Skip to main content

The Coupling of a Synthetic Turbulence Generator with Turbomachinery Boundary Conditions

  • Conference paper
  • First Online:
Direct and Large Eddy Simulation XII (DLES 2019)

Part of the book series: ERCOFTAC Series ((ERCO,volume 27))

Included in the following conference series:

Abstract

The power of modern computers and massive parallelization on clusters makes it possible to do scale-resolving simulations at Reynolds numbers relevant for turbomachinery. Since the computational domain can only represent a finite part of the physical world, it is essential for numerical simulation codes to provide high-quality boundary conditions (BC) in the sense of non-reflective properties and the possibility of unsteady inflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carlson, J.-R.: Inflow/outflow boundary conditions with application to FUN3D. Technical Report. NASA TM-2011-217181, NASA Langley Research Center (2011)

    Google Scholar 

  2. Giles, M.: UNSFLO: a numerical method for the calculation of unsteady flow in turbobmachinery. Technical Report. Gas Turbine Lab Report GTL 205, MIT Dept. of Aero. and Astro. (1991)

    Google Scholar 

  3. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat Fluid Flow 27(4), 585–593 (2006)

    Article  Google Scholar 

  4. Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comp. Phys. 186(2), 652–665 (2003)

    Article  Google Scholar 

  5. Lee, S., Lele, S.K., Moin, P.: Simulation of spatially evolving turbulence and the applicability of Taylor’s hypothesis in compressible flow. Phys. Fluids A Fluid Dyn. 4(7), 1521–1530 (1992)

    Article  Google Scholar 

  6. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combus. 62(3), 183–200 (1999)

    Article  Google Scholar 

  7. Matha, M., Morsbach, C., Bergmann, M.: A comparison of methods for introducing synthetic turbulence. In: 7th European Conference on Computational Fluid Dynamics (2018)

    Google Scholar 

  8. Morsbach, C., Franke, M.: Analysis of a synthetic turbulence generation method for periodic configurations. In: Proceedings ERCOFTAC Direct and Large Eddy Simulations, vol. XI, pp. 61–67 (2017)

    Google Scholar 

  9. Michálek, J., Monaldi, M., Arts, T.: Aerodynamic performance of a very high lift low pressure turbine airfoil (T106C) at low Reynolds and high Mach number with effect of free stream turbulence intensity. J. Turbomach. 134 (2012)

    Google Scholar 

  10. Poinsot, T., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)

    Article  MathSciNet  Google Scholar 

  11. Roach, P.E.: The generation of nearly isotropic turbulence by means of grids. Int. J. Heat Fluid Flow 7(2), 117–125 (1986)

    Article  Google Scholar 

  12. Sandhu, H., Sandham, N.: Boundary conditions for spatially growing compressible shear layers. Technical Report. QMW-EP-1100, QM & Westfield College (1994)

    Google Scholar 

  13. Schlüß, D., Frey, C., Ashcroft, G.: Consistent non-reflecting boundary conditions for both steady and unsteady flow simulations in turbomachinery applications. In: ECCOMAS Congress 2016 (2016)

    Google Scholar 

  14. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 3(91), 99–164 (1963)

    Article  Google Scholar 

  15. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combus. 93(1), 63–92 (2014)

    Article  Google Scholar 

  16. Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comp. Phys. 68(1), 1–24 (1987)

    Article  MathSciNet  Google Scholar 

  17. Wilcox, D.C.: Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 26(11), 1299–1310 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Leyh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leyh, S., Morsbach, C. (2020). The Coupling of a Synthetic Turbulence Generator with Turbomachinery Boundary Conditions. In: García-Villalba, M., Kuerten, H., Salvetti, M. (eds) Direct and Large Eddy Simulation XII. DLES 2019. ERCOFTAC Series, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-42822-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42822-8_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42821-1

  • Online ISBN: 978-3-030-42822-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics