Skip to main content
Log in

Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The paper presents the detailed formulation and validation results of simple and robust procedures for the generation of synthetic turbulence aimed at providing artificial turbulent content at the RANS-to-LES interface within a zonal Wall Modelled LES of attached and mildly separated wall-bounded flows. There are two versions of the procedure. The aerodynamic version amounts to a minor modification of a synthetic turbulence generator developed by the authors previously, but the acoustically adapted version is new and includes an internal damping layer, where the pressure field is computed by “weighting” of the instantaneous pressure fields from LES and RANS. This is motivated by the need to avoid creating spurious noise as part of the turbulence generation. In terms of pure aerodynamics, the validation includes canonical shear flows (developed channel flow, zero pressure gradient boundary layer, and plane mixing layer), as well as a more complex flow over the wall-mounted hump with non-fixed separation and reattachment, with emphasis on a rapid conversion from modeled to resolved Reynolds stresses. The aeroacoustic applications include the flow past a trailing edge and over a two-element airfoil configuration. In all cases the methodology ensures a very acceptable accuracy for the mean flow, turbulent statistics and, also, the near- and far-field noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spalart, P.R., Jou, W., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z (eds.) Advances in DNS/LES. Greyden Press, Columbus (1997)

    Google Scholar 

  2. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.Kh., Travin, A.: A new version of detachededdy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

  3. Shur, M.L., Spalart, P.R., Strelets, M.Kh., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

  4. Adamian, D.Y., Strelets, M.Kh., Travin, A.K.: An efficient method of synthetic turbulence generation at LES inflow in zonal RANS-LES approaches to computation of turbulent flows. Math. Model. 23, 7, 3–19 (2011). In Russian

    Google Scholar 

  5. Spalart, P.R.: Detached-Eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  Google Scholar 

  6. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer (2009)

  7. Schlüter, J., Moin, P., Pitsch, H.: Large-eddy simulation inflow conditions for coupling with Reynolds-averaged flow solvers. AIAA J. 42, 478–484 (2004)

    Article  Google Scholar 

  8. Lund, T., Wu, X., Squires, K.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Spalart, P.R., Strelets, M., Travin, A.: Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Int. J. Heat and Fluid Flow 27, 902–910 (2006)

    Article  Google Scholar 

  10. Shur, M.L., Spalart, P. R., Strelets, M.Kh., Travin, A.K.: A rapid and accurate switch from RANS to LES in boundary layers using an overlap region. Flow, Turbul. Combust. 86, 179–206 (2011)

    Article  MATH  Google Scholar 

  11. Araya, G., Castillo, L., Meneveau, C., Cansen, K.: A dynamic multi-scale approach for turbulent inflow boundary conditions in spatially developing flows, Vol. 670, pp 581–605 (2011)

  12. Morgan, B., Larsson, J., Kawai, S., Lele, S.K.: Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49, 582–597 (2011)

    Article  Google Scholar 

  13. Sagaut, P., Deck, S., Terracol, M.: Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press (2006)

  14. Keating, A., Piomelli, U., Balaras, E., Kaltenbach, H.-J.: A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids 16, 4696–4712 (2004)

    Article  Google Scholar 

  15. Keating, A., De Prisco, G., Piomelli, U.: Interface conditions for hybrid RANS/LES calculations. Int. J. Heat and Fluid Flow 27, 777–788 (2006)

    Article  Google Scholar 

  16. Tabor, G., Baba-Ahmadi, M.: Inlet conditions for large eddy simulation: a review. Comput. Fluids 39, 553–567 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Xie, Z.-T., Castro, I.P.: Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow, Turbul. Combust. 81, 449–470 (2008)

    Article  MATH  Google Scholar 

  18. Klein, M., Sadkiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)

    Article  MATH  Google Scholar 

  19. Di Mare, L., Klein, M., Jones, W., Janicka, J.: Synthetic turbulence inflow conditions for large-eddy simulation. Phys. Fluids 18(025107), 1–11 (2006)

    Google Scholar 

  20. Kornev, N., Hassel, E.: Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions. Commun. Numer. Methods Eng. 23, 35–43 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Veloudis, I., Yang, Z., McGuirk, J.J., Page, G.J.: Spencer, A. Novel implementation and assessment of a digital filter based approach for the generation of LES inlet conditions. Flow, Turbul. Combust. 79, 1–24 (2007)

    Article  MATH  Google Scholar 

  22. Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int. J. Heat and Fluid Flow 27, 585–593 (2006)

    Article  Google Scholar 

  23. Jarrin, N., Prosser, R., Uribe, J., Benhamadouche, S., Laurence, D.: Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. Int. J. Heat and Fluid Flow 30, 435–442 (2009)

    Article  Google Scholar 

  24. Mathey, F., Cokljat, D., Bertoglio, J.-P., Sergent, E.: Assessment of the vortex method for Large Eddy Simulation inlet conditions. Prog. Comput. Fluid Dyn. 6, 58–67 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Pamiès, M., Weiss, P.-E., Garnier, E., Deck, S., Sagaut, P.: Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys. Fluids 045103, 21 (2009)

    Google Scholar 

  26. Kraichnan, R.: Diffusion by a random velocity field. Phys. Fluids 13, 22–31 (1970)

    Article  MATH  Google Scholar 

  27. Smirnov, A., Shi, S., Celik, I.: Random flow generation technique for Large Eddy Simulations and Particle-Dynamics Modeling. J. Fluids Eng. 123, 359–371 (2001)

    Article  Google Scholar 

  28. Batten, P., Goldberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42, 485–492 (2004)

    Article  Google Scholar 

  29. Huang, S., Li, Q., Wu, J.: A general inflow turbulence generator for large eddy simulation. J. Wind Eng. Ind. Aerodyn. 98, 600–617 (2010)

    Article  Google Scholar 

  30. Gritskevich, M.S., Garbaruk, A.V.: Embedded LES with the use of volume source to create turbulent fluctuations. Nauchno-technicheskie vedomosti SPbSPU 141, 27–36 (2012). In Russian

    Google Scholar 

  31. Spille-Kohoff, A., Kaltenbach, H.-J.: Generation of turbulent inflow data with a prescribed shear-stress profile. In: Liu, C., Sakell, L, Beutner, T (eds.) DNS/LES Progress and Challenges, Proceedings of the Third AFOSR International Conference on DNS/LES, pp. 319–326. Greyden press, Columbus (2001)

    Google Scholar 

  32. De Prisco, G., Piomelli, U., Keating, A.: Improved turbulence generation techniques for hybrid RANS/LES calculations. J. Turbul. 9, 1–20 (2008)

    MathSciNet  Google Scholar 

  33. Laraufie, R., Deck, S., Sagaut, P.: A dynamic forcing method for unsteady turbulent inflow conditions. J. Comput. Phys. 230, 8647–8663 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Roidl, B., Meinke, M., Schröder, W.: Zonal RANS-LES computation of transonic airfoil flow. AIAA Paper, AIAA pp 2011–3974 (2011)

  35. Roidl, B., Meinke, M., Schröder, W.: A zonal RANS-LES method for compressible flows. Comput. Fluids 67, 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  36. Bechara, W., Bailly, C., Lafon, P., Candel, S.: Stochastic approach to noise modeling for free turbulent flows. AIAA J. 32, 455–463 (1994)

    Article  MATH  Google Scholar 

  37. Billson, M., Eriksson, L.-E., Davidson, L.: Jet noise prediction using stochastic turbulence modeling. AIAA Paper, AIAA 2003–3282 (2003)

  38. Spalart, P. R., Allmaras, S. R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper, AIAA 1992–0439 (1992)

  39. Menter, F.R.: Zonal two-equation k- ω turbulence models for aerodynamic flows. AIAA Paper, AIAA 1993–2906 (1993)

  40. Comte-Bellot, G., Corrsin, S.: Simple Eulerian time correlation of full and narrow-band velocity signals in grid-generated, “isotropic” turbulence. J. Fluid Mech. 48, 273–337 (1971)

    Article  Google Scholar 

  41. Batten, P., Goldberg, U., Chakravarthy, S., Batista de Jesus, A.: Large eddy stimulation using simple eddy-viscosity RANS data. In: Eberhardsteiner, J., Böhm, H.J., Rammerstorfer, F.G (eds.) CD-ROM Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), September 10-14, 2012, Vienna, Austria (2012)

  42. Strelets, M.: Detached eddy simulation of massively separated flows. AIAA Paper, AIAA 2001–0879 (2001)

  43. Shur, M., Strelets, M., Travin, A.: High-order implicit multi-block Navier-Stokes code: Ten-years experience of application to RANS/DES/LES/DNS of turbulent flows. In: 7th Symposium on Overset Composite Grids & Solution Technology, Huntington Beach, California. http://agarbaruk.professorjournal.ru/c/document_library/get_file?uuid=a8f303a6-ddf5-4f03-9b30-fe11c95b1655&groupId=199655 (2004)

  44. Rogers, S.E., Kwak, D.: An Upwind Differencing Scheme for the Time Accurate Incompressible Navier-Stokes Equations. AIAA Paper, AIAA 88–2583 (1988)

  45. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys 46, 357–378 (1981)

    Article  MathSciNet  Google Scholar 

  46. Spalart, P.R.: Direct simulation of a turbulent boundary layer upto Re τ =1440. J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  Google Scholar 

  47. Schlichting, H.: Boundary Layer Theory. McGraw-Hill Book Co., New York (1960)

    MATH  Google Scholar 

  48. Bell, J., Mehta, R.: Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28, 2034–2042 (1990)

    Article  Google Scholar 

  49. Greenblatt, D., Paschal, K., Yao, C., Harris, J.: A separation control CFD validation test case. Part 2. Zero efflux oscillatory blowing. AIAA Paper, AIAA 2005–0485 (2005)

  50. VALidation and Improvement of Airframe Noise prediction Tools (VALIANT). http://www.cimne.com/websasp/valiant/default.asp Accessed 15 August 2013

  51. Lemoine, B., Roger, M., Legriffon, I.: Aeroacoustics of a model non-lifting wing-flap system in a parallel flow. AIAA Paper, AIAA 2011–2735 (2011)

  52. Lowson, M.V.: Prediction of Boundary Layer Pressure Fluctuations. Wyle Laboratories Research Staff Report, WR67-15 (1967)

  53. Schewe, G.: On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311–328 (1983)

    Article  Google Scholar 

  54. Bull, M.K.: Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28, 719–754 (1967)

    Article  Google Scholar 

  55. Goody, M.: Empirical spectral model of surface pressure fluctuations. AIAA J. 42, 1788–1794 (2004)

    Article  Google Scholar 

  56. Shur, M.L., Spalart, P.R., Strelets, M.Kh: Noise prediction for increasingly complex jets. Part I: Methods and tests. Int. J. Aeroacoustics 4, 213–246 (2005)

    Article  Google Scholar 

  57. Spalart, P.R., Shur, M.L.: Variants of the Ffowcs Williams – Hawkings equation and their coupling with simulations of hot jets. Int. J. Aeroacoustics 8, 477–492 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Strelets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shur, M.L., Spalart, P.R., Strelets, M.K. et al. Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems. Flow Turbulence Combust 93, 63–92 (2014). https://doi.org/10.1007/s10494-014-9534-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-014-9534-8

Keywords

Navigation