Skip to main content

Lactate and Acute Heart Failure Syndrome

  • Chapter
Acute Heart Failure

Abstract

This chapter discusses the different pathways of lactate metabolism and the mechanisms by which hyperlactatemia could appear during acute heart failure. The clinical practical interpretation of hyperlactatemia requires repeated lactate measurement. In all cases, it must be compared with the clinical situation and other biologic parameters. Hyperlactatemia entails a poor prognosis, especially if it is persistent. But even though it has been considered deleterious for a long time, recent data show that lactate is probably a key metabolic intermediate substrate during acute energetic crisis. Thus, hyperlactatemia, and more precisely a high lactate turnover, may be viewed as an adaptive or protective response to acute illness. Neither low pH nor hyperlactatemia requires a specific treatment (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen RD, Woods HF. Lactic acidosis revisited. Diabetes 1983;32:181–91.

    CAS  PubMed  Google Scholar 

  2. Gutierrez G, Wulf M. Lactic acidosis in sepsis: a commentary. Intensive Care Med 1996;22:6–16.

    Article  CAS  PubMed  Google Scholar 

  3. Vincent JL. Lactate levels in critically ill patients. Acta Anaesth Scand 1995;107(suppl):261–6.

    Article  CAS  Google Scholar 

  4. Leverve X. Lactic acidosis. A new insight. Minerva Anesthesiol 1999;65:205–9.

    CAS  Google Scholar 

  5. Pagano C, Granzotto M, Giaccari A, et al. Lactate infusion to normal rats during hyperglycemia enhances in vivo muscle glycogen synthesis. Am J Physiol 1997;273:R2072–9.

    CAS  PubMed  Google Scholar 

  6. Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 1997;69:423–6.

    Article  CAS  PubMed  Google Scholar 

  7. Schurr A, Payne RS, Miller JJ, Rigor BM. An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 1999;19:34–9.

    CAS  PubMed  Google Scholar 

  8. Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 2002;7:115–30.

    Article  CAS  PubMed  Google Scholar 

  9. Stanley WC, Lopaschuk GD, Hall JL, et al. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions: potential for pharmacological interventions. Cardiovasc Res 1997;33:243–57.

    Article  CAS  PubMed  Google Scholar 

  10. Wineski JA, Gertz EW, Neese RA, et al. Myocardial metabolism of free fatty acids: studies with 14C-labeled substrates in humans. J Clin Invest 1987;79:359–66.

    Article  Google Scholar 

  11. Stanley WC. Myocardial lactate metabolism during exercise. Med Sci Sport Exerc 1991;23:920–4.

    CAS  Google Scholar 

  12. Leverve XM, Mustafa I, Peronnet F. Pivotal role of lactate in aerobic metabolism. In: Vincent JL, ed. Yearbook of Intensive Care and Emergency Medicine. Berlin: Springer-Verlag, 1998:588–96.

    Google Scholar 

  13. Brook G. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed Proc 1986;45:2924–9.

    Google Scholar 

  14. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004;558:5–30.

    Article  CAS  PubMed  Google Scholar 

  15. James JH, Luchette FA, Mc Carter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999;354:505–8.

    Article  CAS  PubMed  Google Scholar 

  16. Silverman H. Lack of a relationship between induced changes in oxygen consumption and changes in lactate levels. Chest 1991;100:1012–5.

    Article  CAS  PubMed  Google Scholar 

  17. Stacpoole PW, Wright EC, Baumgartner S, Curry SH. Natural history and course of acquired lactic acidosis in adults. Am J Med 1994;97:47–54.

    Article  CAS  PubMed  Google Scholar 

  18. Takala J, Uusaro A, Parviainen I, et al. Lactate metabolism and regional lactate exchange after cardiac surgery. New Horiz 1996;4:483–92.

    CAS  PubMed  Google Scholar 

  19. Ballinger WF, Vollenweider H, Pierucci L, et al. Anaerobic metabolism and metabolic acidosis during cardiopulmonary bypass. Ann Surg 1961;153:499–506.

    Article  CAS  PubMed  Google Scholar 

  20. Aziza M, Gothard JWW, Macnaughton P, et al. Blood lactate and mixed venous-arterial PCO2 gradient as indices of poor peripheral perfusion following cardiopulmonary bypass. Intensive Care Med 1991;17:320–4.

    Article  Google Scholar 

  21. Litwin MS, Panico FG, Rubini C, et al. Acidosis and lactacidemia in extracorporeal circulation: the significance of perfusion flow rate and the relation to preperfusion respiratory alkalosis. Ann Surg 1959;149:188–99.

    Article  CAS  PubMed  Google Scholar 

  22. Landow L. Splanchnic lactate production in cardiac surgery patients. Crit Care Med 1993;21:S84–91.

    Article  CAS  PubMed  Google Scholar 

  23. Raskhin MC, Bosken C, Baughman RP. Oxygen delivery in critically ill patients: relationship to blood lactate and survival. Chest 1985;87:580–4.

    Article  Google Scholar 

  24. Packer M. The neurohormonal hypothesis: a theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 1992;20:248–54.

    CAS  PubMed  Google Scholar 

  25. Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311:819–23.

    CAS  PubMed  Google Scholar 

  26. Paolissimo G, Gambardella A, Galzerano D, et al. Total body and myocardial substrate oxidation in congestive heart failure. Metabolism 1994;43:174–9.

    Article  Google Scholar 

  27. Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 1998;83:969–79.

    CAS  PubMed  Google Scholar 

  28. Swan JW, Walton C, Godsland IF, et al. Insulin resistance in chronic heart failure. Eur Heart J 1994;15:1528–32.

    CAS  PubMed  Google Scholar 

  29. Bashore TM, Magorien DJ, Letterio J, Shafer P, Unverferth DV. Histologic and biochemical correlates of left ventricular chamber dynamics in man. J Am Coll Cardiol 1987;9:734–42.

    Article  CAS  PubMed  Google Scholar 

  30. Sanbe A, Tanonake K, Kobayasi R, Takeo S. Effect of long-term therapy with ACE inhibitors on myocardial energy metabolism in rats with heart failure following myocardial infarction. J Mol Cell Cardiol 1995;27:2209–22.

    Article  CAS  PubMed  Google Scholar 

  31. Sabbah HN, Sharov VG, Riddle JM, Kono T, Lesch M, Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1992;24:1333–47.

    Article  CAS  PubMed  Google Scholar 

  32. Di Lisa F, Chong-Zu F, Gambassi G, Hogue GA, Kudryashova I, Hansford RG. Altered pyruvate dehydrogenase control and mitochondrial and free Ca2+ in hearts of cardiomyopathic hamsters. Am J Physiol 1993;264:H2188–97.

    PubMed  Google Scholar 

  33. Widnell CC, Baldwin SA, Danies A, Martin S, Pasternak CA. Cellular stress induces a redistribution of the glucose transporter. FASEB J 1990;4:1634–7.

    CAS  PubMed  Google Scholar 

  34. Gore D, Jahoor F, Hibbert J, DeMaria E. Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 1996;224:97–102.

    Article  CAS  PubMed  Google Scholar 

  35. Levraut J, Ciebiera JP, Chave S, et al. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 1998;157:1021–6.

    CAS  PubMed  Google Scholar 

  36. Severin PN, Uhing MR, Beno DW, Kimura RE. Endotoxin-induced hyperlactatemia results from decreased lactate clearance in hemodynamically stable rats. Crit Care Med 2002;30:2509–14.

    Article  CAS  PubMed  Google Scholar 

  37. Chioléro R, Tappy L, Gillet M, et al. Effect of a major hepatectomy on glucose and lactate metabolism. Ann Surg 1999;4:505–13.

    Article  Google Scholar 

  38. Kruse JA, Zaidi SA, Carlson SW. Significance of blood lactate levels in critically ill patients with liver disease. Am J Med 1987;83:77–82.

    Article  CAS  PubMed  Google Scholar 

  39. Vary TC. Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 1996;6:89–94.

    Article  CAS  PubMed  Google Scholar 

  40. Hochman JS. Cardiogenic shock complicating acute myocardial infarction: expanding the paradigm. Circulation 2003;107:2998–3002.

    Article  PubMed  Google Scholar 

  41. Sabatine MS, Morrow DA, Cannon CP, et al. Relationship between baseline white blood cell count and degree of coronary artery disease and mortality in patients with acute coronary syndromes: a TACTICS-TIMI 18. J Am Coll Cardiol 2002;40:1761–8.

    Article  PubMed  Google Scholar 

  42. Lange LG, Schreiner GF. Immune mechanisms of cardiac disease. N Engl J Med 1994;330:1129–35.

    Article  CAS  PubMed  Google Scholar 

  43. Blum A, Miller H. Pathophysiological role of cytokines in congestive heart failure. Annu Rev Med 2001;52:15–27.

    Article  CAS  PubMed  Google Scholar 

  44. Cotter G, Kaluski E, Milo O, Blatt A, et al. LINCS: L-NAME (a NO synthase inhibitor) in the treatment of refractory cardiogenic shock: a prospective randomized study. Eur Heart J 2003;24:1287–95.

    Article  CAS  PubMed  Google Scholar 

  45. Niebauer J, Volk HD, Kemp M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 1999;353:1838–42.

    Article  CAS  PubMed  Google Scholar 

  46. Neumann FJ, Ott I, Gawaz M, et al. Cardiac release of cytokines and inflammatory responses in acute myocardial infarction. Circulation 1995;92:748–55.

    CAS  PubMed  Google Scholar 

  47. Liuzzo G, Buffon A, Biasucci LM, et al. Enhanced inflammatory response to coronary angioplasty in patients with severe unstable angina. Circulation 1998;98:2370–6.

    CAS  PubMed  Google Scholar 

  48. Feng O, Lu X, Jones DL, et al. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 2001;104:700–4.

    Article  CAS  PubMed  Google Scholar 

  49. Alexander RW. Inflammation and coronary artery disease. N Engl J Med 1994;331:417–24.

    Article  Google Scholar 

  50. Wan S, LeClerc JL, Schmartz D, et al. Hepatic release of interleukin-10 during cardiopulmonary bypass in steroid-pretreated patients. Am Heart J 1997;133:335–9.

    Article  CAS  PubMed  Google Scholar 

  51. Wan S, DeSmet JM, Barvais L, et al. Myocardium is a major source of proinflammatory cytokines in patients undergoing cardiopulmonary bypass. J Thorac Cardiovasc Surg 1996;112:806–11.

    Article  CAS  PubMed  Google Scholar 

  52. Ohri SK, Somasundaram S, Koak Y, et al. The effect of intestinal hypoperfusion on intestinal absorption and permeability during cardiopulmonary bypass. Gastroenterology 1994;106:318–23.

    CAS  PubMed  Google Scholar 

  53. Chiolero RL, Revelly JP, Leverve X, et al. Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery. Crit Care Med 2000;28:3784–91.

    Article  CAS  PubMed  Google Scholar 

  54. Raper R, Cameron G, Walker D, et al. Type B lactic acidosis following cardiopulmonary bypass. Crit Care Med 1997;25:46–51.

    Article  CAS  PubMed  Google Scholar 

  55. Daniel AM, Taylor ME, McLean LD. Metabolism of prolonged shock. Adv Shock Res 1983;9:19–30.

    CAS  PubMed  Google Scholar 

  56. Mustafa I, Roth H, Hanafiah A, et al. Effect of cardiopulmonary bypass on lactate metabolism. Intensive Care Med 2003;29:1279–85.

    Article  PubMed  Google Scholar 

  57. Bungaard H, Kjeldsen K, Suarez Krabbe K, et al. Endotoxemia stimulates skeletal muscle NA+-K+-ATPase and raises blood lactate under aerobic conditions in humans. Am J Physiol Heart Circ Physiol 2003;284:H100-28–34.

    Google Scholar 

  58. James JH, Fang CH, Schranz SJ, Hausselgren PO, Paul RJ, Fischer JE. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J Clin Invest 1996;98:2288–97.

    Article  Google Scholar 

  59. Luchette FA, Friend LA, Brown CC, Upputori RK, James JH. Increased skeletal muscle Na+, K+-ATPase activity as a cause of increased lactate production after hemorrhagic shock. J Trauma 1998;44:796–803.

    Article  CAS  PubMed  Google Scholar 

  60. Day NP, Phu NH, Bethell DP, et al. The effects of dopamine and adrenalin infusion on acid-base balance and systemic haemodynamics in severe infection. Lancet 1996;348:219–23.

    Article  CAS  PubMed  Google Scholar 

  61. Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE. Relation between muscle Na+ K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 2005;365:871–5.

    Article  CAS  PubMed  Google Scholar 

  62. Naito E, Ito M, Yokota I, Saijo T, Matsuda J, Kuroda Y. Thiamine-responsive lactic acidaemia: role of pyruvate dehydrogenase complex. Eur J Pediatr 1998;157:648–52.

    Article  CAS  PubMed  Google Scholar 

  63. Emslie-Smith AM, Boyle DI, Evans JM, Sullivan F, Morris AD, DARTS/MEMO Collaboration. Contraindications to metformin therapy in patients with type 2 diabetes—a population-based study of adherence to prescribing guidelines. Diabet Med 2001;18:483–8.

    Article  CAS  PubMed  Google Scholar 

  64. Chan NN, Fauvel NJ, Feher MD. Non-steroidal anti-inflammatory drugs and metformin: a cause for concern? Lancet 1998;352:201.

    Article  CAS  PubMed  Google Scholar 

  65. Franzetti I, Paolo D, Marco G, Emanuela M, Elisabetta Z, Renato U. Possible synergistic effect of metformin and enalapril on the development of hyperkaliemic lactic acidosis. Diabetes Res Clin Pract 1997;38:173–6.

    Article  CAS  PubMed  Google Scholar 

  66. Holstein A, Nahrwold D, Hinze S, Egberts EH. Contra-indications to metformin therapy are largely disregarded. Diabet Med 1999;16:692–6.

    Article  CAS  PubMed  Google Scholar 

  67. Levraut J, Bounatirou T, Ichai C, Ciais JF, Jambou P, Grimaud D. Reliability of anion gap as an indicator of blood lactate level in critically ill patients. Intensive Care Med 1997;23:417–22.

    Article  CAS  PubMed  Google Scholar 

  68. Adams BD, Bonzani TA, Hunter CJ. The anion gap does not accurately screen for lactic acidosis in emergency department patients. Emerg Med J 2006;23:179–82.

    Article  CAS  PubMed  Google Scholar 

  69. Vincent JL. End-points of resuscitation: arterial blood pressure, oxygen delivery, blood lactate, or...? Intensive Care Med 1996;22:3–5.

    Article  CAS  PubMed  Google Scholar 

  70. Leverve XM. From tissue perfusion to metabolic marker: assessing organ competition and cooperation in critically ill patients. Intensive Care Med 1999;25:890–2.

    Article  CAS  PubMed  Google Scholar 

  71. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL. Blood lactate levels are superior to oxygen derived variables in predicting outcome in human septic shock. Chest 1991;99:956–62.

    Article  CAS  PubMed  Google Scholar 

  72. Rahimi AR, Marzano PM 3rd, Richard CM. Evaluation of lactate and C-reactive protein in the assessment of acute myocardial infarction. South Med J 2003;96:1107–12.

    Article  PubMed  Google Scholar 

  73. Meregalli A, Oliveira RP, Friedman G. Occult hypoperfusion is associated with increased mortality in hemodynamically stable, high-risk, surgical patients. Crit Care 2004;8:96–8.

    Article  Google Scholar 

  74. Mizock BA. Significance of hyperlactatemia without acidosis during hypermetabolic stress. Crit Care Med 1997;25:1780–1.

    Article  CAS  PubMed  Google Scholar 

  75. Levy B, Sadoune LO, Gelot AM, Bollaert PE, Nabet P, Larcan A. Evolution of lactate/pyruvate and arterial ketone body ratios in the early course of catecholamine-treated septic shock. Crit Care Med 2000;28:114–9.

    Article  CAS  PubMed  Google Scholar 

  76. Parker MM, Shetlander J, Bacharach SL, et al. Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 1987;100:483–90.

    Google Scholar 

  77. Parker MM, McCarthy KE, Ognibene FP, Parrillo JE. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 1990;97:126–31.

    Article  CAS  PubMed  Google Scholar 

  78. Parrillo JE. Pathogenetic mechanisms of septic shock. N Engl J Med 1993;328:1471–7.

    Article  CAS  PubMed  Google Scholar 

  79. Mebazaa A, Karpati P, Renaud E, Algotsson L. Acute right ventricular failure-from pathophysiology to new treatments. Intensive Care Med 2004;30:185–96.

    Article  PubMed  Google Scholar 

  80. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy collaborative group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368–77.

    Article  CAS  PubMed  Google Scholar 

  81. Ozawa H, Homma Y, Arisawa H, Fukuuchi F, Handa S. Severe metabolic acidosis and heart failure due to thiamine deficiency. Nutrition 2001;17:351–2.

    Article  CAS  PubMed  Google Scholar 

  82. Nakasaki H, Ohta M, Soeda J, et al. Clinical and biochemical aspects of thiamin treatment for metabolic acidosis during total parenteral nutrition. Nutrition 1997;13:100–3.

    Article  Google Scholar 

  83. Klein M, Weksler N, Gurman GM. Fatal metabolic acidosis caused by thiamine deficiency. J Emerg Med 2004;26:301–3.

    Article  PubMed  Google Scholar 

  84. Naidoo DP, Gathiram V, Sadhabiriss A, Hassen F. Clinical diagnosis of cardiac beriberi. S Afr Med J 1990;77:125–7.

    CAS  PubMed  Google Scholar 

  85. Shilvalkhar B, Engelmann I, Carp L, De Raedt H, Daelemans R. Shoshin syndrome: two cases reports representing opposite ends of the same disease spectrum. Acta Cardiol 1998;53:195–9.

    Google Scholar 

  86. Centers for disease control and prevention. Lactic acidosis traced to thiamine deficiency related to nationwide shortage of multivitamins for total parenteral nutrition: United States. JAMA 1997;218:109–4.

    Google Scholar 

  87. Suter PM, Vetter W. Diuretics and vitamin B1: are diuretics a risk factor for thiamine malnutrition? Nutr Rev 2000;58:319–23.

    Article  CAS  PubMed  Google Scholar 

  88. Marecaux G, Pinsky M, Dupont E, Kahn R, Vincent JL. Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Med 1996;22:404–8.

    Article  CAS  PubMed  Google Scholar 

  89. Bernardin G, Pradier C, Tiger F, Deloffre P, Mattei M. Blood pressure and arterial lactate level are early indicators of short-term survival in human septic shock. Intensive Care Med 1996;22:17–25.

    Article  CAS  PubMed  Google Scholar 

  90. Manikis P, Jankowski S, Zhang H, Khan R, Vincent JL. Correlation of serial blood lactate levels to organ failure and mortality after trauma. Am J Emerg Med 1995;13:619–22.

    Article  CAS  PubMed  Google Scholar 

  91. Singhal R, Coghill JE, Bradbury AW, Adam DJ, Scriven JM. Serum lactate and base deficit as predictors of mortality after ruptured abdominal aortic aneurysm repair. Eur J Endovasc Surg 2005;30:263–6.

