Skip to main content

Numerical Solution of Space-Time-Fractional Reaction-Diffusion Equations via the Caputo and Riesz Derivatives

  • Chapter
  • First Online:
Mathematics Applied to Engineering, Modelling, and Social Issues

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 200))

Abstract

The present chapter considers the numerical solution of space-time-fractional reaction-diffusion problems used to model complex phenomena that are governed by dynamic of anomalous diffusion. The time- and space-fractional reaction-diffusion equation is modelled by replacing the first order derivative in time and the second-order derivative in space respectively with the Caputo and Riesz operators. We propose some numerical approximation schemes such as the matrix method, average central difference operator and L2 method. To give a general two-dimensional representation of the analytical solution in terms of the Mittag-Leffler function, we apply the Laplace transform technique in time and the Fourier transform method in space. The effectiveness and applicability of the proposed methods are tested on a range of practical problems that are current and recurring interests in one, two and three dimensions are chosen to cover pitfalls that may arise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd-Elhameed, W.M., Youssri, Y.H.: Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations. Comput. Appl. Math. 37, 2897–2921 (2018)

    Article  MathSciNet  Google Scholar 

  2. Abd-Elhameed, W.M., Youssri, Y.H.: Spectral Tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence. Iran. J. Sci. Technol., Trans. A: Sci. 1–12 (2017). https://doi.org/10.1007/s40995-017-0420-9

  3. Agrawal, O.P., Baleanu, D.: Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. J. Vib. Control. 13, 269–1281 (2007)

    Article  MathSciNet  Google Scholar 

  4. Ahmood, W.A., Kiliçman, A.: On some applications of the space-time fractional derivative. Adv. Differ. Equ. 288 14p (2016). https://doi.org/10.1186/s13662-016-1015-z

  5. Atangana, A.: Derivative with a New Parameter : Theory, Methods and Applications. Academic Press, New York (2016)

    Book  Google Scholar 

  6. Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, New York (2017)

    MATH  Google Scholar 

  7. Atangana, A., Secer, A.: A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstract Appl. Anal. 2013, Article ID 279681, (2013) 8 p. https://doi.org/10.1155/2013/279681

  8. Baleanu, D., Caponetto, R., Machado, J.T.: Challenges in fractional dynamics and control theory. J. Vib. Control. 22, 2151–2152 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bhrawy, A.H.: A Jacobi spectral collocation method for solving multi-dimensional nonlinear fractional sub-diffusion equations. Numer. Algorithms 73, 91–113 (2016)

    Article  MathSciNet  Google Scholar 

  10. Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT Numer. Math. 54, 937–954 (2014)

    Article  MathSciNet  Google Scholar 

  11. Ding, H., Li, C., Chen, Y.: High-order algorithms for Riesz derivative and their applications (I). Abstract Appl. Anal. 2014 Article ID 653797 (2014) 17 p. https://doi.org/10.1155/2014/653797

  12. Ding, H., Zhang, Y.: New numerical methods for the Riesz space fractional partial differential equations. Comput. Math. Appl. 63, 1135–1146 (2012)

    Article  MathSciNet  Google Scholar 

  13. Doha, E.H., Youssri, Y.H., Zaky, M.A.: Spectral solutions for differential and integral equations with varying coefficients using classical orthogonal polynomials. Bull. Iran. Math. Soc. 1–29 (2018). https://doi.org/10.1007/s41980-018-0147-1

  14. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)

    Article  MathSciNet  Google Scholar 

  15. Garg, M., Manohar, P.: Matrix method for numerical solution of space-time fractional diffusion-wave equations with three space variables. Afrika Matematika 25, 161–181 (2014). https://doi.org/10.1007/s13370-012-0101-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Baleanu, D., Reyes, J.M., Sosa, I.O.: Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 2016, 173 (2016). https://doi.org/10.1186/s13662-016-0908-1

    Article  MATH  Google Scholar 

  17. Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Physica A: Stat. Mech. Appl. 447, 467–481 (2016)

    Article  MathSciNet  Google Scholar 

  18. Hafez, R.M., Youssri, Y.H.: Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation. Comput. Appl. Math. 37, 5315–5333 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jesus, I.S., Machado, J.A.T.: Fractional control of heat diffusion systems. Nonlinear Dyn. 54, 263–282 (2008)

    Article  MathSciNet  Google Scholar 

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  21. Liang, X., Khaliq, A.Q.M., Bhatt, H., Furati, K.M.: The locally extrapolated exponential splitting scheme for multi-dimensional nonlinear space-fractional Schrödinger equations. Numer. Algorithms 76, 939–958 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lu, J.G.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26, 1125–1133 (2005)

    Article  Google Scholar 

  23. Meerschaert, M.M., Scheffler, H., Tadjeran, C.: Finite difference methods for two dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

    Article  MathSciNet  Google Scholar 

  24. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  25. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  Google Scholar 

  26. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  27. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  28. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 48391, 1–2 (2006). https://doi.org/10.1155/IJMMS/2006/48391

    Article  MathSciNet  MATH  Google Scholar 

  29. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, New York (2011)

    Book  Google Scholar 

  30. Owolabi, K.M., Patidar, K.C.: Existence and permanence in a diffusive KiSS model with robust numerical simulations. Int. J. Differ. Equ. 2015(485860), 8 (2015). https://doi.org/10.1155/2015/485860

    Article  MathSciNet  MATH  Google Scholar 

  31. Owolabi, K.M., Patidar, K.C.: Effect of spatial configuration of an extended non-linear Kierstead-Slobodkin reaction-transport model with adaptive numerical scheme. Springer Plus 2016(5), 303 (2016). https://doi.org/10.1186/s40064-016-1941-y

    Article  Google Scholar 

  32. Owolabi, K.M., Atangana, A.: Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative. Eur. Phys. J. Plus 16(131), 335 (2016). https://doi.org/10.1140/epjp/i2016-16335-8

    Article  Google Scholar 

  33. Owolabi, K.M.: Mathematical modelling and analysis of two-component system with Caputo fractional derivative order. Chaos Solitons Fractals 103, 544–554 (2017)

    Article  MathSciNet  Google Scholar 

  34. Owolabi, K.M.: Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative. Numer. Methods Partial Differ. Equ. 34, 274–295 (2017). https://doi.org/10.1002/num.22197

    Article  MathSciNet  MATH  Google Scholar 

  35. Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 44, 304–317 (2017)

    Article  MathSciNet  Google Scholar 

  36. Owolabi, K.M., Atangana, A.: Mathematical analysis and numerical simulation of two-component system with non-integer-order derivative in high dimensions. Adv. Differ. Equ. 2017, 223 (2017). https://doi.org/10.1186/s13662-017-1286-z

    Article  MathSciNet  MATH  Google Scholar 

  37. Owolabi, K.M., Atangana, A.: Numerical approximation of nonlinear fractional parabolic differential equations with Caputo-Fabrizio derivative in Riemann-Liouville sense. Chaos Solitons Fractals 99, 171–179 (2017)

    Google Scholar 

  38. Owolabi, K.M., Atangana, A.: Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems. Comput. Appl. Math. 1–24 (2017). https://doi.org/10.1007/s40314-017-0445-x

  39. Owolabi, K.M., Atangana, A.: Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative. Chaos Solitons Fractals 105, 111–119 (2017)

    Article  MathSciNet  Google Scholar 

  40. Pindza, E., Owolabi, K.M.: Fourier spectral method for higher order space fractional reaction-diffusion equations. Commun. Nonlinear Sci. Numer. Simul. 40, 112–128 (2016)

    Article  MathSciNet  Google Scholar 

  41. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  42. Podlubny, I., Chechkin, A., Skovranek, T., Chen, Y.Q., Jara, B.M.V.: Matrix approach to discrete fractional calculus II: partial fractional differential equations. J. Comput. Phys. 228, 3137–3153 (2009)

    Article  MathSciNet  Google Scholar 

  43. Salkuyeh, D.K.: On the finite difference approximation to the convection-diffusion equation. Appl. Math. Comput. 179, 79–86 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  45. Sousa, E., Li, C.: A Weighted finite difference method for the fractional diffusion equation based on the Riemann-liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)

    Article  MathSciNet  Google Scholar 

  46. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

    Article  MathSciNet  Google Scholar 

  47. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  Google Scholar 

  48. Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323, 2756–2778 (2008)

    Article  MathSciNet  Google Scholar 

  49. Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  50. Tuan, V.K., Gorenflo, R.: Extrapolation to the limit for numerical fractional differentiation. Zeitschrift für Angewandte Mathematik und Mechanik 75, 646–648 (1995)

    Article  MathSciNet  Google Scholar 

  51. Wang, Q., Liu, J., Gong, C., Tang, X., Fu, G., Xing, Z.: An efficient parallel algorithm for Caputo fractional reaction-diffusion equation with implicit finite-difference method. Adv. Differ. Equ. 2016, 207 (2016). https://doi.org/10.1186/s13662-016-0929-9

    Article  MathSciNet  MATH  Google Scholar 

  52. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, 200–218 (2010)

    Article  MathSciNet  Google Scholar 

  53. Yang, X.J., Machado, J.A.T., Baleanu, D., Cattani, C.: On exact traveling-wave solutions for local fractional Korteweg-de Vries equation. Chaos 26(8), 084312 (2016). https://doi.org/10.1063/1.4960543

    Article  MathSciNet  MATH  Google Scholar 

  54. Yang, X.J., Machado, J.A.T., Baleanu, D.: On exact traveling-wave solution for local fractional Boussinesq equation in fractal domain. Fractals 25, 1740006 (2017). (7 pages)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolade M. Owolabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Owolabi, K.M., Dutta, H. (2019). Numerical Solution of Space-Time-Fractional Reaction-Diffusion Equations via the Caputo and Riesz Derivatives. In: Smith, F.T., Dutta, H., Mordeson, J.N. (eds) Mathematics Applied to Engineering, Modelling, and Social Issues. Studies in Systems, Decision and Control, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-030-12232-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12232-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12231-7

  • Online ISBN: 978-3-030-12232-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics