Skip to main content

Pectic Polysaccharides in Plants: Structure, Biosynthesis, Functions, and Applications

  • Chapter
  • First Online:
Extracellular Sugar-Based Biopolymers Matrices

Part of the book series: Biologically-Inspired Systems ((BISY,volume 12))

Abstract

Pectic polysaccharides, a broad class of exopolysaccharides that are made by plants and contain negatively charged sugars, are some of the most complex biomolecules in nature. They modulate the mechanics and adhesion of the extracellular cell walls of plants and require complex biosynthetic machinery to produce their array of structures. They are also post-synthetically modified by a large apparatus of enzymes. Recent advances in genomics and biochemistry have revealed some parts of this machinery, but many mysteries remain unsolved. Intermolecular cross-linking between pectins is thought to underlie cell adhesion and constrain cell expansibility in plants, and modulating this cross-linking, pectin hydration, and the interactions of pectins with other wall components is thought to be one of the drivers of key developmental processes, from wall assembly and growth through tissue maturation to the release of pollen and seeds. The large number of pectin-related genes in many plant taxa belies their fundamental importance in evolutionary innovations in plants. Finally, pectins can both facilitate and complicate the use of plant cell walls as feedstocks for useful products and might also possess unique applications in human health and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abasolo W et al (2009) Pectin may hinder the unfolding of xyloglucan chains during cell deformation: implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations. Mol Plant 2:990–999

    Article  CAS  PubMed  Google Scholar 

  • Amos RA, Pattathil S, Yang JY, Atmodjo MA, Urbanowicz BR, Moremen KW, Mohnen D (2018) A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. J Biol Chem 293:19047–19063

    Article  CAS  Google Scholar 

  • Anderson CT (2016) We be jammin’: an update on pectin biosynthesis, trafficking and dynamics. J Exp Bot 67:495–502

    Article  CAS  PubMed  Google Scholar 

  • Anderson CT, Wallace IS, Somerville CR (2012) Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. Proc Natl Acad Sci USA 109:1329–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779

    Article  CAS  PubMed  Google Scholar 

  • Atmodjo MA et al (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan: galacturonosyltransferase complex. Proc Natl Acad Sci USA 108:20225–20230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Peled M, O’Neill MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Annu Rev Plant Biol 62:127–155

    Article  CAS  PubMed  Google Scholar 

  • Bar-Peled M, Urbanowicz BR, O’Neill MA (2012) The synthesis and origin of the pectic polysaccharide rhamnogalacturonan II – insights from nucleotide sugar formation and diversity. Front Plant Sci 3:92. https://doi.org/10.3389/fpls.2012.00092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benz JP, Chau BH, Zheng D, Bauer S, Glass NL, Somerville CR (2014) A comparative systems analysis of polysaccharide-elicited responses in Neurospora crassa reveals carbon source-specific cellular adaptations. Mol Microbiol 91:275–299

    Article  CAS  PubMed  Google Scholar 

  • Biswal AK et al (2015) Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnol Biofuels 8:41. https://doi.org/10.1186/s13068-015-0218-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswal AK et al (2017) Comparison of four glycosyl residue composition methods for effectiveness in detecting sugars from cell walls of dicot and grass tissues. Biotechnol Biofuels 10:182. https://doi.org/10.1186/s13068-017-0866-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswal AK et al (2018a) Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol 36:249–257

    Article  CAS  PubMed  Google Scholar 

  • Biswal AK et al (2018b) Working towards recalcitrance mechanisms: increased xylan and homogalacturonan production by overexpression of GAlactUronosylTransferase12 (GAUT12) causes increased recalcitrance and decreased growth in Populus. Biotechnol Biofuels 11:9. https://doi.org/10.1186/s13068-017-1002-y

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Bou Daher F, Chen Y, Bozorg B, Clough J, Jonsson H, Braybrook SA (2018) Anisotropic growth is achieved through the additive mechanical effect of material anisotropy and elastic asymmetry. Elife 7. https://doi.org/10.7554/eLife.38161

  • Boyer JS (2016) Enzyme-less growth in Chara and terrestrial plants. Front Plant Sci 7:866. https://doi.org/10.3389/fpls.2016.00866

    Article  PubMed  PubMed Central  Google Scholar 

  • Braccini I, Perez S (2001) Molecular basis of Ca(2+)-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Caffall KH, Pattathil S, Phillips SE, Hahn MG, Mohnen D (2009) Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Mol Plant 2:1000–1014

    Article  CAS  PubMed  Google Scholar 

  • Cannon MC et al (2008) Self-assembly of the plant cell wall requires an extensin scaffold. Proc Natl Acad Sci USA 105:2226–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  CAS  PubMed  Google Scholar 

  • Chanliaud E, Gidley MJ (1999) In vitro synthesis and properties of pectin/Acetobacter xylinus cellulose composites. Plant J 20:25–35

    Article  CAS  PubMed  Google Scholar 

  • Cornuault V, Manfield IW, Ralet MC, Knox JP (2014) Epitope detection chromatography: a method to dissect the structural heterogeneity and inter-connections of plant cell-wall matrix glycans. Plant J 78:715–722

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22:122–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2018) Diffuse growth of plant cell walls. Plant Physiol 176:16–27

    Article  CAS  PubMed  Google Scholar 

  • Daher FB, Braybrook SA (2015) How to let go: pectin and plant cell adhesion. Front Plant Sci 6:523

    Article  PubMed  PubMed Central  Google Scholar 

  • De Caroli M, Lenucci MS, Di Sansebastiano GP, Dalessandro G, De Lorenzo G, Piro G (2011) Protein trafficking to the cell wall occurs through mechanisms distinguishable from default sorting in tobacco. Plant J 65:295–308

    Article  PubMed  CAS  Google Scholar 

  • De Ruiter GA, Schols HA, Voragen AG, Rombouts FM (1992) Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem 207:176–185

    Article  PubMed  Google Scholar 

  • Derbyshire P, McCann MC, Roberts K (2007) Restricted cell elongation in Arabidopsis hypocotyls is associated with a reduced average pectin esterification level. BMC Plant Biol 7:31. https://doi.org/10.1186/1471-2229-7-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giacomo R, Daraio C, Maresca B (2015) Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. Proc Natl Acad Sci USA 112:4541–4545

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dick-Perez M, Wang T, Salazar A, Zabotina OA, Hong M (2012) Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls. Magn Reson Chem MRC 50:539–550

    Article  CAS  PubMed  Google Scholar 

  • Diet A et al (2006) The Arabidopsis root hair cell wall formation mutant lrx1 is suppressed by mutations in the RHM1 gene encoding a UDP-L-rhamnose synthase. Plant Cell 18:1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domozych DS, Ciancia M, Fangel JU, Mikkelsen MD, Ulvskov P, Willats WG (2012) The cell walls of green algae: a journey through evolution and diversity. Front Plant Sci 3:82. https://doi.org/10.3389/fpls

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domozych DS, Domozych CE (2014) Multicellularity in green algae: upsizing in a walled complex. Front Plant Sci 5:649. https://doi.org/10.3389/fpls.2014.00649

    Article  PubMed  PubMed Central  Google Scholar 

  • Domozych DS et al (2014) Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum. Plant Physiol 165:105–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson LA (2001) Lignification and lignin topochemistry - an ultrastructural view. Phytochemistry 57:859–873

    Article  CAS  PubMed  Google Scholar 

  • Doong RL, Liljebjelke K, Fralish G, Kumar A, Mohnen D (1995) Cell-free synthesis of pectin (identification and partial characterization of Polygalacturonate 4-[alpha]-Galacturonosyltransferase and its products from membrane preparations of tobacco cell-suspension cultures). Plant Physiol 109:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert B et al (2018) The three members of the Arabidopsis glycosyltransferase family 92 are functional beta-1,4-galactan synthases. Plant Cell Physiol 59:2624–2636

    Article  CAS  PubMed  Google Scholar 

  • Edwards MC, Doran-Peterson J (2012) Pectin-rich biomass as feedstock for fuel ethanol production. Appl Microbiol Biotechnol 95:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egelund J et al (2006) Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi-localized (1,3)-alpha-D-xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan-II. Plant Cell 18:2593–2607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng W et al (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca(2+) signaling. Curr Biol 28:666–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Monographs and surveys in the biosciences. Longman Scientific & Technical; Wiley, Harlow, Essex, England; New York

