Skip to main content

Implementation of an Efficient Synthetic Inflow Turbulence-Generator in the Open-Source Code OpenFOAM for 3D LES/DNS Applications

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '20

Abstract

A new inflow boundary condition (BC) has been implemented into the open-source CFD code OpenFOAM, which generates synthetic turbulent fluctuations at the inlet boundary for 3D transient simulations. The method is based on convolution of digital random data series. The filter coefficients of the convolution process prescribe a two-point correlation function that possesses the basic properties of real turbulent flow. In this way, spatially and temporally correlated flow fields with specified bulk flow rate, turbulence intensity, turbulent length and time scales can be generated. Compared to previous implementations, the new turbulence generator is computationally more efficient by using coarse virtual grids and can be used for arbitrarily shaped inlets. Compared to OpenFOAM’s native turbulence generator, which shows some anomalies during parallel runs, the new implementation gives consistent results even for large-scale parallel simulations. The inlet BC has been applied to two turbulent combustion cases with Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS), using up to 8192 CPU cores on Hazel Hen at HLRS. The results reveal the significance of the inflow turbulence for reproducing the correct flame structure. A performance analysis of intra and inter-node performance on the Vulcan and Hawk clusters shows that the OpenFOAM solver is memory bound. Therefore, higher performance is reached when only half of the AMD CPU cores per node are utilized on Hawk because the L3 cache is shared by a core complex (CCX) and each core has a relatively low bandwidth. The simulation scales super-linearly on Hawk and reaches ideal speedup down to 8 000 computational cells per MPI rank, which is consistent with scaling results on the previous system Hazel Hen. The implementation of the BC is described in full detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Fröhlich, Large Eddy Simulation Turbulenter Strömungen, vol. 1 (Springer, Heidelberg, 2006)

    Google Scholar 

  2. M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    Article  Google Scholar 

  3. M. Baba-Ahmadi, G. Tabor, Inlet conditions for les using mapping and feedback control. Comput. Fluids 38(6), 1299–1311 (2009)

    Article  Google Scholar 

  4. F. Bazdidi-Tehrani, M. Kiamansouri, M. Jadidi, Inflow turbulence generation techniques for large eddy simulation of flow and dispersion around a model building in a turbulent atmospheric boundary layer. J. Build. Perform. Simul. 9(6), 680–698 (2016)

    Article  Google Scholar 

  5. Z. Rana, B. Thornber, D. Drikakis, On the importance of generating accurate turbulent boundary condition for unsteady simulations. J. Turbul. 12(12), N35 (2011). Article no. N95. https://www.tandfonline.com/doi/abs/10.1080/14685248.2011.613836

  6. F.C.C. Galeazzo, G. Donnert, P. Habisreuther, N. Zarzalis, R.J. Valdes, W. Krebs, Measurement and simulation of turbulent mixing in a jet in crossflow. J. Eng. Gas Turb. Power 133(6), 10 p. (2011). Article no. 061504. https://asmedigitalcollection.asme.org/gasturbinespower/article-abstract/133/6/061504/407543/Measurement-and-Simulation-of-Turbulent-Mixing-in

  7. F. Zhang, P. Habisreuther, M. Hettel, H. Bockhorn, Numerical computation of combustion induced noise using compressible les and hybrid CFD/CAA methods. Acta Acust. Acust. 98(1), 120–134 (2012)

    Article  Google Scholar 

  8. F.C.C. Galeazzo, G. Donnert, C. Cárdenas, J. Sedlmaier, P. Habisreuther, N. Zarzalis, C. Beck, W. Krebs, Computational modeling of turbulent mixing in a jet in crossflow. Int. J. Heat Fluid Flow 41, 55–65 (2013)

    Article  Google Scholar 

  9. F. Zhang, T. Zirwes, H. Nawroth, P. Habisreuther, H. Bockhorn, C.O. Paschereit, Combustion-generated noise: an environment-related issue for future combustion systems. Energ. Technol. 5(7), 1045–1054 (2017)

    Article  Google Scholar 

  10. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, D. Trimis, H. Nawroth, C.O. Paschereit, Impact of combustion modeling on the spectral response of heat release in LES. Combust. Sci. Technol. 191(9), 1520–1540 (2019)

    Article  Google Scholar 

  11. T. Zirwes, F. Zhang, P. Habisreuther, H. Bockhorn, D. Trimis, Large-scale quasi-DNS of mixed-mode turbulent combustion. PAMM 19(1), e201900420 (2019)

