Skip to main content
Log in

Xyloglucan−pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We tested two hypotheses for the mechanism by which xyloglucan–pectin covalent bonds are formed in Arabidopsis cell cultures. Hypothesis 1 proposed hetero-transglycosylation, with xyloglucan as donor substrate and a rhamnogalacturonan-I (RG-I) side-chain as acceptor. We looked for enzyme activities that catalyse this reaction using α-(1→5)-l-[3H]arabino- or β-(1→4)-d-[3H]galacto-oligosaccharides as model acceptor substrates. The 3H-oligosaccharides were supplied (with or without added xyloglucans) to living Arabidopsis cell-cultures, permeabilised cells, cell-free extracts, or four authentic XTHs. No hetero-transglycosylation occurred. Therefore, we cannot support hypothesis 1. Hypothesis 2 proposed that some xyloglucan is manufactured de novo as a side-chain on RG-I. To test this, we pulse-labelled Arabidopsis cell-cultures with [3H]arabinose and monitored the radiolabelling of anionic (pectin-bonded) xyloglucan, which was resolved from free xyloglucan by ion-exchange chromatography. [3H]Xyloglucan–pectin complexes were detectable <4 min after [3H]arabinose feeding, which is shorter than the transit-time for polysaccharide secretion, indicating that xyloglucan–pectin bonds were formed intra-protoplasmically. Thereafter, the proportion of the wall-bound [3H]xyloglucan that was anionic remained almost constant at ∼50% for ≥6 days, showing that the xyloglucan–pectin bond was stable in vivo. Some [3H]xyloglucan was rapidly sloughed into the medium instead of becoming wall-bound. Only ∼30% of the sloughed [3H]xyloglucan was anionic, indicating that bonding to pectin promoted the integration of xyloglucan into the wall. We conclude that ∼50% of xyloglucan in cultured Arabidopsis cells is synthesised on a pectic primer, then secreted into the apoplast, where the xyloglucan–pectin bonds are stable and the pectic moiety aids wall-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 

Similar content being viewed by others

Abbreviations

Ara8-ol:

α-(1→5)-l-Arabino-octaitol

Gal8-ol:

β-(1→4)-d-Galacto-octaitol

EAW:

ethyl acetate/acetic acid/water (10:5:6 by vol.)

PCW:

primary cell wall

RG-I:

rhamnogalacturonan-I

TFA:

trifluoroacetic acid

XET:

xyloglucan endotransglucosylase [activity]

XTH:

xyloglucan endotransglucosylase/hydrolase [protein]

References

  • Abdel-Massih RM, Baydoun E A-H, Brett CT (2003) In vitro biosynthesis of 1,4-β-galactan attached to a pectin–xyloglucan complex in pea. Planta 216:502–511

    PubMed  CAS  Google Scholar 

  • Ait Mohand F, Farkaš V (2006) Screening for hetero-transglycosylating activities in extracts from nasturtium (Tropaeolum majus). Carbohydr Res 341:577–581

    Article  CAS  Google Scholar 

  • Andersson S-I, Samuelson O, Ishihara M, Shimizu K (1983) Structure of the reducing end groups in spruce xylan. Carbohydr Res 111:283–288

    Article  CAS  Google Scholar 

  • Baldwin TC, Handford MG, Yuseff MI, Orellana A, Dupree P (2001) Identification and characterization of GONSTI, a Golgi-localised GDP-mannose transporter in Arabidopsis. Plant Cell 10:2283–2295

    Article  Google Scholar 

  • Baydoun EA-H, Abdel-Massih RM, Dani D, Rizk SE, Brett CT (2001) Galactosyl- and fucosyl transferases in etiolated pea epicotyls: product identification and sub-cellular localisation. J Plant Physiol 158:145–150

    Article  CAS  Google Scholar 

  • Brady CJ (1987) Fruit ripening. Annu Rev Plant Physiol 38:155–178

    Article  CAS  Google Scholar 

  • Brett CT, Baydoun EA-H, Abdel-Massih RM (2005) Pectin–xyloglucan linkages in type I primary cell walls of plants. Plant Biosystems 139:54–59

    Google Scholar 

  • Campbell P, Braam J (1999) Xyloglucan endotransglycosylases: diversity of gene, enzymes and potential wall-modifying functions. Trends Plant Sci 4:361–366

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Chanliaud E, de Silva J, Strongitharm B, Jeronimidis G, Gidley MJ (2004) Mechanical effects of plant cell wall enzymes on cellulose/xyloglucan composites. Plant J 38:27–37

    Article  PubMed  CAS  Google Scholar 

  • Cumming CM, Rizkallah HD, McKendrick KA, Abdel-Massih RM, Baydoun E A-H, Brett CT (2005) Biosynthesis and cell-wall deposition of a pectin–xyloglucan complex in pea. Planta 222:546–555

    Article  PubMed  CAS  Google Scholar 

  • Edelmann HG, Fry SC (1992a) Effect of cellulose synthesis inhibition on growth and the integration of xyloglucan into pea internode cell walls. Plant Physiol 100:993–997

    PubMed  CAS  Google Scholar 

  • Edelmann HG, Fry SC (1992b) Factors that affect the extraction of xyloglucan from the primary cell walls of suspension-cultured rose cells. Carbohydr Res 228:423–431

    Article  CAS  Google Scholar 

  • Feingold DS, Avigad G (1980) Sugar nucleotide transformations in plants. In: Preiss J (ed) The biochemistry of plants. Academic, New York, pp 101–170

    Google Scholar 

  • Finkenstadt VL, Hendrixson TL, Millane RP (1995) Models of xyloglucan binding to cellulose microfibrils. J Carbohydr Chem 14:601–611

    Article  CAS  Google Scholar 

  • Fry SC (1986) Cross-linking of matrix polymers in the growing cell-walls of angiosperms. Annu Rev Plant Physiol Plant Mol Biol 37:165–186

    Article  CAS  Google Scholar 

  • Fry SC (1989a) The structure and functions of xyloglucan. J Exp Bot 40:1–11

    Article  CAS  Google Scholar 

  • Fry SC (1989b) Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. Plant Physiol 75:532–536

    Article  CAS  Google Scholar 

  • Fry SC (2000) The growing plant cell wall: chemical and metabolic analysis. Reprint edition. Blackburn, Caldwell

  • Fry SC, Street HE (1980) Gibberellin-sensitive suspension cultures. Plant Physiol 65:472–477

    Article  PubMed  CAS  Google Scholar 

  • Fry SC, Smith RC, Renwick KF, Martin DJ, Hodge SK, Matthews KJ (1992) Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants. Biochem J 282:821–828

    PubMed  CAS  Google Scholar 

  • Fry SC, Willis SC, Patterson AEJ (2000) Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger diferulate coupling-products in maize cell-suspension cultures. Planta 211:679–692

    Article  PubMed  CAS  Google Scholar 

  • Fu J, Mort A (1997) Progress towards identifying a covalent cross-link between xyloglucan and rhamnogalacturonan in cotton cell walls (Abstr). Plant Physiol 114S:83

    Google Scholar 

  • Futamura N, Kouchi H, Shinohara K (2002) A gene for pectate lyase expressed in elongating and differentiating tissues of a Japanese willow (Salix gilgiana). J Plant Physiol 159:1123–1130

    Article  CAS  Google Scholar 

  • Gonzalez-Carranza ZH, Whitelaw CA, Swarup R, Roberts JA (2002) Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis. Plant Physiol 128:534–543

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T (1989) Xyloglucans in the primary cell wall. Annu Rev Plant Physiol Plant Mol Biol 40:139–168

    Article  CAS  Google Scholar 

  • Hayashi T, Takeda T, Ogawa K, Mitsuishi Y (1994) Effects of the degree of polymerization on the binding of xyloglucans to cellulose. Plant Cell Physiol 35:893–899

    PubMed  CAS  Google Scholar 

  • Ishii T (1991) Isolation and characterisation of a diferuloyl arabinoxylan hexasaccharide from bamboo shoot cel-walls. Carbohydr Res 219:15–22

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Nishitani K (1999) Visualization of EXGT-mediated molecular grafting activity by means of a fluorescent-labeled xyloglucan oligomer. Plant Cell Physiol 40:1172–1176

    CAS  Google Scholar 

  • Jork H, Funk W, Fischer W, Wimmer H (1994) Thin layer chromatography: reagents and detection methods. Vol. 1b: physical and chemical detection methods; activation reactions, reagents sequences, reagents II. Weinheim, VCH

  • Kaneko S, Ishii T, Matsunaga T (1997) A boron–rhamnogalacturonan II complex from bamboo shoot cell walls. Phytochemistry 44:243–248

    Article  CAS  Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls. III A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–196

    PubMed  CAS  Google Scholar 

  • Kerr EM, Fry SC (2003) Pre-formed xyloglucans and xylans increase in molecular weight in three distinct compartments of a maize cell-suspension culture. Planta 217:327–339

    PubMed  CAS  Google Scholar 

  • Kerr EM, Fry SC (2004) Extracellular cross-linking of xylan and xyloglucan in maize cell-suspension cultures: the role of oxidative phenolic coupling. Planta 219:73–83

    Article  PubMed  CAS  Google Scholar 

  • Konishi T, Takeda T, Miyazaki Y, Ohnishi-Kameyama M, Hayashi T, O’Neill MA, Ishii T (2007) A plant mutase that interconverts UDP-arabinofuranose and UDP-arabinopyranose. Glycobiology 17:345–354

    Article  PubMed  CAS  Google Scholar 

  • Lamport DTA, Kieliszewski MJ, Showalter AM (2006) Salt-stress upregulates arabinogalactan-proteins: using salt-stress to analyse AGP function. New Phytol 169:479–492

    Article  PubMed  CAS  Google Scholar 

  • Lerouge P, O’Neill MA, Darvill AG, Albersheim P (1993) Structural characterization of endo-glycanase-generated oligoglycosyl side-chains of rhamnogalacturonan-I. Carbohydr Res 243:359–371

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Leaver CJ (1993) Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension-cultures. Plant Physiol 103:621–627

    PubMed  CAS  Google Scholar 

  • McCann MC, Roberts K (1991) Architecture of the primary cell wall. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 109–128

    Google Scholar 

  • Morris ER, Powell DA, Gidley MJ, Rees DA (1982) Conformations and interactions of pectins. J Mol Biol 155:507–516

    Article  PubMed  CAS  Google Scholar 

  • Nickell LG, Tulecke W (1959) Responses of plant tissue cultures to gibberellin. Bot Gaz 120:245–250

    Article  CAS  Google Scholar 

  • Nishitani K (1998) Construction and restructuring of the cellulose-xyloglucan framework in the apoplast as mediated by the xyloglucan related protein family—a hypothetical scheme. J Plant Res 111:159–166

    Article  CAS  Google Scholar 

  • Nishitani K, Tominaga R (1992) Endoxyloglucan transferase, a novel class of glycosyl transferase that catalyses transfer of a segment of xyloglucan molecular to another xyloglucan molecule. J Biol Chem 267:21058–21064

    PubMed  CAS  Google Scholar 

  • Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MA, Albersheim P, Darvill AG (1990) The pectic polysaccharides of primary cell walls In: Dey PM (ed) Methods in plant biochemistry 2. Academic, London, pp 415–441

    Google Scholar 

  • O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294:846–849

    Article  PubMed  CAS  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  CAS  Google Scholar 

  • Osato Y, Yokoyama R, Nishitani K (2006) A principal role for AtXTH18 in Arabidopsis thaliana root growth: a functional analysis using RNAi plants. J Plant Res 119:153–162

    Article  PubMed  CAS  Google Scholar 

  • Peña MJ, Zhong R, Zhou G-K, Richardson EA, O’Neill MA, Darvill AG, York WS, Ye Z-H (2007) Arabidopsis irregular xylem8 and irregular xylem9: Implications for the complexity of glucuronoxylan biosynthesis. Plant Cell 19:549–563

    Article  PubMed  CAS  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York W (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    Article  PubMed  CAS  Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91:1–12

    Article  PubMed  CAS  Google Scholar 

  • Popper ZA, Fry SC (2004) Primary cell wall composition of pteridophytes and spermatophytes. New Phytol 64:165–174

    Article  CAS  Google Scholar 

  • Popper ZA, Fry SC (2005) Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured angiosperm cells. Ann Bot 96:91–99

    Article  PubMed  CAS  Google Scholar 

  • Prade RA, Zahn D, Ayoubi P, Mort AJ (1999) Pectins, pectinases and plant–microbe interactions. In: Harding SE (ed) Biotechnology and genetic engineering reviews. Intercept, Andover, pp 361–391

    Google Scholar 

  • Rose JCK, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Seymour GB, Knox JP (eds.): Pectins and their manipulation. Blackwell, Oxford (2002), pp 250

    Google Scholar 

  • Shedletzky E, Schumel M, Delmer DP, Lamport DTA (1990) Adaptation and growth of tomato cells on the herbicide 2,6-dichlorobenzonitrile leads to the production of unique cell walls lacking a cellulose–xyloglucan network. Plant Physiol 94:980–987

    PubMed  CAS  Google Scholar 

  • Spellman MW, McNeil M, Darvill AG, Albersheim P, Dell A (1983) Characterization of a structurally complex heptasaccharide isolated from the pectic polysaccharide rhamnogalacturonan II. Carbohydr Res 122:131–153

    Article  CAS  Google Scholar 

  • Steele NM, Sulová Z, Campbell P, Braam J, Farkaš V, Fry SC (2001) Ten isoenzymes of xyloglucan endotransglycosylase from plant cell walls select and cleave the donor substrate stochastically. Biochem J 355:671–679

    PubMed  CAS  Google Scholar 

  • Takeda T, Fry SC (2004) Control of xyloglucan endotransglucosylase activity by salts and anionic polymers. Planta 219:722–732

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Fry SC (1997) Trimming and solubilization of xyloglucan after deposition in the walls of cultured rose cells. J Exp Bot 48:297–305

    Article  CAS  Google Scholar 

  • Thompson JE, Fry SC (2000) Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells. Planta 211:275–286

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Fry SC (2001) Restructuring of wall-bound xyloglucan by transglycosylation in living plant cells. Plant J 26:23–34

    Article  PubMed  CAS  Google Scholar 

  • Thompson JE, Smith RC, Fry SC (1997) Xyloglucan undergoes inter-polymeric transglycosylation during binding to the plant cell wall in vivo: evidence from 12C/3H dual labelling and isopycnic centrifugation in caesium trifluoroacetate. Biochem J 327:699–708

    PubMed  CAS  Google Scholar 

  • Vidal S, Williams P, Doco T, Moutounet M, Pellerin P (2003) The polysaccharides of red wine: total fractionation and characterization. Carbohydr Polym 54:439–447

    Article  CAS  Google Scholar 

  • Wende G, Fry SC (1997) 2-O-β-d-Xylopyranosyl-(5-O-feruloyl)-l-arabinose, a widespread component of grass cell walls. Phytochemistry 44:1019–1030

    Article  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2001) Endoxyloglucan transferase is localized both in the cell plate and in the secretary pathway destined for the apoplast in tobacco cells. Plant Cell Physiol 42:292–300

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Peter Dominy (University of Glasgow) for the kind provision of Arabidopsis cell-suspension cultures; Dr Takumi Takeda (Iwate Biotechnology Research Centre, Narita Kitakami Iwate, Japan) for the kind provision of pea xyloglucan; and Phillip Melling and Jack Cavers for preliminary work on the transglucosylation assays. We thank the BBSRC for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Fry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popper, Z.A., Fry, S.C. Xyloglucan−pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta 227, 781–794 (2008). https://doi.org/10.1007/s00425-007-0656-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0656-2

Keywords

Navigation