    Google Scholar 

  • Goldberg R, Morvan C, Jauneau A, Jarvis MC (1996) Methyl-esterification, de-esterification and gelation of pectins in the primary cell wall. In: Visser J, Voragen AGJ (eds) Progress in biotechnology, vol 14. Elsevier, Amsterdam, pp 151–172

    Google Scholar 

  • Goldberg R, Morvan C, Roland JC (1986) Composition, properties and localization of pectins in young and mature cells of the mung bean hypocotyl. Plant Cell Physiol 27:417–429

    CAS  Google Scholar 

  • Goulao LF, Vieira-Silva S, Jackson PA (2011) Association of hemicellulose- and pectin-modifying gene expression with Eucalyptus globulus secondary growth. Plant Physiol Biochem: PPB / Societe francaise de physiologie vegetale 49:873–881

    Article  CAS  Google Scholar 

  • Grantham NJ et al (2017) An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls. Nat Plants 3:859–865

    Article  CAS  PubMed  Google Scholar 

  • Guillaumie F, Sterling JD, Jensen KJ, Thomas ORT, Mohnen D (2003) Solid-supported enzymatic synthesis of pectic oligogalacturonides and their analysis by MALDI-TOF mass spectrometry. Carbohydr Res 338:1951–1960

    Article  CAS  PubMed  Google Scholar 

  • Guillemin F et al (2005) Distribution of pectic epitopes in cell walls of the sugar beet root. Planta 222:355–371

    Article  CAS  PubMed  Google Scholar 

  • Gunl M, Kraemer F, Pauly M (2011) Oligosaccharide mass profiling (OLIMP) of cell wall polysaccharides by MALDI-TOF/MS. Methods Mol Biol 715:43–54

    Article  CAS  PubMed  Google Scholar 

  • Guzman P, Fernandez V, Garcia ML, Khayet M, Fernandez A, Gil L (2014) Localization of polysaccharides in isolated and intact cuticles of eucalypt, poplar and pear leaves by enzyme-gold labelling. Plant Physiol Biochem 76:1–6

    Article  CAS  PubMed  Google Scholar 

  • Harholt J, Jensen JK, Sorensen SO, Orfila C, Pauly M, Scheller HV (2006) ARABINAN DEFICIENT 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol 140:49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harholt J et al (2012) ARAD proteins associated with pectic Arabinan biosynthesis form complexes when transiently overexpressed in planta. Planta 236:115–128

    Article  CAS  PubMed  Google Scholar 

  • Harholt J, Moestrup O, Ulvskov P (2016) Why plants were terrestrial from the beginning. Trends Plant Sci 21:96–101

    Article  CAS  PubMed  Google Scholar 

  • Hemant O, Haswell ES (2017) Life behind the wall: sensing mechanical cues in plants. BMC Biol 15:59. https://doi.org/10.1186/s12915-017-0403-5

    Article  CAS  Google Scholar 

  • Hocq L, Pelloux J, Lefebvre V (2017) Connecting Homogalacturonan-type pectin remodeling to acid growth. Trends Plant Sci 22:20–29

    Article  CAS  PubMed  Google Scholar 

  • Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7:984. https://doi.org/10.3389/fpls.2016.00984

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishii T (1997) Structure and functions of feruloylated polysaccharides. Plant Sci 127:111–127

    Article  CAS  Google Scholar 

  • Ishii T, Matsunaga T (1996) Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr Res 284:1–9

    Article  CAS  Google Scholar 

  • Ishii T, Matsunaga T, Hayashi N (2001) Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiol 126:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai H, Ishii T, Satoh S (2001) Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells. Planta 213:907–915

    Article  CAS  PubMed  Google Scholar 

  • Iwai H, Masaoka N, Ishii T, Satoh S (2002) A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc Natl Acad Sci USA 99:16319–16324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarvis MC (1984) Structure and properties of pectin gels in plant-cell walls. Plant Cell Environ 7:153–164

    CAS  Google Scholar 

  • Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595

    Article  CAS  PubMed  Google Scholar 

  • Jones L, Milne JL, Ashford D, McCann MC, McQueen-Mason SJ (2005) A conserved functional role of pectic polymers in stomatal guard cells from a range of plant species. Planta 221:255–264

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB et al (2012) Plant cell walls to ethanol. Biochem J 442:241–252

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Held MA, Zemelis S, Wilkerson C, Brandizzi F (2015) CGR2 and CGR3 have critical overlapping roles in pectin methylesterification and plant growth in Arabidopsis thaliana. Plant J 82:208–220

    Article  CAS  PubMed  Google Scholar 

  • Knox JP, Linstead PJ, King J, Cooper C, Roberts K (1990) Pectin esterification is spatially regulated both within cell-walls and between developing-tissues of root apices. Planta 181:512–521

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Zhou G, Yin Y, Xu Y, Pattathil S, Hahn MG (2011) Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases. Plant Physiol 155:1791–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krupkova E, Immerzeel P, Pauly M, Schmulling T (2007) The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J 50:735–750

    Article  CAS  PubMed  Google Scholar 

  • Lara-Espinoza C, Carvajal-Millan E, Balandran-Quintana R, Lopez-Franco Y, Rascon-Chu A (2018) Pectin and pectin-based composite materials: beyond food texture. Molecules 23. https://doi.org/10.3390/molecules23040942

    Article  PubMed Central  CAS  Google Scholar 

  • Laurent MA, Boulenguer P (2003) Stabilization mechanism of acid dairy drinks (ADD) induced by pectin. Food Hydrocoll 17:445–454

    Article  CAS  Google Scholar 

  • Leclere L, Cutsem PV, Michiels C (2013) Anti-cancer activities of pH- or heat-modified pectin. Front Pharmacol 4:128. https://doi.org/10.3389/fphar.2013.00128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee C, Teng Q, Zhong R, Ye ZH (2011) The four Arabidopsis reduced wall acetylation genes are expressed in secondary wall-containing cells and required for the acetylation of xylan. Plant Cell Physiol 52:1289–1301

    Article  CAS  PubMed  Google Scholar 

  • Leroux J, Langendorff V, Schick G, Vaishnav V, Mazoyer J (2003) Emulsion stabilizing properties of pectin. Food Hydrocoll 17:455–462

    Article  CAS  Google Scholar 

  • Lin D, Lopez-Sanchez P, Gidley MJ (2015) Binding of arabinan or galactan during cellulose synthesis is extensive and reversible. Carbohydr Polym 126:108–121

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Lopez-Sanchez P, Gidley MJ (2016) Interactions of pectins with cellulose during its synthesis in the absence of calcium. Food Hydrocoll 52:57–68

    Article  CAS  Google Scholar 

  • Lopez-Sanchez P, Martinez-Sanz M, Bonilla MR, Wang D, Gilbert EP, Stokes JR, Gidley MJ (2017) Cellulose-pectin composite hydrogels: intermolecular interactions and material properties depend on order of assembly. Carbohydr Polym 162:71–81

    Article  CAS  PubMed  Google Scholar 

  • Manabe Y et al (2011) Loss-of-function mutation of REDUCED WALL ACETYLATION2 in Arabidopsis leads to reduced cell wall acetylation and increased resistance to Botrytis cinerea. Plant Physiol 155:1068–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Rodriguez MC, Orchard J, Seymour GB (2002) Pectate lyases, cell wall degradation and fruit softening. J Exp Bot 53:2115–2119

    Article  CAS  PubMed  Google Scholar 

  • McCarthy TW, Der JP, Honaas LA, dePamphilis CW, Anderson CT (2014) Phylogenetic analysis of pectin-related gene families in Physcomitrella patens and nine other plant species yields evolutionary insights into cell walls. BMC Plant Biol 14:79. https://doi.org/10.1186/1471-2229-14-79

    Article  PubMed  PubMed Central  Google Scholar 

  • Miart F et al (2014) Spatio-temporal analysis of cellulose synthesis during cell plate formation in Arabidopsis. Plant J 77:71–84

    Article  CAS  PubMed  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  CAS  PubMed  Google Scholar 

  • Molhoj M, Verma R, Reiter WD (2003) The biosynthesis of the branched-chain sugar d-apiose in plants: functional cloning and characterization of a UDP-d-apiose/UDP-d-xylose synthase from Arabidopsis. Plant J 35:693–703

    Article  CAS  PubMed  Google Scholar 

  • Mouille G et al (2007) Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J 50:605–614

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Furuta H, Maeda H, Nagamatsu Y, Yoshimoto A (2001) Analysis of structural components and molecular construction of soybean soluble polysaccharides by stepwise enzymatic degradation. Biosci Biotechnol Biochem 65:2249–2258

    Article  CAS  PubMed  Google Scholar 

  • Ndeh D et al (2017) Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544:65–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novakovic L, Guo T, Bacic A, Sampathkumar A, Johnson KL (2018) Hitting the wall-sensing and signaling pathways involved in plant Cell Wall remodeling in response to abiotic stress. Plants (Basel) 7. https://doi.org/10.3390/plants7040089

    Article  PubMed Central  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  CAS  Google Scholar 

  • Opanowicz M et al (2011) Endosperm development in Brachypodium distachyon. J Exp Bot 62:735–748

    Article  CAS  PubMed  Google Scholar 

  • Pabst M et al (2013) Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species. Plant J 76:61–72

    CAS  PubMed  Google Scholar 

  • Palmer KJ, Ballantyne M (1950) The structure of (I) some pectin esters and (ii) guar galactomannan. J Am Chem Soc 72:736–741

    Article  CAS  Google Scholar 

  • Park YB, Cosgrove DJ (2015) Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol 56:180–194

    Article  CAS  PubMed  Google Scholar 

  • Parsons HT et al (2012) Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant Physiol 159:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patidar MK, Nighojkar S, Kumar A, Nighojkar A (2018) Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 8:199. https://doi.org/10.1007/s13205-018-1220-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Hofte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr Biol 18:1943–1948

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Braybrook SA, Le Guillou L, Bron E, Kuhlemeier C, Hofte H (2011) Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr Biol 21:1720–1726

    Article  CAS  PubMed  Google Scholar 

  • Peaucelle A, Braybrook S, Hofte H (2012) Cell wall mechanics and growth control in plants: the role of pectins revisited. Front Plant Sci 3:121. https://doi.org/10.3389/fpls.2012.00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peaucelle A, Wightman R, Höfte H (2015) The control of growth symmetry breaking in the Arabidopsis hypocotyl. Curr Biol 25:1746–1752

    Article  CAS  PubMed  Google Scholar 

  • Pettolino FA, Walsh C, Fincher GB, Bacic A (2012) Determining the polysaccharide composition of plant cell walls. Nat Protoc 7:1590–1607

    Article  CAS  PubMed  Google Scholar 

  • Philippe F, Pelloux J, Rayon C (2017) Plant pectin acetylesterase structure and function: new insights from bioinformatic analysis. BMC Genomics 18:456. https://doi.org/10.1186/s12864-017-3833-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phyo P, Wang T, Kiemle SN, O’Neill H, Pingali SV, Hong M, Cosgrove DJ (2017a) Gradients in wall mechanics and polysaccharides along growing inflorescence stems. Plant Physiol 175:1593–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phyo P, Wang T, Xiao C, Anderson CT, Hong M (2017b) Effects of pectin molecular weight changes on the structure, dynamics, and polysaccharide interactions of primary cell walls of Arabidopsis thaliana: insights from solid-state NMR. Biomacromolecules 18:2937–2950

    Article  CAS  PubMed  Google Scholar 

  • Popper ZA, Fry SC (2005) Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells. Ann Bot 96:91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popper ZA, Fry SC (2008) Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta 227:781–794

    Article  CAS  PubMed  Google Scholar 

  • Popper ZA et al (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590

    Article  CAS  PubMed  Google Scholar 

  • Ralet MC, Andre-Leroux G, Quemener B, Thibault JF (2005) Sugar beet (Beta vulgaris) pectins are covalently cross-linked through diferulic bridges in the cell wall. Phytochemistry 66:2800–2814

    Article  CAS  PubMed  Google Scholar 

  • Ralet MC, Crepeau MJ, Lefebvre J, Mouille G, Hofte H, Thibault JF (2008) Reduced number of homogalacturonan domains in pectins of an Arabidopsis mutant enhances the flexibility of the polymer. Biomacromolecules 9:1454–1460

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Venkataraman M, Ramakrishnan S, Lang W, Raguram S, Sasisekharan R (2006) Advancing glycomics: implementation strategies at the consortium for functional glycomics. Glycobiology 16:82R–90R

    Article  CAS  PubMed  Google Scholar 

  • Rennie EA, Scheller HV (2014) Xylan biosynthesis. Curr Opin Biotechnol 26:100–107

