Skip to main content

Cellulose Nanocrystals-Based Nanocomposites

  • Chapter
  • First Online:
Bio-based Polymers and Nanocomposites

Abstract

In this chapter, an effort has been made to summarize the outstanding research and development related to cellulose nanocrystal-reinforced nanocomposites. A detailed study showed the isolation of crystalline part of cellulose fibers using various chemicals is reported. Furthermore, different functional groups emerged since used chemicals during isolation steps are discussed and their interference during composites production is reported (effect on dispersion, distribution, mechanical properties, etc). Various processing routes are also reported for the production of dimensional nanocomposites. Authors have tried to show a comparative study of various processing routes and impact on final properties. The opted processing routes somehow affect the properties, which someway indicate the possible application in the future. In the last, two emerging applications of cellulose nanocrystal-based nanocomposites have been discussed in short. Water purification and fabrication of scaffold for regeneration of bone are new and budding fields, required biodegradable and biocompatible dimensional structures for green future. Therefore, fabricated cellulose nanocrystal-based composites might be a possible solution of these hurdles, which not only make the process green but also directly convert the waste materials into valuable products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afrin S, Karim Z (2017) Green catalytic approach for isolation and surface modification of nanocellulose: necessity of enzymes over chemicals. Chem Bio Eng Rev 5:289–303

    Google Scholar 

  • Alloin F, D’Aprea A, Dufresne A, Kissi NE, Bossard F (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18:957–973

    Article  Google Scholar 

  • Arrieta MP, Fortunati E, Dominici F, Rayón E, López J, Kenny JM (2014) PLA-PHB/cellulose based films: mechanical, barrier and disintegration properties. Polym Degrad Stab 107:139–149

    Article  Google Scholar 

  • Bano S, Negi YS (2017) Studies on cellulose nanocrystals isolated from groundnut shells. Carbohydr Polym 157:1041–1049

    Article  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  Google Scholar 

  • Ben Azouz K, Ramires EC, Van den Fonteyne W, El Kissi N, Dufresne A (2012) Simple method for the melt extrusion of a cellulose nanocrystal reinforced hydrophobic polymer. ACS Macro Lett 1:236–240

    Article  Google Scholar 

  • Bitinis N, Fortunati E, Verdejo R, Bras J, Kenny JM, Torre L, López-Manchado MA (2013a) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: properties evaluation. Carbohydr Polym 96:621–627

    Article  Google Scholar 

  • Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013b) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology. Carbohydr Polym 96:611–620

    Article  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf Physicochem Eng Asp 377:297–303

    Article  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630

    Article  Google Scholar 

  • Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334

    Article  Google Scholar 

  • Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2:251–258

    Article  Google Scholar 

  • Corrêa AC, de Morais TE, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192

    Article  Google Scholar 

  • de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Dufresne A (2012) Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge. Int Polym Process 27:557–564

    Article  Google Scholar 

  • Ehmann HMA, Mohan T, Koshanskaya M, Scheicher S, Breitwieser D, Ribitsch V, Stana-Kleinschek K, Spirk S (2014) Design of anticoagulant surfaces based on cellulose nanocrystals. Chem Commun 50:13070–13072

    Article  Google Scholar 

  • Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q, Iannoni A, Saino E, Visai L, Berglund LA, Kenny JM (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  Google Scholar 

  • Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011a) Poly(ε-caprolactone) based nanocomposites reinforced by surface-grafted cellulose nanowhiskers via extrusion processing: morphology, rheology, and thermo-mechanical properties. Polymer 52:1532–1538

    Article  Google Scholar 

  • Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011b) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromolecules 12:2456–2465

    Article  Google Scholar 

  • Habibi Y, Goffin A-L, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

  • Hirai A, Inui O, Horii F, Tsuji M (2009) Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 25:497–502

    Article  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2010) Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose 17:279–288

    Article  Google Scholar 

  • International EPNOE Junior Scientists Meeting Future Perspectives in Polysaccharide Research, Gericke M, Peršin Z, Kargl R, Cemef, European Polysaccharide Network of Excellence (2015) Book of abstracts. Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Laboratory for Characterisation and Processing of Polymers, Maribor

    Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576

    Article  Google Scholar 

  • Kallel F, Bettaieb F, Khiari R, García A, Bras J, Chaabouni SE (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw residues. Ind Crops Prod 87:287–296

    Article  Google Scholar 

  • Karim Z, Afrin S (2015) Nanocellulose as novel supportive functional material for growth and development of cells. Cell Devel Biol 4:2–7

    Google Scholar 

  • Karim Z, Mathew AP, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Poly 112:668–676

    Article  Google Scholar 

  • Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016a) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Memb Sci 514:418–428

    Article  Google Scholar 

  • Karim Z, Grahn M, Oksman K, Mathew AP (2016b) High flux affinity membranes based on cellulose nanocomposite for removal of heavy metal ions from industrial effluent. RCS Adv 6:20644–20653

    Google Scholar 

  • Karim Z, Afrin S, Husain Q, Danish R (2017a) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol 6:1–16

    Google Scholar 

  • Karim Z, Hakalahti M, Tammelin T, Mathew A, Oksman K (2017b) Effect of in situ TEMPO surface functionalization of nanocellulose membranes on the adsorption of metal ions from aqueous solution. RSC Adv 7:5232–5241

    Article  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  • Koshizawa T (1960) Degradation of wood and cotton linters in phosphoric acid. Jpn Tappi J 14(7):455–458

    Google Scholar 

  • Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120

    Article  Google Scholar 

  • Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    Article  Google Scholar 

  • Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76:94–99

    Article  Google Scholar 

  • Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites. Macromolecules 46:5570–5583

