Skip to main content

Dissolution of Sapphire and Alumina–Magnesia Particles in CaO–SiO2–Al2O3 Liquid Slags

  • Conference paper
  • First Online:
Advanced Real Time Imaging II

Abstract

Understanding the dissolution kinetics of non-metallic inclusions in liquid slag is key in optimization of slag composition for inclusion removal . In this study, the rate of dissolution of high-precision spheres of sapphire and alumina–magnesia particles in CaO–SiO2–Al2O3 liquid slags was measured in situ using a laser scanning confocal microscope at 1500 °C. It was found that the rate of dissolution of both sapphire and alumina–magnesia particles increased when the slag basicity is increased. A layer was observed around the dissolving sapphire. This layer may be a product layer and/or indicative of a mass transfer rate-controlling system. In the case of alumina–magnesia particle, the kinetics appeared more complex and depended on slag composition. No product layer or mass transfer layer was observed around the particle dissolving in slag with low basicity, whereas for the high basicity slag, a product or stagnant layer was observed, similar to that of the sapphire particle. Assuming a mass transfer-controlled system, measured diffusion coefficients for sapphire particles in slags tested in this study ranged from 10−11 to 10−10 m2 s−1 at 1500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lowe JH, Mitchell A (1995) Clean steel. Institute of Materials, London, p 223

    Google Scholar 

  2. Deo B, Boom R (1993) Fundamentals of steelmaking metallurgy. Prentice Hall International, New York, p 254

    Google Scholar 

  3. Seetharaman, S (Ed) (2008) Fundamentals of metallurgy. Woodhead Publishing in Materials Cambridge, England, p 23

    Google Scholar 

  4. Linder S (1974) Scand J Metall 3:137–150

    CAS  Google Scholar 

  5. Miki Y, Thomas BG (1999) Metall Mater Trans B 30B:639–654

    Article  CAS  Google Scholar 

  6. Hallberg M, Jönsson PG, Jonsson TLI, Eriksson R (2005) Scad J Metall 34:41–56

    Article  CAS  Google Scholar 

  7. Strandh J, Nakajima K, Eriksson R, Jönsson P (2005) ISIJ Int 45:1597–1606

    Article  CAS  Google Scholar 

  8. Shannon G, White L, Sridhar S (2008) Mater Sci Eng, A 495:310–315

    Article  Google Scholar 

  9. Strandh J, Nakajima K, Eriksson R, Jönsson P (2005) ISIJ Int 45:1838–1847

    Article  CAS  Google Scholar 

  10. Sichen D (2012) Steel Res Int 83:825–841

    Article  Google Scholar 

  11. Seetharaman, S (ed) (2008) Fundamentals of metallurgy. Woodhead Publishing in Materials Cambridge, England, pp 23–30

    Google Scholar 

  12. Valdez M, Prapakorn K, Cramb AW, Sridhar S (2001) Ironmak Steelmak 29(1):47–52

    Article  Google Scholar 

  13. Yu X, Pomfret RJ, Coley KS (1997) Metall Mater Trans B 28(2):275–279

    Article  Google Scholar 

  14. Taira S, Nakashima K, Mori K (1993) ISIJ Int 33(1):116–123

    Article  CAS  Google Scholar 

  15. Goto K, Argent BB, Lee WE (1997) J Am Ceram Soc 80:461–471

    Article  CAS  Google Scholar 

  16. Sarpoolaky H, Ghanbari-Ahari K, Molin J, Lee WE (2001) Stahl Eisen 122:130–133

    Google Scholar 

  17. Sandhage KH, Yurek GJ (1990) J Am Ceram Soc 73:3633–3642

    Article  CAS  Google Scholar 

  18. Sandhage KH, Yurek GJ (1990) J Am Ceram Soc 73:3643–3649

    Article  CAS  Google Scholar 

  19. Sandhage KH, Yurek GJ (1988) J Am Ceram Soc 71:478–489

    Article  CAS  Google Scholar 

  20. Sandhage KH, Yurek GJ (1991) J Am Ceram Soc 74:1941–1954

    Article  CAS  Google Scholar 

  21. Ueda K (1999) Mater Trans, JIM 63:989–993

    CAS  Google Scholar 

  22. Lee MS, Wright S, Jahanshahi S (2001) Metall Mater Trans B 32B:25–29

    Article  CAS  Google Scholar 

  23. Dick AF, Yu X, Pomfret RJ, Coley KS (1997) ISIJ Int 37(2):102–108

    Article  CAS  Google Scholar 

  24. Chung YD, Schlesinger ME (1994) J Am Ceram Soc 77:611–616

    Article  CAS  Google Scholar 

  25. Xiang S, Lv X, Yu B, Xu J, Yin J (2014) Metall Mater Trans B 45B:2106–2117

    Article  Google Scholar 

  26. Amini SH, Brungs MP, Jahanshahi S, Ostrovski O (2006) Metall Mater Trans B 37B:773–780

    Article  CAS  Google Scholar 

  27. Taira S, Machida A, Nakashima K, Mori K (1996) Tetsu-to-Hagané 82:99–104

    Article  CAS  Google Scholar 

  28. Choi JY, Lee HG, Kim JS (2002) ISIJ Int 42(8):852–860

    Article  CAS  Google Scholar 

  29. Cho, WD, Fan, P (2002) EPD cong. and fundamentals of advanced materials for energy conversion, Seatlle, WA, USA, TMS, pp 631–638

    Google Scholar 

  30. Sridhar S, Cramb AW (2000) Metall Mater Trans B 32(2):406–410

    Article  Google Scholar 

  31. Monaghan BJ, Chen L (2004) J Non-Cryst Solids 347:254–261

    Article  CAS  Google Scholar 

  32. Monaghan BJ, Chen L (2005) Steel Res Int 76:348–354

    Article  CAS  Google Scholar 

  33. Monaghan BJ, Chen L, Sorbe J (2005) Ironmak Steelmak 32(3):258–264

    Article  CAS  Google Scholar 

  34. Monaghan, BJ, Nightingale, SA, Chen, L, Brooks, GA (2004) Molten 2004 conference, Johannesburg, South Africa, SAIMM, pp 585–594

    Google Scholar 

  35. Lee SH, Tse C, Yi KW, Misra P, Chevrier V, Orrling C (2001) J Non-Cryst Solids 282:41–48

    Article  CAS  Google Scholar 

  36. Fox AB, Valdez ME, Gisby J, Atwood RC, Lee PD, Sridhar S (2004) ISIJ Int 44(5):836–845

    Article  CAS  Google Scholar 

  37. Soll-Morris H, Sawyer C, Zhang ZT, Shannon GN, Nakano J, Sridhar S (2009) Fuel 88:670–682

    Article  CAS  Google Scholar 

  38. Liu J, Verhaeghe F, Guo M, Blanpain B, Wollants P (2007) J Am Ceram Soc 90(12):3818–3824

    CAS  Google Scholar 

  39. Michelic S, Goriupp J, Feichtinger S, Kang YB, Bernhard C, Schenk J (2016) Steel Res Int 87(1):57–67

    Article  CAS  Google Scholar 

  40. Valdez M, Prapakorn K, Cramb AW, Sridhar S (2001) Steel Res 72(8):291–297

    Article  CAS  Google Scholar 

  41. Tse C, Lee SH, Sridhar S, Cramb AW (2000) 83rd steelmaking conference, Pittsburgh, PA, USA, pp 219–229

    Google Scholar 

  42. Monaghan BJ, Chen L (2006) Ironmak Steelmak 33(4):323–330

    Article  CAS  Google Scholar 

  43. Yi KW, Tse C, Park JH, Valdez M, Cramb AW, Sridhar S (2003) Scand J Metall 32:177–184

    Article  CAS  Google Scholar 

  44. Feichtinger S, Michelic SK, Kang YB, Bernhard C (2014) J Am Ceram Soc 97:316–327

    Article  CAS  Google Scholar 

  45. Park JH, Park JG, Min DJ, Lee YE, Kang YB (2010) J Eur Ceram Soc 30:3181–3186

    Article  CAS  Google Scholar 

  46. Levenspiel, O (1993) The chemical reactor omnibook. OSU Book Stores, Corvalis, OR, USA, pp 51.1–51.6

    Google Scholar 

  47. Levenspiel, O (ed) (1999) Chemical reaction engineering, 3rd edn. Wiley, New York, NY, USA, pp 566–588

    Google Scholar 

  48. Mills, KC (1991) Slags model (ed 1.07). National Physical Laboratory, UK

    Google Scholar 

  49. Davies RH, Dinsdale AT, Gisby JA, Hodson SM, Ball RGJ (1994) Applications of thermodynamics in the synthesis and processing of materials, Rosemont, IL, USA, pp 371–384

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of BlueScope and the use of the Australian Research Council funded JEOL-JSM 6490 LV SEM at the UOW Electron Microscopy Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neslihan Dogan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdeyazdan, H., Dogan, N., Longbottom, R.J., Akbar Rhamdhani, M., Chapman, M.W., Monaghan, B.J. (2019). Dissolution of Sapphire and Alumina–Magnesia Particles in CaO–SiO2–Al2O3 Liquid Slags. In: Nakano, J., et al. Advanced Real Time Imaging II. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-06143-2_7

Download citation

Publish with us

Policies and ethics