Skip to main content

Actinobacteria and Their Role as Plant Probiotics

  • Chapter
  • First Online:
Biofertilizers for Sustainable Agriculture and Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

Actinobacteria is one of the largest phyla within the domain Bacteria. This phylum comprises more than 400 genera heterogeneously distributed in up to 50 families, 20 orders and 6 classes, being composed with very diverse groups of microorganisms. Members included within this phylum were recovered from a wide range of aquatic and terrestrial environments and also from a huge number of higher organisms, including plants. Actinobacteria inhabiting soils and plants are well known as producers of bioactive molecules and as biocontrol agents, possessing antimicrobial activities mostly against pathogenic fungi and/or bacteria. Moreover, some of them have the capacity to exert beneficial effects on plant growth and development via different plant growth-promoting mechanisms, i.e., phytohormones biosynthesis, siderophore production, and phosphate solubilization, among others. The available genomic data revealed that members belonging to this phylum have a huge potential as Plant Probiotic Actinobacteria. A plethora of studies reported the isolation and identification of plant endophytic actinobacteria possessing those features and also their performance under controlled conditions. However, few studies show the effects of the inoculation of these actinobacteria on real field conditions. In this chapter, we will provide an overview of the available data on the Actinobacteria displaying plant growth-promoting features, particularly in the ones that already had applications in agriculture. Together with a correct taxonomic classification, we will present evidence that the Plant Probiotic Actinobacteria should be considered as a source of bacterial candidates that will be important for a future sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adekambi BRW, Hanrahan F, Delcher AL et al (2011) Core gene set as the basis of multilocus sequence analysis of the subclass Actinobacteridae. PLoS One 6(3):e14792. https://doi.org/10.1371/journal.pone.0014792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alekhya G, Gopalakrishnan S (2017) Biological control and plant growth-promotion traits of Streptomyces species under greenhouse and field conditions in chickpea. Agric Res 6(4):410–420

    Article  Google Scholar 

  • Alvarez-Pérez JM, González-García S, Cobos R et al (2017) Using endophytic and rhizospheric actinobacteria from grapevine plants to reduce fungal graft infections in nurseries that lead to young grapevine decline. App Environ Microbiol 83:24. https://doi.org/10.1128/AEM.01564-17

    Article  Google Scholar 

  • Anwar S, Ali B, Sajid I (2016) Screening of rhizospheric Actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front Microbiol 7:1334

    Article  PubMed  PubMed Central  Google Scholar 

  • Araujo R, Kaewkla O, Franco CM (2017) Endophytic actinobacteria: beneficial partners for sustainable agriculture. In: Maheshwari D (ed) Endophytes: biology and biotechnology, Sustainable development and biodiversity, vol 15. Springer, Cham, pp 171–192

    Chapter  Google Scholar 

  • Bal HB, Das S, Dangar TK et al (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53:972–984

    Article  CAS  PubMed  Google Scholar 

  • Banik A, Mukhopadhaya SK, Dangar TK (2016) Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243:799–812

    Article  CAS  PubMed  Google Scholar 

  • Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Beijerinck MW (1901) Über oligonitrophile Mikroben. Zentr Bakt Parasitenk Infektionskrank Hyg, Abt II 7:561–582

    Google Scholar 

  • Bertani I, Abbruscato P, Piffanelli P et al (2016) Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environ Microbiol Rep 8:388–398

    Article  CAS  PubMed  Google Scholar 

  • Cardinale M, Ratering S, Suarez C et al (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181:22–32

    Article  CAS  PubMed  Google Scholar 

  • Carro L (2010) Avances en la sistemática del genéro Micromonospora: estudio de cepas aisladas de la rizosfera y nódulos de Pisum sativum. PhD Thesis

    Google Scholar 

  • Carro L, Nouiuoi I (2017) Taxonomy and systematics of plant probiotic bacteria in the genomic era. AIMS Microbiol 3(3):383–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carro L, Sproer C, Alonso P et al (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    Article  PubMed  Google Scholar 

  • Carro L, Pujic P, Alloisio N et al (2015) Alnus peptides modify membrane porosity and induce the release of nitrogen rich metabolites from nitrogen-fixing Frankia. ISME J 9:1723–1733

