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell, 16, 2176–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewska, E., & Sklodowska, M. (2008). Differential biochemical responses of wheat shoots and roots to nickel stress: Antioxidative reactions and proline accumulation. Plant Growth Regulation, 54, 179–188.

    Article  CAS  Google Scholar 

  • Gajewska, E., Skłodowska, M., Słaba, M., & Mazur, J. (2006). Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biologia Plantarum, 50, 653–659.

    Article  CAS  Google Scholar 

  • Gray, C. W., & Mclaren, R. G. (2006). Soil factors affecting heavy metal solubility in some New Zealand soils. Water, Air, and Soil Pollution, 175, 3–14.

    Article  CAS  Google Scholar 

  • Hao, F., Wang, X., & Chen, J. (2006). Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Science, 170, 151–158.

    Article  CAS  Google Scholar 

  • Hasinur, R., Shamima, S., & Shigenao, K. W. (2005). Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. Journal of Plant Nutrition, 28, 393–404.

    Article  CAS  Google Scholar 

  • Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Aamer, M., et al. (2019). Nickel toxicity in plants: Reasons, toxic effects, tolerance mechanisms, and remediation possibilities—A review. Environmental Science and Pollution Research, 26, 12673.

    Article  CAS  PubMed  Google Scholar 

  • Hassanpour, E. S., & Rezayatmand, Z. (2015). Evaluation of some physiological and biochemical parameters of variety of sunflower sanbero (Helianthus annuus L.) under nickel toxicity. Indian Journal of Fundamental and Applied Life Sciences, 5, 88–99.

    Google Scholar 

  • Hauser, M. T. (2014). Molecular basis of natural variation and environmental control of trichome patterning. Frontiers in Plant Science, 5, 320.

    Google Scholar 

  • Haydon, M. J., & Cobbett, C. S. (2007). Transporters of ligands for essential metal ions in plants. The New Phytologist, 174, 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Jagetiya, B., Akash, S., & Saroj, Y. (2013). Effect of nickel on plant water relations and growth in green gram. Indian Journal of Plant Physiology, 18, 372–376.

    Article  Google Scholar 

  • Keeling, S. M., Stewart, R. B., Anderson, C. W. N., & Robinson, B. H. (2003). Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii implications for polymetallic phytomining and phytoremediation. International Journal of Phytoremediation, 5, 235–244.

    Article  CAS  PubMed  Google Scholar 

  • Kupper, H., & Kroneck, P. M. H. (2007). Nickel in the environment and its role in the metabolism of plants and cyanobacteria. In A. Sigel, H. Sigel, & R. K. O. Sigel (Eds.), Metal Ions in Life Sciences (pp. 31–62). Chichester: Wiley.

    Google Scholar 

  • Liu, W. X. (2008). Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bulletin of Environmental Contamination and Toxicology, 82, 343–347.

    Article  PubMed  CAS  Google Scholar 

  • Llamas, A., Ullrich, C. I., & Sanz, A. (2008). Ni2+ toxicity in rice: Effect on membrane functionality and plant water content. Plant Physiology and Biochemistry, 46, 905–910.

    Article  CAS  PubMed  Google Scholar 

  • Molas, J. (2002). Changes of chloroplast ultrastructure and total chlorophyll concentration in cabbage leaves caused by excess of organic Ni II complexes. Environmental and Experimental Botany, 47, 115–126.

    Article  CAS  Google Scholar 

  • Pandey, N., & Pathak, G. C. (2006). Nickel alters antioxidative defense and water status in green gram. Indian Journal of Plant Physiology, 11, 113–118.

    CAS  Google Scholar 

  • Pandey, N., & Sharma, C. P. (2002). Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Science, 163, 753–758.

    Article  CAS  Google Scholar 

  • Papazogloua, E. G., Serelisb, K. G., & Bouranisc, D. L. (2007). Impact of high cadmium and nickel soil concentration on selected physiological parameters of Arundo donax L. European Journal of Soil Biology, 911, 64–74.

    Google Scholar 

  • Parlak, K. U. (2016). Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings. Wageningen Journal of Life Sciences, 76, 1–5.

    Article  Google Scholar 

  • Parmar, P., Mandakini, J., Bhaumik, D., & Subramanian, R. B. (2012). Nickel accumulation by Colocasia esculentum and its impact on plant growth and physiology. African Journal of Agricultural Research, 7, 3579–3587.

    Google Scholar 

  • Rao, K. V. M., & Sresty, T. V. S. (2000). Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 157, 113–128.

    Article  Google Scholar 

  • Rautaray, S. K., Ghosh, B. C., & Mittra, B. N. (2003). Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils. Bioresource Technology, 90, 275–283.

    Article  CAS  PubMed  Google Scholar 

  • Riesen, O., & Feller, U. (2005). Redistribution of nickel, cobalt, manganese, zinc and cadmium via the phloem in young and in maturing wheat. Journal of Plant Nutrition, 28, 421–430.

    Article  CAS  Google Scholar 

  • Sabir, M., Ghafoor, A., Saifullah, R. M. Z. U., Ahmand, H. R., & Aziz, T. (2011). Growth and metal ionic composition of Zea mays as affected by nickel supplementation in the nutrient solution. International Journal of Agriculture and Biology, 13, 186–190.

    Google Scholar 

  • Scott, F. J. J. (1997). Toxicity of nickel to soil organisms in Denmark. Reviews of Environmental Contamination and Toxicology, 148, 1.

    Google Scholar 

  • Seregin, I. V., & Kozhevnikova, A. D. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53, 257–277.

    Article  CAS  Google Scholar 

  • Sharma, P., Bhardwaj, R., Arora, N., Arora, H. K., & Kumar, A. (2008). Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defense system in Brassica juncea. Biologia Plantarum, 52, 767–770.

    Article  CAS  Google Scholar 

  • Shukla, R., & Gopal, R. (2009). Excess nickel alters growth, metabolism, and translocation of certain nutrients in potato. Journal of Plant Nutrition, 32, 1005–1014.

    Article  CAS  Google Scholar 

  • Shukla, D., Tiwari, M., Tripathi, R. D., Nath, P., Trivedi, P. K. (2013). Synthetic phytochelatins complement a phytochelatin-deficient Arabidopsis mutant and enhance the accumulation of heavy metal(loid)s. Biochemical and Biophysical Research Communications, 434, 664–669.

    Google Scholar 

  • Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in Plant Science, 6, 1143.

    PubMed  PubMed Central  Google Scholar 

  • Sobkowiak, R. R. (2016). Water relations in plants subjected to heavy metal stresses. Acta Physiologiae Plantarum, 38, 1–13.

    Article  CAS  Google Scholar 

  • Vogel-Mikus, K., Drobne, D., & Regvar, M. (2005). Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133, 233–242.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. T., He, X. J., & An, A. D. (2010). Responses of growth and antioxidant metabolism to nickel toxicity in Luffa cylindrica seedlings. Journal of Animal and Plant Sciences, 7, 810–821.

    Google Scholar 

  • Wang, Y., Wang, S., Nan, J., Ma, F., Zang, Y., Chen, Y., Li, L., & Zhang, Q. (2015). Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China. Environmental Science and Pollution Research, 22, 19756–19763.

    Article  CAS  PubMed  Google Scholar 

  • Wood, B. W., & Reilly, C. C. (2007). Interaction of nickel and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 217–247). Minneapolis, MN: American Phytopathological Society Press.

    Google Scholar 

  • Yusuf, M., Fariduddin, Q., Hayat, S., Ahmad, A. (2011). Nickel: an overview of uptake, essentiality and toxicity in plants. Bulletin of Environmental Contamination and Toxicology, 86, 1–17.

    Google Scholar 

  • Zhang, L., Angle, J. S., & Chaney, R. L. (2007). Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants. The New Phytologist, 173, 509–516.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial assistance from Science and Engineering Research Board, Government of India, through the grant [EMR/2016/004799] and Department of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, through the grant [264(Sanc.)/ST/P/S&T/1G-80/2017] to Dr. Aryadeep Roychoudhury is gratefully acknowledged. Mr. Aditya Banerjee is thankful to University Grants Commission, Government of India, for providing Senior Research Fellowship in the course of this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, A., Roychoudhury, A. (2020). Plant Responses to Environmental Nickel Toxicity. In: Aftab, T., Hakeem, K.R. (eds) Plant Micronutrients. Springer, Cham. https://doi.org/10.1007/978-3-030-49856-6_5

Download citation

Publish with us

Policies and ethics