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Gacio MD, Iglesias-Fernandez R, Carbonero P, Matilla AJ (2012) Softening-up mannan-rich cell walls. J Exp Bot 63:3976–3988

    Article  CAS  Google Scholar 

  • Rosti J et al (2007) UDP-glucose 4-epimerase isoforms UGE2 and UGE4 cooperate in providing UDP-galactose for cell wall biosynthesis and growth of Arabidopsis thaliana. Plant Cell 19:1565–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Round AN, Rigby NM, MacDougall AJ, Morris VJ (2010) A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydr Res 345:487–497

    Article  CAS  PubMed  Google Scholar 

  • Rui Y, Xiao C, Yi H, Kandemir B, Wang JZ, Puri VM, Anderson CT (2017) POLYGALACTURONASE INVOLVED IN EXPANSION3 functions in seedling development, rosette growth, and stomatal dynamics in Arabidopsis thaliana. Plant Cell 29:2413–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui Y, Chen Y, Kandemir B, Yi H, Wang JZ, Puri VM, Anderson CT (2018) Balancing strength and flexibility: how the synthesis, organization, and modification of guard cell walls govern stomatal development and dynamics. Front Plant Sci 9:1202. https://doi.org/10.3389/fpls.2018.01202

    Article  PubMed  PubMed Central  Google Scholar 

  • Rybak K et al (2014) Plant cytokinesis is orchestrated by the sequential action of the TRAPPII and exocyst tethering complexes. Dev Cell 29:607–620

    Article  CAS  PubMed  Google Scholar 

  • Saffer AM (2018) Expanding roles for pectins in plant development. J Integr Plant Biol 60:910–923

    Article  CAS  PubMed  Google Scholar 

  • Samuels AL, Giddings TH Jr, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130:1345–1357

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Senechal F, Wattier C, Rusterucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structure, expression, and roles in plants. J Exp Bot 65:5125–5160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sexton TR et al (2012) Pectin Methylesterase genes influence solid wood properties of Eucalyptus pilularis. Plant Physiol 158:531–541

    Article  CAS  PubMed  Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol 22:53–78

    Article  CAS  PubMed  Google Scholar 

  • Somerville C et al (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    Article  CAS  PubMed  Google Scholar 

  • Sorensen I et al (2011) The charophycean green algae provide insights into the early origins of plant cell walls. Plant J 68:201–211

    Article  PubMed  CAS  Google Scholar 

  • Stranne M et al (2018) TBL10 is required for O-acetylation of pectic rhamnogalacturonan-I in Arabidopsis thaliana. Plant J 96:772–785

    Article  CAS  PubMed  Google Scholar 

  • Takenaka Y et al (2018) Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. Nat Plants 4:669–676

    Article  CAS  PubMed  Google Scholar 

  • Tan L et al (2013) An Arabidopsis cell wall proteoglycan consists of pectin and arabinoxylan covalently linked to an arabinogalactan protein. Plant Cell 25:270–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Temple H, Saez-Aguayo S, Reyes FC, Orellana A (2016) The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters. Glycobiology 26:913–925

    Article  CAS  PubMed  Google Scholar 

  • Verger S, Chabout S, Gineau E, Mouille G (2016) Cell adhesion in plants is under the control of putative O-fucosyltransferases. Development 143:2536–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel J (2008) Unique aspects of the grass cell wall. Curr Opin Plant Biol 11:301–307

    Article  CAS  PubMed  Google Scholar 

  • Voiniciuc C et al (2018) Identification of key enzymes for pectin synthesis in seed mucilage. Plant Physiol 178:1045–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H et al (2016) A distinct pathway for polar exocytosis in plant cell wall formation. Plant Physiol 172:1003–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls. Proc Natl Acad Sci USA 110:16444–16449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Park YB, Cosgrove DJ, Hong M (2015) Cellulose-pectin spatial contacts are inherent to never-dried Arabidopsis primary cell walls: evidence from solid-state nuclear magnetic resonance. Plant Physiol 168:871–884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Wormit A, Usadel B (2018) The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). Int J Mol Sci 19

    Article  PubMed Central  CAS  Google Scholar 

  • Xiao C, Anderson CT (2013) Roles of pectin in biomass yield and processing for biofuels. Front Plant Sci 4:67. https://doi.org/10.3389/fpls.2013.00067

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Somerville C, Anderson CT (2014) POLYGALACTURONASE INVOLVED IN EXPANSION1 functions in cell elongation and flower development in Arabidopsis. Plant Cell 26:1018–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao C, Barnes WJ, Zamil MS, Yi H, Puri VM, Anderson CT (2017) Activation tagging of Arabidopsis POLYGALACTURONASE INVOLVED IN EXPANSION2 promotes hypocotyl elongation, leaf expansion, stem lignification, mechanical stiffening, and lodging. Plant J 89:1159–1173

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Yu Y, Liang Y, Anderson CT, Cao J (2018) A profusion of molecular scissors for pectins: classification, expression, and functions of plant polygalacturonases. Front Plant Sci 9:1208. https://doi.org/10.3389/fpls.2018.01208

    Article  PubMed  PubMed Central  Google Scholar 

  • Yapo BM (2011) Rhamnogalacturonan-I: a structurally puzzling and functionally versatile polysaccharide from plant cell walls and mucilages. Polym Rev 51:391–413

    Article  CAS  Google Scholar 

  • Yapo BM, Lerouge P, Thibault JF, Ralet MC (2007) Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr Polym 69:426–435

    Article  CAS  Google Scholar 

  • Yeats T, Vellosillo T, Sorek N, Ibáñez AB, Bauer S (2016) Rapid determination of cellulose, neutral sugars, and Uronic acids from plant cell walls by one-step two-step hydrolysis and HPAEC-PAD. Bio-protocol 6:e1978

    Article  Google Scholar 

  • Zablackis E, Huang J, Muller B, Darvill AG, Albersheim P (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107:1129–1138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabotina OA (2012) Xyloglucan and its biosynthesis. Front Plant Sci 3:134. https://doi.org/10.3389/fpls.2012.00134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamil MS, Yi H, Puri VM (2014) Mechanical characterization of outer epidermal middle lamella of onion under tensile loading. Am J Bot 101:778–787

    Article  PubMed  Google Scholar 

  • Zema DA, Calabrò PS, Folino A, Tamburino V, Zappia G, Zimbone SM (2018) Valorisation of citrus processing waste: a review. Waste Manag 80:252–273

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85:179–192

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Yuan S, Wang X, Zhang Y, Zhu H, Lu C (2008) Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro. Plant Physiol 147:1874–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Kobayashi M, Awano T, Matoh T, Takabe K (2018) A new monoclonal antibody against rhamnogalacturonan II and its application to immunocytochemical detection of rhamnogalacturonan II in Arabidopsis roots. Biosci Biotechnol Biochem 82:1780–1789

    Article  CAS  PubMed  Google Scholar 

  • Zhu C et al (2015) The Fragile Fiber1 kinesin contributes to cortical microtubule-mediated trafficking of cell wall components. Plant Physiol 167:780–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Li S, Pan S, Xin X, Gu Y (2018) CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc Natl Acad Sci USA 115:E3578–E3587

    Article  Google Scholar 

  • Zykwinska A, Thibault JF, Ralet MC (2007) Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged. J Exp Bot 58:1795–1802

    Article  CAS  PubMed  Google Scholar 

  • Zykwinska A, Thibault JF, Ralet MC (2008) Competitive binding of pectin and xyloglucan with primary cell wall cellulose. Carbohydr Polym 74:957–961

    Article  CAS  Google Scholar 

  • Zykwinska AW, Ralet MC, Garnier CD, Thibault JF (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thanks to Chaowen Xiao, Peter Dowd, Thomas McCarthy, Daniel McClosky, Melissa Ishler, Yue Rui, William Barnes, Yintong Chen, Deborah Petrik, Sydney Duncombe, Yang Yang, Anderson Lab rotation students and undergraduate researchers, and Daniel Cosgrove for stimulating discussions about pectins and plant cell walls. This work was supported as part of the Center for Lignocellulose Structure and Formation, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0001090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles T. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, C.T. (2019). Pectic Polysaccharides in Plants: Structure, Biosynthesis, Functions, and Applications. In: Cohen, E., Merzendorfer, H. (eds) Extracellular Sugar-Based Biopolymers Matrices. Biologically-Inspired Systems, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-030-12919-4_12

Download citation

Publish with us

Policies and ethics