    Article  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393

    Article  Google Scholar 

  • Ludueña LN, Fortunati E, Morán JI, Alvarez VA, Cyras VP, Puglia D, Manfredi LB, Pracella M (2016) Preparation and characterization of polybutylene-succinate/poly(ethylene-glycol)/cellulose nanocrystals ternary composites. J Appl Polym Sci 133:n/a-n/a

    Article  Google Scholar 

  • Ma H, Burger C, Hsiao BS, Chu B (2011a) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mat Chem 21:7507–7510

    Article  Google Scholar 

  • Ma H, Burger C, Hsiao BS, Chu B (2011b) Ultrafine polysaccharide nanofibrous membrane for water purification. Biomacromolecules 12:970–976

    Article  Google Scholar 

  • Ma H, Burger C, Hsiao BS, Chu B (2012) Highly permeable polymer membranes containing channels for water purification. ACS Macro Let 1:723–726

    Article  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2015) Melt processing of cellulose nanocrystal reinforced polycarbonate from a masterbatch process. Eur Polym J 69:208–223

    Article  Google Scholar 

  • Mathew AP, Gong G, Bjorngrim N, Wixe D, Oksman K (2011) Moisture absorption behavior and its impact on the mechanical properties of cellulose whiskers-based polyvinylacetate nanocomposites. Polym Eng Sci 51:2136–2142

    Article  Google Scholar 

  • Mathew AP, Oksman K, Karim Z, Liu P, Khan SA, Naseri N (2014) Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Indus Crop Produc 58:212–219

    Article  Google Scholar 

  • Mautner A, Maple HA, Kobkeatthawin T, Kokol V, Karim Z, Li K, Bismark A (2016) Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int J Environ Sci Technol 13:1861–1872

    Article  Google Scholar 

  • Mokhena TC, Luyt AS (2014) Investigation of polyethylene/sisal whiskers nanocomposites prepared under different conditions. Polym Compos 35:2221–2233

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941

    Article  Google Scholar 

  • Nagalakshmaiah M, El Kissi N, Dufresne A (2016a) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8:8755–8764

    Article  Google Scholar 

  • Nagalakshmaiah M, kissi NE, Mortha G, Dufresne A (2016b) Structural investigation of cellulose nanocrystals extracted from chili leftover and their reinforcement in cariflex-IR rubber latex. Carbohydr Polym 136:945–954

    Article  Google Scholar 

  • Nagalakshmaiah M, Pignon F, El Kissi N, Dufresne A (2016c) Surface adsorption of triblock copolymer (PEO–PPO–PEO) on cellulose nanocrystals and their melt extrusion with polyethylene. RSC Adv 6:66224–66232

    Article  Google Scholar 

  • Nagalakshmaiah M, Nechyporchuk O, El Kissi N, Dufresne A (2017) Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly[(styrene)-co-(2-ethylhexyl acrylate)] latex particles. Eur Polym J 91:297–306

    Article  Google Scholar 

  • Naseri N, Mathew AP, Girandon L, Fröhlich M, Oksman K (2015) Porous electrospun nanocomposite mats based on chitosan-cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22:521–534

    Article  Google Scholar 

  • Naseri N, Mathew AP, Oksman K (2016a) Electrospinnability of bionanocomposites with high nanocrystal loadings: the effect of nanocrystal surface characteristics. Carbohydr Polym 147:464–472

    Article  Google Scholar 

  • Naseri N, Deepa B, Mathew AP, Girandon L, Oksman K (2016b) Nanocellulose based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 14:3714–3723

    Article  Google Scholar 

  • Nge TT, Lee S-H, Endo T (2013) Preparation of nanoscale cellulose materials with different morphologies by mechanical treatments and their characterization. Cellulose 20:1841–1852

    Article  Google Scholar 

  • Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A 83:2–18

    Article  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10

    Article  Google Scholar 

  • Pereda M, Kissi NE, Dufresne A (2014) Extrusion of polysaccharide nanocrystal reinforced polymer nanocomposites through compatibilization with poly(ethylene oxide). ACS Appl Mater Interfaces 6:9365–9375

    Article  Google Scholar 

  • Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11:674–681

    Article  Google Scholar 

  • Ramires EC, Dufresne A (2011) A review of cellulose nanocrystals and nanocomposites. Tappi J 10:9–16

    Google Scholar 

  • Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164

    Article  Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  Google Scholar 

  • Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355

    Article  Google Scholar 

  • Sonia A, Priya Dasan K, Alex R (2013) Celluloses microfibres (CMF) reinforced poly(ethylene-co-vinyl acetate) (EVA) composites: dynamic mechanical, gamma and thermal ageing studies. Chem Eng J 228:1214–1222

    Article  Google Scholar 

  • Spinella S, Samuel C, Raquez J-M, McCallum SA, Gross R, Dubois P (2016) Green and efficient synthesis of dispersible cellulose nanocrystals in biobased polyesters for engineering applications. ACS Sustain Chem Eng 4:2517–2527

    Article  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  Google Scholar 

  • Yang W, Dominici F, Fortunati E, Kenny JM, Puglia D (2015) Melt free radical grafting of glycidyl methacrylate (GMA) onto fully biodegradable poly(lactic) acid films: effect of cellulose nanocrystals and a masterbatch process. RSC Adv 5:32350–32357

    Article  Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoheb Karim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagalakshmaiah, M., Rajinipriya, M., Afrin, S., Ansari, M.A., Asad, M., Karim, Z. (2019). Cellulose Nanocrystals-Based Nanocomposites. In: Sanyang, M., Jawaid, M. (eds) Bio-based Polymers and Nanocomposites . Springer, Cham. https://doi.org/10.1007/978-3-030-05825-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05825-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05824-1

  • Online ISBN: 978-3-030-05825-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics