Skip to main content
Log in

Lactic acidosis in sepsis: a commentary

  • Bacic Science
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Stacpoole PW, Wright EC, Baumgartner TG, Bersin RM, Buchalter S, Curry SH, the DCA-Lactic Acidosis Study Group (1994) Natural history and course of acquired lactic acidosis in adults. Am J Med 97: 47–54

    Google Scholar 

  2. Weil MH, Afifi AH (1970) Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 41:989–1001

    Google Scholar 

  3. Cohen RD, Woods HF (1993) Lactic acidosis revisited. Diabetes 32: 181–191

    Google Scholar 

  4. Bakker J, Vincent JL (1991) The oxygen supply dependency phenomenon is associated with increased blood lactate levels. J Crit Care 6:152–159

    Google Scholar 

  5. Mizock BA, Falk JL (1992) Lactic acidosis in critical illness. Crit Care Med 20:80–93

    Google Scholar 

  6. Cohen RD, Woods HF (1976) Clinical and biochemical aspects of lactic acidosis. Blackwell, London, 1–200

    Google Scholar 

  7. Gladden LB (1989) Lactate uptake by skeletal muscle. Exer Sport Sci Rev 17: 115–155

    Google Scholar 

  8. Stainsby WN (1986) Biochemical and physiological bases for lactate production. Med Sci Sports Exer 18: 341–343

    Google Scholar 

  9. Robinson BH (1993) Lacticacidemia. Biochim Biophys Acta 1182: 231–244

    Google Scholar 

  10. Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231: 234–241

    Google Scholar 

  11. Hochachka PW, Mommsen TP (1983) Protons and anaerobiosis. Science 219: 1391–1397

    Google Scholar 

  12. Gevers W (1977) Generation of protons by metabolic processes in heart cells. J Molec Cell Cardiol 9: 867–874

    Google Scholar 

  13. Schlichtig R, Pinsky MR (1991) Defining the hypoxic threshold. Crit Care Med 19:147–149

    Google Scholar 

  14. Bardenheuer H, Schrader J (1986) Supply-to-demand ratio for oxygen determines formation of adenosine by the heart. Am J Physiol 250: H173-H180

    Google Scholar 

  15. Poole RC, Halestrap AP (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol 264: C761-C782

    Google Scholar 

  16. Roth DA, Brooks GA (1990) Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys 279: 386–394

    Google Scholar 

  17. Cain SM (1977) pH effects on lactate and excess lactate in relation to O2 deficit in hypoxic dogs. J Appl Physiol 42: 44–49

    Google Scholar 

  18. Gladden LB, Yates JW (1983) Lactic acid infusion in dogs: effects of varying infusate pH. J Appl Physiol 54: 1254–1260

    Google Scholar 

  19. Chin ER, Lindinger MI, Heigenhauser GJF (1991) Lactate metabolism in inactive skeletal muscle during lactacidosis. Am J Physiol 261: R98-R105

    Google Scholar 

  20. Poortmans JR, Bossche JD, Leclercq R (1978) Lactate uptake by inactive forearm during progressive leg exercise. J Appl Physiol 45: 835–839

    Google Scholar 

  21. Catcheside PG, Scroop GC (1993) Lactate kinetics in resting and exercising forearms during moderate-intensity supine leg exercise. J Appl Physiol 74: 435–443

    Google Scholar 

  22. Gladden LB (1991) Net lactate uptake during progressive steady-level contractions in canine skeletal muscle. J Appl Physiol 71: 514–520

    Google Scholar 

  23. Gutierrez G, Hurtado FJ, Gutierrez AM, Fernandez E (1993) Net uptake of lactate by rabbit hindlimb during hypoxia. Am Rev Respir Dis 148: 1204–1209

    Google Scholar 

  24. Druml W, Grimm G, Laggner AN, Lenz K, Schneeweiß B (1991) Lactic acid kinetics in respiratory alkalosis. Crit Care Med 19: 1120–1124

    Google Scholar 

  25. Connett RJ, Honig CR, Gayeski TEJ, Brooks GA (1990) Defining hypoxia: a systems view of VO2, glycolysis, energetics, and intracellular PO2. J Appl Physiol 68: 833–842

    Google Scholar 

  26. Hurtado FJ, Gutierrez AM, Silva N, Fernandez E, Khan AE, Gutierrez G (1992) Role of tissue hypoxia as the mechanism of lactic acidosis duringE. coli endotoxemia. J Appl Physiol 72: 1895–1901

    Google Scholar 

  27. Hotchkiss RS, Rust RS, Dence CS, Wasserman TH, Song SK, Hwang DR, Karl IE, Welch MJ (1991) Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18F] fluoromisonidazole. Am J Physiol 261: R965-R972

    Google Scholar 

  28. Tresadern JC, Threlfall CJ, Wilford K et al (1988) Muscle adenosine 5'triphosphate and creatine phosphate concentrations in relation to nutritional status and sepsis in man. Clin Sci 75: 233–242

    Google Scholar 

  29. Boekstegers P, Weidenhöfer, Kaspner T, Werdan K (1994) Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med 22: 640–650

    Google Scholar 

  30. Chaudry IH, Wichterman KA, Baue AE (1979) Effect of sepsis on tissue adenine nucleotide levels. Surgery 85: 205–211

    Google Scholar 

  31. Pasque MK, Murphy CE, Van Tright P et al (1983) Myocardial adenosine triphosphate levels during early sepsis. Arch Surg 118: 1437–1440

    Google Scholar 

  32. Myrvold HE, Enger E, Haljamae H (1975) Early effect of endotoxin on tissue phosphagen levels in skeletal muscle and liver of the dog. Eur Surg Res 7: 181–192

    Google Scholar 

  33. Jepson MM, Cox M, Bates PC et al (1987) Regional blood flow and skeletal muscle energy status in endotoxemic rats. Am J Physiol 253: E581-E587

    Google Scholar 

  34. Gutierrez G, Dubin A (1990) Cellular metabolism in sepsis. In: Vincent JL (ed) Update in intensive care and emergency medicine. 12: 227–241

  35. Hotchkiss R, Long R, Hall J (1989) An in vivo examination of rat brain during sepsis with31P-NMR spectroscopy. Am J Physiol 257: C1055-C1059

    Google Scholar 

  36. Raymond RM, Harkema JM, Emerson TE et al (1981) Mechanisms of increased glucose uptake by skeletal muscle duringEscherichia coli endotoxin shock in the dog. Circ Shock 8: 77–83

    Google Scholar 

  37. Hotchkiss RS, Karl IE (1992) Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. JAMA 267: 1503–1510

    Google Scholar 

  38. Wolfe RR, Dariush E, and Spitzer JJ (1977) Glucose and lactate kinetics after endotoxin administration in dogs. Am J Physiol 232: E180-E185

    Google Scholar 

  39. Merril GF, and Spitzer JJ (1978) Glucose and lactate kinetics in guinea pigs following Escherichia coli endotoxin administration. Circ Shock 5: 11–21

    Google Scholar 

  40. Hinshaw LB, Beller BK, Archer LT et al (1976) Hypoglycemic response of blood to live Escherichia coli organisms and endotoxin. J Surg Res 21: 141–150

    Google Scholar 

  41. Romanosky AJ, Bagby GJ, Bockman EL et al (1980) Increased muscle glucose uptake and lactate release after endotixin administration. Am J Physiol 239: E311-E316

    Google Scholar 

  42. Zeller WP, The SM, Sweet M et al (1991) Altered glucose transporter mRNA abundance in a rat model of endotoxic shock. Biochem Biophys Res Commun 176: 535–540

    Google Scholar 

  43. Amaral J, Shearer J, Mastrofrancesco B (1989) The effect of endotoxin on glucose metabolism in skeletal muscle requires the presence of plasma. Arch Surg 124: 727–732

    Google Scholar 

  44. Marrou A, Turner D, Oglethorpe N (1981) Fructose 1,6-diphosphate: an agent for treatment of experimental endotoxin shock. Surgery 90: 482–488

    Google Scholar 

  45. Lundsgaard-Hansen P, Pappova E, Urbaschek B et al (1972) Circulatory deterioration as the determinant of oxygen energy metabolism in endotoxin shock. J Surg Res 13: 282–288

    Google Scholar 

  46. Vary TC, Siegel JH, Nakatani T et al (1986) Effects of sepsis on activity of PDH complex in skeletal muscle and liver. Am J Physiol 250: E634-E640

    Google Scholar 

  47. Kilpatrick-Smith L, Erecinska M (1983) Cellular effects of endotoxin in vitro. I. Effect of endotoxin on mitochondrial substrate metabolism and intracellular calcium. Circ Shock 11: 85–99

    Google Scholar 

  48. Whitehouse S, Randle PJ (1973) Activation of pyruvate dehydrogenase in perfused rat heart by dichloroacetate Biochem J 134: 651–653

    Google Scholar 

  49. Kamel KS, Cheema-Dhadli S, Halperin ML (1992) Is accelerated oxidation of lactate required for dichloroacetate to lower the level of lactate in blood? Can J Physiol Pharmacol 70: 1477–1482

    Google Scholar 

  50. Sagy M, Swedlow DB, Schaible DH, Fleisher G (1988) Effects of dichloroacetate and naloxone on hemodynamic performance and substrate use following endotoxin administration. J Crit Care 3: 82–88

    Google Scholar 

  51. DeBoisblanc BP, Meszaros K, Burns A, Bagby GJ, Nelson S, Summer WR (1992) Effect of dichloroacetate on mechanical performance and metabolism of compromised diaphragm muscle. J Appl Physiol 72: 1149–1155

    Google Scholar 

  52. Curtis SE, Cain SM (1992) Regional and systematic delivery/uptake relations and lactate flux in hyperdynamic, endotoxin-treated dogs. Am Rev Respir Dis 145: 348–354

    Google Scholar 

  53. Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI (1983) Treatment of lactic acidosis with dichloroacetate. N Eng J Med 309: 390–396

    Google Scholar 

  54. Stacpoole PW, Wright EC, Baumgartner TG et al (1992) A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. N Engl J Med 327: 1564–1569

    Google Scholar 

  55. Mela L, Bacalzo LV, Miller LD (1971) Defective oxidative metabolism of rat liver mitochondria in hemorrhagic and endotoxin shock. Am J Physiol 220: 571–576

    Google Scholar 

  56. Poderoso JJ, Boveris A, Jorge MA et al (1978) Function mitochondrial en el shock septico. Medicina 38: 371–377

    Google Scholar 

  57. Dawson KL, Geller ER, Kirkpatrick JR (1988) Enhancement of mitochondrial function in sepsis. Arch Surg 123: 241–246

    Google Scholar 

  58. Raskhin MC, Bosken C, Baughman RP (1985) Oxygen delivery in critically ill patients: relationship to blood lactate and survival. Chest 87: 580–584

    Google Scholar 

  59. Haupt M, Gilbert E, Carlson R (1985) Fluid loading increases oxygen consumption in septic patients with lactic acidosis. Am Rev. Respir Dis 131: 912–916

    Google Scholar 

  60. Gilbert E, Haupt M, Mandanas R (1986) The effect of fluid loading, blood transfusion, and catecholamine infusion on oxygen delivery and consumption in patients with sepsis. Am Rev Respir Dis 134: 873–878

    Google Scholar 

  61. Vincent JL, Romain A, De Backer D, Khan RJ (1990) Oxygen uptake/supply dependency. Effects of short term dobutamine infusion. Am Rev Respir Dis 142: 2–7

    Google Scholar 

  62. Russell JA, Phang PT (1994) The oxygen delivery/consumption controversy. Approaches to management of the critically ill. Am J Respir Crit Care Med 149: 533–537

    Google Scholar 

  63. Manthous CA, Schumacker PT, Pohlman A, Schmidt GA, Hall JB, Samsel RW, Wood LDH (1993) Absence of supply dependence of oxygen consumption in patients with septic shock. J Crit Care 8: 203–211

    Google Scholar 

  64. Mira JP, Fabre JE, Baigorri F, Coste J, Annat G, Artigas A, Nitenberg G, Dhainaut JFA (1994) Lack of oxygen supply dependency in patients with severe sepsis. Chest 106: 1524–1531

    Google Scholar 

  65. Connett RJ, Gayeski TEJ, Honig CR (1986) Lactate efflux is unrelated to intracellular PO2 in a working red muscle in situ. J Appl Physiol 61: 402–408

    Google Scholar 

  66. Fink MP, Fiallo V, Stein KL et al (1987) Systematic and regional hemodynamic changes after intraperitoneal endotoxin in rabbits. Circ Shock 22: 73–81

    Google Scholar 

  67. Nishijima MK, Breslow MJ, Miller CF et al (1988) Effect of naloxone and ibuprofen on organ blood flow during endotoxin shock in pig. Am J Physiol 255: H177-H184

    Google Scholar 

  68. Weiner DE (1970) Effects of endotoxin on cerebral blood flow in the monkey. Am J Physiol 218: 160–164

    Google Scholar 

  69. Boczkowski J, Vicaut E, Aubier M (1992) In vivo effects ofEscherichia coli endotoxemia on diaphragmatic microcirculation in rats. J Appl Physiol 72: 2219–2224

    Google Scholar 

  70. Nelson DP, Samsel RW, Wood L et al (1988) Pathological supply dependence during endotoxemia. J Appl Physiol 64: 2410–2419

    Google Scholar 

  71. Drazenovic R, Samsel RW, Wylam ME et al (1992) Regulation of perfused capillary density in canine intestinal mucosa during endotoxemia. J Appl Physiol 72: 259–265

    Google Scholar 

  72. Gutierrez G, Lund N, Palizas F (1991) Rabbit skeletal muscle PO2 during hypodynamic sepsis. Chest 99: 224–229

    Google Scholar 

  73. Vallet B, Lund N, Curtis SE, Kelly D, Cain SM (1994) Gut and muscle tissue PO2 in endotoxemic dogs during shock and resuscitation. J Appl Physiol 76: 793–800

    Google Scholar 

  74. Gutierrez G, Clark C, Brown SD, Price K, Ortiz L, Nelson C (1994) Effect of dobutamine on oxygen consumption and gastric mucosal pH in septic patients. Am J Respir Crit Care Med 150: 324–329

    Google Scholar 

  75. Downing SE, Talner NS, Gardner TH (1965) Cardiovascular responses to metabolic acidosis. Am J Physiol 208: 237–242

    Google Scholar 

  76. Teplinsky K, O'Toole M, Olman M, Walley KR, Wood LDH (1990) Effect of lactic acidosis on canine hemodynamic and left ventricular function. Am J Physiol 258: H1193-H1199

    Google Scholar 

  77. Levine R, Huddlestun B, Persky H, Soskin S (1944) Successful treatment of so-called “irreversible” shock by whole blood supplemented with sodium bicarbonate and glucose. Am J Physiol 141: 209–215

    Google Scholar 

  78. Cooper DJ, Herbertson MJ, Werner HA, Walley KR (1993) Bicarbonate does not increase left ventricular contractility during L-lactic acidemia in pigs. Am Rev Respir Dis 148: 317–322

    Google Scholar 

  79. Mathieu D, Neviere R, Bollard V, Fleyfel M, Wattel F (1991) Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 19: 1352–1356

    Google Scholar 

  80. Cooper DJ, Walley KR, Wiggs BR, Russell JA (1990) Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis: a prospective, controlled clinical study. Ann Intern Med 112: 492–498

    Google Scholar 

  81. Graf H, Leach W, Arieff AI (1985) Evidence for a detrimental effect of bicarbonate therapy in lactic acidosis. Science 227: 754–756

    Google Scholar 

  82. Arieff AI, Leach W, Park R, Lazarowitz VC (1982) Systemic effects of NaHCO3 in experimental lactic acidosis in dogs. Am J Physiol 242: F586-F591

    Google Scholar 

  83. Shapiro JI, Whalen MA (1990) Functional and metabolic responses of isolated hearts to acidosis: effects of sodium bicarbonate and carbicarb. Am J Physiol 258: H1835-H1839

    Google Scholar 

  84. Benjamin E, Oropello JM, Abalos AM, Hannon EM, Wang JK, Fischer E, Iberti TJ (1994) Effects of acid-base correction on hemodynamics, oxygen dynamics, and resuscitability in severe canine hemorrhagic shock. Crit Care Med 22: 1616–1523

    Google Scholar 

  85. Levine RL (1993) Ischemia: from acidosis to oxidation. FASEB J 7: 1242–1246

    Google Scholar 

  86. Stringer W, Wasserman K, Casaburi R, Porszasz J, Maehara K, French W (1994) Lactic acidosis as a facilitator of oxyhemoglobin disociation during exercise. J Appl Physiol 76: 1462–1467

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, G., Wulf, M.E. Lactic acidosis in sepsis: a commentary. Intensive Care Med 22, 6–16 (1996). https://doi.org/10.1007/BF01728325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01728325

Keywords

Navigation