    Article  Google Scholar 

  12. A. Kempf, S. Wysocki, M. Pettit, An efficient, parallel low-storage implementation of klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)

    Article  MathSciNet  Google Scholar 

  13. L. Di Mare, M. Klein, W. Jones, J. Janicka, Synthetic turbulence inflow conditions for large-eddy simulation. Phys. Fluids 18(2), 025107 (2006)

    Article  Google Scholar 

  14. H. Weller, G. Tabor, H. Jasak, C. Fureby, OpenFOAM, openCFD ltd. (2017). https://openfoam.org

  15. HPE Apollo (Hawk). High Performance Computing Center Stuttgart (2020). www.hlrs.de/systems/hpe-apollo-hawk

  16. T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, H. Bockhorn, D. Trimis, Enhancing OpenFOAM’s performance on HPC systems, in High Performance Computing in Science and Engineering ’19. ed. by W. Nagel, D. Kröner, M. Resch (Springer, Heidelberg, 2019)

    Google Scholar 

  17. M. Zajadatz, M. Hettel, W. Leuckel, Burning velocity of high-turbulence natural gas flames for gas turbine application, in International Gas Research Conference, vol. 5 (Government Institutes Inc., 1998), pp. 793–803

    Google Scholar 

  18. J.H. Ferziger, M. Perić, R.L. Street, Computational Methods for Fluid Dynamics, vol. 3 (Springer, Heidelberg, 2002)

    Book  Google Scholar 

  19. F. Zhang, P. Habisreuther, M. Hettel, H. Bockhorn, Modelling of a premixed swirl-stabilized flame using a turbulent flame speed closure model in LES. Flow Turbul. Combust. 82(4), 537–551 (2009)

    Article  Google Scholar 

  20. F. Zhang, P. Habisreuther, H. Bockhorn, H. Nawroth, C. Paschereit, On prediction of combustion generated noise with the turbulent heat release rate. Acta Acust. Acust. 99(6), 940–951 (2013)

    Article  Google Scholar 

  21. F. Zhang, H. Bonart, T. Zirwes, P. Habisreuther, H. Bockhorn, N. Zarzalis, Direct numerical simulation of chemically reacting flows with the public domain code openfoam, in High Performance Computing in Science and Engineering 2014 (Springer, 2015), pp. 221–236

    Google Scholar 

  22. T. Zirwes, F. Zhang, J. A. Denev, P. Habisreuther, H. Bockhorn, Automated code generation for maximizing performance of detailed chemistry calculations in openfoam, in High Performance Computing in Science and Engineering 2017 (Springer, 2018), pp. 189–204

    Google Scholar 

  23. T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, H. Bockhorn, Improved vectorization for efficient chemistry computations in OpenFOAM for large scale combustion simulations, in High Performance Computing in Science and Engineering ’18. ed. by W. Nagel, D. Kröner, M. Resch (Springer, Berlin Heidelberg, 2018)

    Google Scholar 

  24. T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, D. Trimis, Quasi-DNS dataset of a piloted flame with inhomogeneous inlet conditions. Flow Turbul. Combust. 104, 997–1027 (2019)

    Article  Google Scholar 

  25. F. Zhang, T. Baust, T. Zirwes, J. Denev, P. Habisreuther, N. Zarzalis, H. Bockhorn, Impact of infinite thin flame approach on the evaluation of flame speed using spherically expanding flames. Energ. Technol. 5(7), 1055–1063 (2017)

    Article  Google Scholar 

  26. T. Zirwes, F. Zhang, T. Häber, H. Bockhorn, Ignition of combustible mixtures by hot particles at varying relative speeds. Combust. Sci. Tech. 191, 178–195 (2019)

    Article  Google Scholar 

  27. F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, Effect of unsteady stretching on the flame local dynamics. Combust. Flame 175, 170–179 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Helmholtz Association of German Research Centers (HGF), within the research field Energy, Material and Resources, Topic 4 Gasification (34.14.02). This work utilized computing resources provided by the High Performance Computing Center Stuttgart (HLRS) at the University of Stuttgart and the Steinbuch Centre for Computing (SCC) at the Karlsruhe Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Flavio Cesar Cunha Galeazzo or Feichi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galeazzo, F.C.C. et al. (2021). Implementation of an Efficient Synthetic Inflow Turbulence-Generator in the Open-Source Code OpenFOAM for 3D LES/DNS Applications. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '20. Springer, Cham. https://doi.org/10.1007/978-3-030-80602-6_14

Download citation

Publish with us

Policies and ethics