    Article  PubMed  PubMed Central  Google Scholar 

  • Carro L, Riesco R, Spröer C et al (2016a) Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. Syst Appl Microbiol 39:237–242

    Article  CAS  PubMed  Google Scholar 

  • Carro L, Riesco R, Sproër C et al (2016b) Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov. and Micromonospora vinacea sp. nov., isolated from Pisum sativum nodules. Int J Syst Evol Microbiol 66:3509–3514

    Article  CAS  PubMed  Google Scholar 

  • Carro L, Nouoioui I, Sangal V et al (2018a) Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 8:525

    Article  PubMed  PubMed Central  Google Scholar 

  • Carro L, Veyisoglu A, Riesco R et al (2018b) Micromonospora phytophila sp. nov. and Micromonospora luteiviridis sp. nov., isolated as natural inhabitants of plant nodules. Int J Syst Evol Microbiol 68:248–253

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76

    Article  CAS  PubMed  Google Scholar 

  • Conn VM, Walker AR, Franco CM (2008) Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant Microbe Interact 21(2):208–218. https://doi.org/10.1094/MPMI-21-2-0208

    Article  CAS  PubMed  Google Scholar 

  • Curtis SM, Norton I, Everest GJ et al (2018) Kribbella podocarpi sp. nov., isolated from the leaves of a yellowwood tree (Podocarpus latifolius). Antonie Van Leeuwenhoek 111(6):875–882. https://doi.org/10.1007/s10482-017-0984-6

    Article  PubMed  Google Scholar 

  • Damodharan K, Palaniyandi SA, Le B et al (2018) Streptomyces sp. strain SK68, isolated from peanut rhizosphere, promotes growth and alleviates salt stress in tomato (Solanum lycopersicum cv. Micro-Tom). J Microbiol 56:753–759. https://doi.org/10.1007/s12275-018-8120-5

    Article  CAS  PubMed  Google Scholar 

  • Diagne N, Arumugam K, Ngom M et al (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. Biomed Res Int 2013:948258. https://doi.org/10.1155/2013/948258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Tarabily KA, Nassar AH, Hardy GSJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J App Microbiol 106(1):13–26

    Article  CAS  Google Scholar 

  • Fabri S, Caucas V, Abril A (1996) Infectivity and effectiveness of different strains of Frankia spp. on Atriplex cordobensis plants. Rev Argent Microbiol 28:31–38

    CAS  PubMed  Google Scholar 

  • Fernández-González AJ, Martínez-Hidalgo P, Cobo-Díaz JF et al (2017) The rhizosphere microbiome of burned holm-oak: potential role of the genus Arthrobacter in the recovery of burned soils. Sci Rep 7(1):6008

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis IM, Stes E, Zhang Y, Rangel D, Audenaert K, Vereecke D (2016) Mining the genome of Rhodococcus fascians, a plant growth-promoting bacterium gone astray. N Biotechnol 33(5):706–717. https://doi.org/10.1016/j.nbt.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy A, Natesan S (2018) Metabolic potential and biotechnological importance of plant associated endophytic Actinobacteria. In: Gupta V, Rodriguz-Couto S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 207–224

    Chapter  Google Scholar 

  • Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    Article  PubMed  Google Scholar 

  • Ghodhbane-Gtari F, Nouioui I, Hezbri K et al (2018) The plant-growth-promoting actinobacteria of the genus Nocardia induces root nodule formation in Casuarina glauca. Antonie Van Leeuwenhoek 112(1):75–90. https://doi.org/10.1007/s10482-018-1147-0

    Article  CAS  PubMed  Google Scholar 

  • Golinska P, Wypij M, Agarkar G et al (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie Van Leeuwenhoek 108(2):267–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudjal Y, Toumatia O, Yekkour A et al (2014) Biocontrol of Rhizoctonia solani damping-off and promotion of tomato plant growth by endophytic actinomycetes isolated from native plants of Algerian Sahara. Microbiol Res 169:59–65

    Article  CAS  PubMed  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008a) Rock phosphate-solubilizing Actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24(11):2565–2575

    Article  CAS  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. App Soil Ecol 40(3):510–517

    Article  Google Scholar 

  • Hill C, Guarner F, Reid G et al (2014) Expert consensus document: the international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514

    Article  PubMed  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacteria taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZK, Pan Z, Li FN et al (2017) Marmoricola endophyticus sp. nov., an endophytic actinobacterium isolated from Thespesia populnea. Int J Syst Evol Microbiol 67:4379–4384

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160(4):778–788

    Article  CAS  PubMed  Google Scholar 

  • Kaewkla O, Franco CMM (2018) Actinomycetospora callitridis sp. nov., an endophytic actinobacterium isolated from the surface-sterilised root of an Australian native pine tree. Antonie Van Leeuwenhoek 112(3):331–337. https://doi.org/10.1007/s10482-018-1162-1

    Article  PubMed  Google Scholar 

  • Kaewkla O, Thamchaipenet A, Franco CM (2017) Micromonospora terminaliae sp. nov., an endo phytic actinobacterium isolated from the surface-sterilized stem of the medicinal plant Terminalia mucronata. Int J Syst Evol Microbiol 67:225–230

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P, Glaeser SP, McInroy JA et al (2016) Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 67:225–230

    Google Scholar 

  • Kang SM, Asaf S, Kim SJ et al (2016) Complete genome sequence of plant growth-promoting bacterium Leifsonia xyli SE134, a possible gibberellin and auxin producer. J Biotechnol 239:34–38. https://doi.org/10.1016/j.jbiotec.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  • Khan MA, Ullah I, Waqas M et al (2018) Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis 77(1):9–21. https://doi.org/10.1007/s13199-018-0562-3

    Article  CAS  Google Scholar 

  • Kim WI, Cho WK, Kim SN et al (2011) Genetic diversity of cultivable plant growth-promoting rhizobacteria in Korea. J Microbiol Biotechnol 21:777–790

    Article  PubMed  Google Scholar 

  • Kirby BM, Meyers PR (2010) Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int J Syst Evol Microbiol 60:1328–1333

    Article  CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Thanaboripat D, Laosinwattana C et al (2015) Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 65:3818–3823

    Article  CAS  PubMed  Google Scholar 

  • König H (2012) Class III. Coriobacteriia class. nov. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, The Actinobacteria, part B, vol 5, 2nd edn. Springer, New York, p 1968

    Google Scholar 

  • Kuncharoen N, Pittayakhajonwut P, Tanasupawat S (2018) Micromonospora globbae sp. nov., an endophytic actinomycete isolated from roots of Globba winitii C. H. Wright. Int J Syst Evol Microbiol 68:1073–1077

    Article  CAS  PubMed  Google Scholar 

  • Li L, Tang YL, Wei B et al (2013) Micromonospora sonneratiae sp. nov., isolated from a root of Sonneratia apetala. Int J Syst Evol Microbiol 63:2383–2388

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ma JB, Abdalla Mohamad O et al (2015) Phytoactinopolyspora endophytica gen. nov., sp. nov., a halotolerant filamentous actinomycete isolated from the roots of Glycyrrhiza uralensis F. Int J Syst Evol Microbiol 65:2671–2677

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li YQ, Fu YS et al (2018a) Nesterenkonia endophytica sp. nov., isolated from roots of Glycyrrhiza uralensis. Int J Syst Evol Microbiol 68(8):2659–2663. https://doi.org/10.1099/ijsem.0.002905

    Article  PubMed  Google Scholar 

  • Li X, Lai X, Gan L et al (2018b) Streptomyces geranii sp. nov., a novel endophytic actinobacterium isolated from root of Geranium carolinianum L. Int J Syst Evol Microbiol 68(8):2562–2567. https://doi.org/10.1099/ijsem.0.002876

    Article  PubMed  Google Scholar 

  • Li X, Wang Z, Lu F et al (2018c) Actinocorallia populi sp. nov., an endophytic actinomycete isolated from a root of Populus adenopoda (Maxim.). Int J Syst Evol Microbiol. 68(7):2325–2330. https://doi.org/10.1099/ijsem.0.002840

    Article  CAS  PubMed  Google Scholar 

  • Li FN, Tuo L, Lee SM et al (2018d) Amnibacterium endophyticum sp. nov., an endophytic actino bacterium isolated from Aegiceras corniculatum. Int J Syst Evol Microbiol 68(4):1327–1332. https://doi.org/10.1099/ijsem.0.002676

    Article  CAS  PubMed  Google Scholar 

  • Lin L, Guo W, Xing Y, Zhang X, Li Z, Hu C, Li S, Li Y, An Q (2012) The actinobacterium Microbacterium sp. 16SH accepts pBBR1-based pPROBE vectors, forms biofilms, invades roots, and fixes N2 associated with micropropagated sugarcane plants. Appl Microbiol Biotechnol 93(3):1185–1195

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Wang H, Liu M et al (2009) Streptomyces alni sp. nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D. Don. Int J Syst Evol Microbiol 59:254–258

    Article  CAS  PubMed  Google Scholar 

  • Lozi R (1994) Actinomycetes as plant pathogens. Eur J Plant Path 100:179–200

    Article  Google Scholar 

  • Ludwig W, Euzéby J, Whitman WB (2012) Class IV. Nitriliruptoria class. nov. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, The Actinobacteria, part B, vol 5, 2nd edn. Springer, New York, p 1968

    Google Scholar 

  • Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME et al (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep 4:6389

    Article  PubMed  PubMed Central  Google Scholar 

  • Misk A, Franco C (2011) Biocontrol of chickpea root rot using endophytic actinobacteria. BioControl 56(5):811–822

    Article  Google Scholar 

  • Ngom M, Gray K, Diagne N et al (2016) Symbiotic performance of diverse Frankia strains on salt-stressed Casuarina glauca and Casuarina equisetifolia plants. Front Plant Sci 7:1331. https://doi.org/10.3389/fpls.2016.01331

    Article  PubMed  PubMed Central  Google Scholar 

  • Normand P, Nouioui I, Pujic P et al (2018) Frankia canadensis sp. nov., isolated from root nodules of Alnus incana subspecies rugosa. Int J Syst Evol Microbiol 68(9):3001–3011. https://doi.org/10.1099/ijsem.0.002939

    Article  CAS  PubMed  Google Scholar 

  • Norris PR (2012) Class II. Acidimicrobiia class. nov. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bac teriology, The Actinobacteria, part B, vol 5, 2nd edn. Springer, New York, p 1968

    Google Scholar 

  • Nouioui I, Ghodhbane-Gtari F, Jando M et al (2018a) Frankia torreyi sp. nov., the first actinobacterium of the genus Frankia Brunchorst 1886, 174AL isolated in axenic culture. Antonie Van Leeuwenhoek. https://doi.org/10.1007/s10482-018-1131-8

    Article  PubMed  Google Scholar 

  • Nouioui I, Ghodhbane-Gtari F, Rhode M et al (2018b) Frankia irregularis sp. nov., an actinobacterium unable to nodulate its original host, Casuarina equisetifolia, but effectively nodulates members of the actinorhizal Rhamnales. Int J Syst Evol Microbiol 68(9):2883–2914. https://doi.org/10.1099/ijsem.0.002914

    Article  CAS  PubMed  Google Scholar 

  • Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, Pukall R, Klenk H-P, Goodfellow M, Göker M (2018c) Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 9:2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Palaniyandi SA, Yang SH, Zhang L, Suh JW (2013) Effects of actinobacteria on plant disease suppression and growth promotion. App Microbiol Biotech 97(22):9621–9636

    Article  CAS  Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117(3):766–773

    Article  CAS  PubMed  Google Scholar 

  • Palazzini JM, Ramirez ML, Torres AM, Chulze SN (2007) Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Prot 26(11):1702–1710

    Article  CAS  Google Scholar 

  • Palazzini JM, Yerkovich N, Alberione E et al (2017) An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions. Plant Gene 9:13–18

    Article  Google Scholar 

  • Passari AK, Mishra VK, Singh G et al (2017) Insights into the functionality of endophytic actinobacteria with a focus on their biosynthetic potential and secondary metabolites production. Sci Rep 7(1):11809

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel JK, Madaan S, Archana G (2018) Antibiotic producing endophytic Streptomyces spp. colonize above-ground plant parts and promote shoot growth in multiple healthy and pathogen-challenged cereal crops. Microbiol Res 215:36–45. https://doi.org/10.1016/j.micres.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  • Paterson J, Jahanshah G, Li Y et al (2017) The contribution of genome mining strategies to the understanding of active principles of PGPR strains. FEMS Microbiol Ecol 93(3):fiw249. https://doi.org/10.1093/femsec/fiw249

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Zhao GZ, Li J et al (2009) Jiangella alba sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2162–2165

    Article  CAS  PubMed  Google Scholar 

  • Rachniyom H, Matsumoto A, Inahashi Y et al (2018) Actinomadura barringtoniae sp. nov., an endophytic actinomycete isolated from the roots of Barringtonia acutangula (L.) Gaertn. Int J Syst Evol Microbiol 68(5):1584–1590. https://doi.org/10.1099/ijsem.0.002714

    Article  CAS  PubMed  Google Scholar 

  • Raja A, Prabakarana P (2011) Actinomycetes and drug-an overview. Am J Drug Discov Dev 1:75–84. https://doi.org/10.3923/ajdd.2011.75.84

    Article  Google Scholar 

  • Remali J, Sarmin NM, Ng CL et al (2017) Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production. Peer J 5:e3738. https://doi.org/10.7717/peerj.3738

    Article  CAS  PubMed  Google Scholar 

  • Roman-Ponce B, Wang D, Vasquez-Murrieta MS et al (2016) Kocuria arsenatis sp. nov., an arsenic-resistant endophytic actinobacterium associated with Prosopis laegivata grown on high-arsenic-polluted mine tailing. Int J Syst Evol Microbiol 66:1027–1033

    Article  CAS  PubMed  Google Scholar 

  • Sakdapetsiri C, Ngaemthao W, Suriyachadkun C et al (2018) Actinomycetospora endophytica sp. nov., isolated from wild orchid (Podochilus microphyllus Lindl.) in Thailand. Int J Syst Evol Microbiol 68(9):3017–3021. https://doi.org/10.1099/ijsem.0.002938

    Article  CAS  PubMed  Google Scholar 

  • Salomon MV, Purpora R, Bottini R et al (2016) Rhizosphere associated bacteria trigger accumulation of terpenes in leaves of Vitis vinifera L. cv. Malbec that protect cells against reactive oxygen species. Plant Physiol Biochem 106:295–304

    Article  CAS  PubMed  Google Scholar 

  • Schwachtje J, Karojet S, Kunz S et al (2012) Plant-growth promoting effect of newly isolated rhizobacteria varies between two Arabidopsis ecotypes. Plant Signal Behav 7:623–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen A, Daubin V, Abrouk D et al (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832

    Article  PubMed  Google Scholar 

  • Sharma M, Mishra V, Rau N, Sharma RS (2016) Increased iron-stress resilience of maize through inoculation of siderophore-producing Arthrobacter globiformis from mine. J Basic Microbiol 56(7):719–735. https://doi.org/10.1002/jobm.201500450

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhang Y, Liu C et al (2014) Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.). J Antibiot (Tokyo) 67(11):739–743. https://doi.org/10.1038/ja.2014.54

    Article  CAS  Google Scholar 

  • Singh R, Dubey AK (2018) Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol 9:1767

    Article  PubMed  PubMed Central  Google Scholar 

  • Soe KM, Bhromsiri A, Karladee D, Yamakawa T (2012) Effects of endophytic actinomycetes and Bradyrhizobium japonicum strains on growth, nodulation, nitrogen fixation and seed weight of different soybean varieties. Soil Sci Plant Nutr 58:319–325

    Article  Google Scholar 

  • Solans M (2007) Discaria trinervis-Frankia symbiosis promotion by saprophytic actinomycetes. J Basic Microbiol 47:243–250

    Article  PubMed  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Sun Y, Chen HH, Sun HM et al (2017) Naumannella huperziae sp. nov., an endophytic actinobacterium isolated from Huperzia serrata (Thunb.). Int J Syst Evol Microbiol 67:1867–1872

    Article  CAS  PubMed  Google Scholar 

  • Suzuki KI (2012) Class V. Rubrobacteria class. nov. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, The Actinobacteria, part B, vol 5, 2nd edn. Springer, New York, p 1968

    Google Scholar 

  • Suzuki KI, Whitman WB (2012) Class VI. Thermoleophilia class. nov. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, The Actinobacteria, part B, vol 5, 2nd edn. Springer, New York, p 1968

    Google Scholar 

  • Thawai C (2015) Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 65:1456–1461

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Alonso-Vega P, Rodriguez R et al (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    Article  PubMed  Google Scholar 

  • Trujillo ME, Bacigalupe R, Pujic P et al (2014) Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style? PLoS One 9(9):e108522. https://doi.org/10.1371/journal.pone.0108522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo ME, Riesco R, Benito P et al (2015) Endophytic Actinobacteria and the interaction of Micromonospora and Nitrogen fixing plants. Front Microbiol 6:1341. https://doi.org/10.3389/fmicb.2015.01341

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuo L, Yan XR, Li FN et al (2018) Brachybacterium endophyticum sp. nov., a novel endophytic actinobacterium isolated from bark of Scutellaria baicalensis Georgi. Int J Syst Evol Microbiol 68(11):3563–3568. https://doi.org/10.1099/ijsem.0.003032

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Singh JS, Saxena AK et al (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611

    Article  CAS  PubMed  Google Scholar 

  • Valetti L, Iriarte L, Fabra A (2018) Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria. App Soil Ecol 132:1–10

    Article  Google Scholar 

  • Viaene T, Langendries S, Beirinck S et al (2016) Streptomyces as a plant’s best friend? FEMS Microbiol Ecol 92(8):fiw119. https://doi.org/10.1093/femsec/fiw119

    Article  CAS  PubMed  Google Scholar 

  • Wang HF, Li L, Zhang YG et al (2015) Arthrobacter endophyticus sp. nov., an endophytic actino bacterium isolated from root of Salsola affinis C. A. Mey. Int J Syst Evol Microbiol 65:2154–2160

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang H, Sun L et al (2017) Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak. Sci Rep 7:343. https://doi.org/10.1038/s41598-017-00472-6

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Tian J, Li X et al (2018a) Streptomyces dioscori sp. nov., a novel endophytic actinobacterium isolated from bulbil of Dioscorea bulbifera L. Curr Microbiol 75(10):1384–1390. https://doi.org/10.1007/s00284-018-1534-9

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Jiang B, Li X et al (2018b) Streptomyces populi sp. nov., a novel endophytic actinobacterium isolated from stem of Populus adenopoda Maxim. Int J Syst Evol Microbiol 68(8):2568–2573. https://doi.org/10.1099/ijsem.0.002877

    Article  PubMed  Google Scholar 

  • Wei L, Ouyang S, Wang Y et al (2014) Solirubrobacter phytolaccae sp. nov., an endophytic bac terium isolated from roots of Phytolacca acinosa Roxb. Int J Syst Evol Microbiol 64:858–862

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Li Y, Wang N, Chen Y et al (2018) Streptomyces ginkgonis sp. nov., an endophyte from Ginkgo biloba. Antonie Van Leeuwenhoek 111(6):891–896. https://doi.org/10.1007/s10482-017-0987-3

    Article  CAS  PubMed  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D et al (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68(3):411–420

    Article  CAS  Google Scholar 

  • Zhang Y, Liu H, Zhang X et al (2014) Micromonospora violae sp. nov., isolated from a root of Viola philippica Car. Antonie van Leeuwenhoek 106:219–225

    Article  CAS  PubMed  Google Scholar 

  • Zhang YG, Wang HF, Alkhalifah DHM (2018) Glycomyces anabasis sp. nov., a novel endophytic actinobacterium isolated from roots of Anabasis aphylla L. Int J Syst Evol Microbiol 68(4):1285–1290. https://doi.org/10.1099/ijsem.0.002668

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Guo L, He H et al (2014) Micromonospora taraxaci sp. nov., a novel endophytic actinomycete isolated from dandelion root (Taraxacum mongolicum Hand-Mazz.). Antonie van Leeuwenhoek 106(4):667–674

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Liu C, Zheng W et al (2017) Micromonospora parathelypteridis sp. nov., an endophytic actinomycete with antifungal activity isolated from the root of Parathelypteris beddomei (Bak.) Ching. Int J Syst Evol Microbiol 67:268–274

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Menendez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Menendez, E., Carro, L. (2019). Actinobacteria and Their Role as Plant Probiotics. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_15

Download citation

Publish with us

Policies and ethics