    Article  CAS  Google Scholar 

  92. Cerovic O, Golubovic V, Spec-Marn A, Kremzar B, Vidmar G. Relationship between injury severity and lactate levels in severely injured patients. Intensive Care Med 2003;29:1300–5.

    Article  PubMed  Google Scholar 

  93. Bakker J, de Lima AP. Increased blood lactate levels: an important warning signal in surgical practice. Crit Care 2004;8:96–8.

    Article  PubMed  Google Scholar 

  94. Bakker J, Gris P, Coffernils M, Khan R, Vincent JL. Serial blood lactate levels can predict the development of multiple organ failure. Am J Surg 1996;171:221–6.

    Article  CAS  PubMed  Google Scholar 

  95. Toraman F, Evrenkaya S, Yuce M, et al. Lactic acidosis after cardiac surgery is associated with adverse outcome. Heart Surg Forum 2004;7:E155–9.

    Article  PubMed  Google Scholar 

  96. Davies AR, Bellomo R, Raman JS, Gutteridge GA, Buxton BF. High lactate predicts the failure of intra-aortic balloon pumping after cardiac surgery. Ann Thorac Surg 2001;71:1415–20.

    Article  CAS  PubMed  Google Scholar 

  97. Dens J, Dubois C, Ector H, Desmet W, Janssens S. Survival of patients treated wit intra-aortic balloon counterpulsation for cardiogenic shock in a tertiary centre: variables correlated with death. Eur J Emerg Med 2003;10:213–8.

    Article  PubMed  Google Scholar 

  98. Mustafa I, Leverve XM. Metabolic and hemodynamic effects of hypertonic solutions: sodiumlactate versus sodium chloride infusion in postoperative patients. Shock 2002;18:306–10.

    Article  PubMed  Google Scholar 

  99. Levraut J, Ichai C, Petit I, Ciebiera JP, Perus O, Grimaud D. Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill patients. Crit Care Med 2003;31:705–10.

    Article  CAS  PubMed  Google Scholar 

  100. Leverve XM. Energy metabolism in critically ill patients: lactate is a major oxidizable substrate. Curr Opin Clin Nutr Metab Care 1999;2:165–9.

    Article  CAS  PubMed  Google Scholar 

  101. Stacpoole PW, Lorenz AC, Thomas RG, Harman EM. Dichloroacetate in the treatment of lactic acidosis. Ann Intern Med 1998;108:58–63.

    Google Scholar 

  102. Orchard C, Cingolani H. Acidosis and arrhythmias in cardiac muscle. Cardiovasc Res 1994;28:1312–9.

    Article  CAS  PubMed  Google Scholar 

  103. Morimoto Y, Kemmotsu O, Alojado ES. Extracellular acidosis delays cell death against glucose-oxygen deprivation in neuroblastoma X glioma hybrid cells. Crit Care Med 1997;25:841–7.

    Article  CAS  PubMed  Google Scholar 

  104. Xu L, Glassford AJ, Giaccia AJ, Giffard RG. Acidosis reduces neuronal apoptosis. Neuroreport 1998;9:875–9.

    Article  CAS  PubMed  Google Scholar 

  105. Mathieu D, Nevière R, Billard V, Fleyfel M, Wattel F. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 1991;1:1352–6.

    Article  Google Scholar 

  106. Cooper DJ, Walley KR, Wiggs BR, Russel JA. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis: a prospective, controlled clinical study. Ann Intern Med 1990;112:492–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ichai, C., Leverve, X., Orban, JC. (2008). Lactate and Acute Heart Failure Syndrome. In: Mebazaa, A., Gheorghiade, M., Zannad, F.M., Parrillo, J.E. (eds) Acute Heart Failure. Springer, London. https://doi.org/10.1007/978-1-84628-782-4_70

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-782-4_70

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-781-7

  • Online ISBN: 978-1-84628-782-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics