Skip to main content

Advertisement

Log in

Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The diversity of endophytic and epiphytic diazotrophs in different parts of rice plants has specificity to the niche (i.e. leaf, stem and root) of different genotypes and nutrient availability of the organ.

Inoculation of the indigenous, polyvalent diazotrophs can facilitate and sustain production of non-leguminous crops like rice. Therefore, N2-fixing plant growth promoting bacteria (PGPB) were isolated from different parts of three Indian cultivated [Oryza sativa L. var. Sabita (semi deep/deep water)/Swarna (rain fed shallow lowland)/Swarna-Sub1(submergence tolerant)] and a wild (O. eichingeri) rice genotypes which respond differentially to nitrogenous fertilizers. Thirty-five isolates from four rice genotypes were categorized based on acetylene reduction assay on nitrogenase activity, biochemical tests, BIOLOG and 16S rRNA gene sequencing. The bacteria produced 9.36–155.83 nmole C2H4 mg−1 dry bacteria h−1 and among them nitrogenase activity of 11 potent isolates was complemented by nifH–sequence analysis. Phylogenetic analysis based on 16S rDNA sequencing divided them into five groups (shared 95–100 % sequence homology with type strains) belonging to five classes—alpha (Ancylobacter, Azorhizobium, Azospirillum, Rhizobium, Bradyrhizobium, Sinorhizobium, Novosphingobium, spp.), beta (Burkholderia sp.), gamma (Acinetobacter, Aeromonas, Azotobacter, Enterobacter, Klebsiella, Pantoea, Pseudomonas, Stenotrophomonas spp.) Proteobacteria, Bacilli (Bacillus, Paenibacillus spp.) and Actinobacteria (Microbacterium sp.). Besides, all bacterial strains possessed the intrinsic PGP traits of like indole (0.44–7.4 µg ml−1), ammonia (0.18–6 mmol ml−1), nitrite (0.01–3.4 mol ml−1), and siderophore (from 0.16–0.57 μmol ml−1) production. Inoculation of rice (cv. Swarna) seedlings with selected isolates had a positive impact on plant growth parameters like shoot and root elongation which was correlated with in vitro PGP attributes. The results indicated that the diverse polyvalent phytonic PGP bacteria, which may be exploited as bio-inoculants to improve rice production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agronom 62:46–152

    Google Scholar 

  • Bakker PAHM, Pierterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 9:239–243

    Article  Google Scholar 

  • Banik A, Mukhopadhyay SK, Sahana A, Das D, Dangar TK (2015) Fluorescence resonance energy transfer (FRET) based technique for tracking of endophytic bacteria in rice roots. Biol Fertil Soils. doi:10.1007/s00374-015-1064-6

    Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  PubMed  CAS  Google Scholar 

  • Boone DR, Castenholz RW, Garrity GM, Brenner DJ, Krieg NR, Staley JT (2005) Bergey’s manual® of systematic bacteriology, vol 2. Springer Science and Business Media, Berlin

    Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    PubMed Central  PubMed  CAS  Google Scholar 

  • Canfield DE, Glazer A, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    Article  PubMed  CAS  Google Scholar 

  • Cappuccino JG, Sherman N (1992) Biochemical activities of microorganisms. Microbiology, a laboratory manual. The Benjamin/Cummings Publishing Co, California

    Google Scholar 

  • Castillo JM, Casas J, Romero E (2011) Isolation of an endosulfan-degrading bacterium from a coffee farm soil: persistence and inhibitory effect on its biological functions. Sci Total Environ 412:20–27

    Article  PubMed  CAS  Google Scholar 

  • Charlot G (1965) Colorimetric determination of elements. Principles and methods. Elsevier Publishing Co., New York

    Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Buchel G, Kothe E (2008) Hydroxamate siderophoresproduced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 5:163–172

    Article  CAS  Google Scholar 

  • Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One 7:e42149

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gillis M, Vandamme P, De Vos P, Swings J, Kersters K (2001) Polyphasic taxonomy. Bergey’s manual of systematic bacteriology, vol 1. Springer, New York, p 4348

    Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes. Springer, Berlin, pp 15–31

    Chapter  Google Scholar 

  • Hardy R, Burns RC, Holsten RD (1973) Applications of the acetylene–ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5:47–81

    Article  CAS  Google Scholar 

  • Islam MR, Madhaiyan M, Deka BH, Yim W, Saravanan VS, Fu Q, Hu H, Sa T (2009) Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. J Microbiol Biotechnol 19:1213–1222

    PubMed  CAS  Google Scholar 

  • Jensen HL (1951) Notes on the biology of Azotobacter. In: Proceedings of the Society for Applied Bacteriology 14, No. 1; Blackwell Publishing Ltd

  • Ji SH, Gururani MA, Chun SC (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98

    Article  PubMed  CAS  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Integration of biotechnologies plant and endophyte relationships: nutrient management. In: Murray Moo-Young (ed) Comprehensive biotechnology, 2nd edn, vol 4. Elsevier, pp 713–727. doi:10.1016/B978-0-08-088504-9.00264-6

  • Kang SH, Cho H-S, Cheong H, Ryu C-M, Kim JF, Park S (2007) Two bacterial endophytes eliciting boot plant growth promotion and plant defence on pepper (Capsicum annuum L.). J Microbiol Biotechnol 17:96–103

    PubMed  CAS  Google Scholar 

  • Kubo M, Purevdorj M (2004) The future of rice production and consumption. J Food Distrib Res 35:128–142

    Google Scholar 

  • Leigh JA, Signer ER, Walker GC (1985) Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc Natl Acad Sci USA 82:6231–6235

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leveau JH, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mano H, Morisaki H (2007) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

    Article  Google Scholar 

  • Mignard S, Flandrois J (2006) 16S rRNA sequencing in routine bacterial identification: a 30-month experiment. J Microbiol Methods 67:574–581

    Article  PubMed  CAS  Google Scholar 

  • Monon J (2012) The growth of bacterial cultures. Selected Papers in Molecular Biology by Jacques Monod: 139

  • Naik BS, Shashikala J, Krishnamurthy YL (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296

    Article  PubMed  CAS  Google Scholar 

  • Nakos GG, Wolcott AR (1972) Bacteriostatic effect of ammonium on Nitrobacter agilis in mixed culture with Nitrosomonas europaea. Plant Soil 36:521–527

    Article  CAS  Google Scholar 

  • Oka N, Hartel PG, Finlay-Moore O, Gagliardi J, Uberer DA, Fuhrmann JJ, Angle JS, Skipper HD (2000) Misidentification of soil bacteria by fatty acid methyl ester (FAME) and BIOLOG analyses. Biol Fertil Soils 32:256–258

    Article  CAS  Google Scholar 

  • Okon Y, Albrecht SL, Burris RH (1977) Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Appl Environ Microbiol 33:85–88

    PubMed Central  PubMed  CAS  Google Scholar 

  • Panda D, Sarkar RK (2013) Structural carbohydrates and lignifications associated with submergence tolerance in rice (Oryza sativa L.). J Stress Physiol Biochem 9:299–306

    Google Scholar 

  • Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar S, Kathiresan K, Ignatiammal STM, Selvam MB, Shanthy S (2004) Nitrogen-fixing Azotobacters from mangrove habitat and their utility as marine biofertilizers. J Exp Mar Biol Ecol 312:5–17

    Article  CAS  Google Scholar 

  • Reddy BP, Reddy KRN, Subba RM, Rao KS (2008) Efficacy of antimicrobial metabolites of Pseudomonas fluorescens against rice fungal pathogens. Curr Trend Biotechnol Pharm 2:178–182

    CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: Numerical Taxonomy System.; Ver.2.1. Exeter Publishing Ltd., Setauket

    Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sahoo RK, Ansari MW, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterisation of efficient nitrogen-fixing Azotobacter strains from rice fields for crop improvement. Protoplasma 251:511–523

    Article  PubMed  CAS  Google Scholar 

  • Sarathambal C, Ilamurugu K, Balachandar D, Chinnadurai C, Gharde Y (2015) Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Appl Soil Ecol 87:1–10

    Article  Google Scholar 

  • Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2010) Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresour Technol 101:501–509

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  PubMed  CAS  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Qiu Z, Tan H, Cao L (2014) Siderophore production by actinobacteria. Biol Metals 27:623–631

    CAS  Google Scholar 

  • Wei CY, Lin L, Luo LJ, Xing YX, Hu CJ, Yang LT, Li YR, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50:657–666

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wragg P, Randall L, Whatmore A (2014) Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest. J Microbiol Methods 105:16–21

    Article  PubMed  CAS  Google Scholar 

  • Zeigler RS, Barclay A (2008) The relevance of rice. Rice 1:3–10

    Article  Google Scholar 

Download references

Acknowledgments

This work has been financially support by Indian Council of Agricultural Research (ICAR) project “AMAAS” (application of microorganisms in agriculture and allied sector).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Kanti Dangar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banik, A., Mukhopadhaya, S.K. & Dangar, T.K. Characterization of N2-fixing plant growth promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes. Planta 243, 799–812 (2016). https://doi.org/10.1007/s00425-015-2444-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2444-8

Keywords

Navigation