Skip to main content

Functional Dynamics of RNA Ribozymes Studied by NMR Spectroscopy

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 848))

Abstract

Catalytic RNA motifs (ribozymes) are involved in various cellular processes. Although functional cleavage of the RNA phosphodiester backbone for self-cleaving ribozymes strongly differs with respect to sequence specificity, the structural context, and the underlying mechanism, these ribozyme motifs constitute evolved RNA molecules that carry out identical chemical functionality. Therefore, they represent ideal systems for detailed studies of the underlying structure–function relationship, illustrating the diversity of RNA’s functional role in biology. Nuclear magnetic resonance (NMR) spectroscopic methods in solution allow investigation of structure and dynamics of functional RNA motifs at atomic resolution. In addition, characterization of RNA conformational transitions initiated either through addition of specific cofactors, as e.g. ions or small molecules, or by photo-chemical triggering of essential RNA functional groups provides insights into the reaction mechanism. Here, we discuss applications of static and time-resolved NMR spectroscopy connected with the design of suitable NMR probes that have been applied to characterize global and local RNA functional dynamics together with cleavage-induced conformational transitions of two RNA ribozyme motifs: a minimal hammerhead ribozyme and an adenine-dependent hairpin ribozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forster, A.C. and R.H. Symons, Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell, 1987. 50(1): p. 9–16.

    Article  PubMed  CAS  Google Scholar 

  2. Prody, G.A., et al., Autolytic processing of dimeric plant virus satellite RNA. Science, 1986. 231(4745): p. 1577–80.

    Article  PubMed  CAS  Google Scholar 

  3. Fedor, M.J., Structure and function of the hairpin ribozyme. J. Mol. Biol., 2000. 297(2): p. 269–91.

    Article  PubMed  CAS  Google Scholar 

  4. Feldstein, P.A., J.M. Buzayan, and G. Bruening, Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene, 1989. 82(1): p. 53–61.

    Article  PubMed  CAS  Google Scholar 

  5. Hampel, A. and R. Tritz, RNA catalytic properties of the minimum (−)sTRSV sequence. Biochemistry, 1989. 28(12): p. 4929–33.

    Article  PubMed  CAS  Google Scholar 

  6. Haseloff, J. and W.L. Gerlach, Sequences required for self-catalysed cleavage of the satellite RNA of tobacco ringspot virus. Gene, 1989. 82(1): p. 43–52.

    Article  PubMed  CAS  Google Scholar 

  7. Been, M.D. and G.S. Wickham, Self-cleaving ribozymes of hepatitis delta virus RNA. Eur. J. Biochem., 1997. 247(3): p. 741–53.

    Article  PubMed  CAS  Google Scholar 

  8. Wu, H.N., et al., Human hepatitis delta virus RNA subfragments contain an autocleavage activity. Proc. Natl. Acad. Sci. USA, 1989. 86(6): p. 1831–5.

    Article  PubMed  CAS  Google Scholar 

  9. Lilley, D.M., The Varkud satellite ribozyme. RNA, 2004. 10(2): p. 151-8.

    Article  PubMed  CAS  Google Scholar 

  10. Saville, B.J. and R.A. Collins, A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell, 1990. 61(4): p. 685–96.

    Article  PubMed  CAS  Google Scholar 

  11. Winkler, W.C., et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature, 2004. 428(6980): p. 281–6.

    Article  PubMed  CAS  Google Scholar 

  12. Katahira, M., et al., Formation of sheared G:A base pairs in an RNA duplex modelled after ribozymes, as revealed by NMR. Nucleic Acids Res, 1994. 22(14): p. 2752–9.

    Article  PubMed  CAS  Google Scholar 

  13. Simorre, J.P., et al., A conformational change in the catalytic core of the hammerhead ribozyme upon cleavage of an RNA substrate. Biochemistry, 1997. 36(3): p. 518–25.

    Article  PubMed  CAS  Google Scholar 

  14. Bondensgaard, K., E.T. Mollova, and A. Pardi, The global conformation of the hammerhead ribozyme determined using residual dipolar couplings. Biochemistry, 2002. 41(39): p. 11532–42.

    Article  PubMed  CAS  Google Scholar 

  15. Hammann, C., D.G. Norman, and D.M. Lilley, Dissection of the ion-induced folding of the hammerhead ribozyme using 19 F NMR. Proc Natl Acad Sci U S A, 2001. 98(10): p. 5503–8.

    Article  PubMed  CAS  Google Scholar 

  16. Tanaka, Y., et al., NMR spectroscopic analyses of functional nucleic acids-metal interaction and their solution structure analyses. Nucleic Acids Symp Ser (Oxf), 2005(49): p. 51–2.

    Google Scholar 

  17. Suzumura, K., et al., Significant change in the structure of a ribozyme upon introduction of a phosphorothioate linkage at P9: NMR reveals a conformational fluctuation in the core region of a hammerhead ribozyme. FEBS Lett, 2000. 473(1): p. 106–12.

    Article  PubMed  CAS  Google Scholar 

  18. Osborne, E.M., et al., The identity of the nucleophile substitution may influence metal interactions with the cleavage site of the minimal hammerhead ribozyme. Biochemistry, 2009. 48(44): p. 10654–64.

    Article  PubMed  CAS  Google Scholar 

  19. Colmenarejo, G. and I. Tinoco, Jr., Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme. J Mol Biol, 1999. 290(1): p. 119–35.

    Article  PubMed  CAS  Google Scholar 

  20. Butcher, S.E., F.H. Allain, and J. Feigon, Solution structure of the loop B domain from the hairpin ribozyme. Nat. Struct. Biol., 1999. 6(3): p. 212–6.

    Article  PubMed  CAS  Google Scholar 

  21. Hertel, K.J., D. Herschlag, and O.C. Uhlenbeck, Specificity of hammerhead ribozyme cleavage. EMBO J, 1996. 15(14): p. 3751–7.

    PubMed  CAS  Google Scholar 

  22. Curtis, E.A. and D.P. Bartel, The hammerhead cleavage reaction in monovalent cations. RNA, 2001. 7(4): p. 546–52.

    Article  PubMed  CAS  Google Scholar 

  23. De la Pena, M., S. Gago, and R. Flores, Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J., 2003. 22(20): p. 5561–70.

    Article  PubMed  Google Scholar 

  24. Fürtig, B., et al., NMR-spectroscopic characterization of phosphodiester bond cleavage catalyzed by the minimal hammerhead ribozyme. RNA Biol., 2008. 5(1): p. 41–8.

    Article  PubMed  Google Scholar 

  25. Meli, M., J. Vergne, and M.C. Maurel, In vitro selection of adenine-dependent hairpin ribozymes. J. Biol. Chem., 2003. 278(11): p. 9835–42.

    Article  PubMed  CAS  Google Scholar 

  26. Buck, J., et al., NMR-spectroscopic characterization of the adenine-dependent hairpin ribozyme. Chembiochem, 2009. 10: p. 2100–10.

    Article  PubMed  CAS  Google Scholar 

  27. Wenter, P., et al., Short, synthetic and selectively 13C-labeled RNA sequences for the NMR structure determination of protein-RNA complexes. Nucleic Acids Res, 2006. 34(11): p. e79.

    Article  PubMed  Google Scholar 

  28. Kawashima, E. and K. Kamaike, Synthesis of stable-isotope (C-13 and N-15) labeled nucleosides and their applications. Mini-Reviews in Organic Chemistry, 2004. 1(3): p. 309–332.

    Article  CAS  Google Scholar 

  29. Milecki, J., Specific labelling of nucleosides and nucleotides with C-13 and N-15. Journal of Labelled Compounds & Radiopharmaceuticals, 2002. 45(4): p. 307–337.

    Article  CAS  Google Scholar 

  30. van Buuren, B.N., et al., NMR spectroscopic determination of the solution structure of a branched nucleic acid from residual dipolar couplings by using isotopically labeled nucleotides. Angew Chem Int Ed Engl, 2004. 43(2): p. 187–92.

    Article  PubMed  Google Scholar 

  31. Lagoja, I.M. and P. Herdewijn, Chemical synthesis of C-13 and N-15 labeled nucleosides. Synthesis-Stuttgart, 2002(3): p. 301–314.

    Article  Google Scholar 

  32. Milecki, J., et al., The first example of sequence-specific non-uniformly C-13(5) labelled RNA: Synthesis of the 29mer HIV-1 TAR RNA with C-13 relaxation window. Tetrahedron, 1999. 55(21): p. 6603–6622.

    Article  CAS  Google Scholar 

  33. Quant, S., et al., Chemical Synthesis of C-13-Labeled Monomers for the Solid-Phase and Template Controlled Enzymatic-Synthesis of DNA and Rna Oligomers. Tetrahedron Letters, 1994. 35(36): p. 6649–6652.

    Article  CAS  Google Scholar 

  34. Palmer, A.G., et al., Sensitivity Improvement in Proton-Detected 2-Dimensional Heteronuclear Correlation Nmr-Spectroscopy. Journal of Magnetic Resonance, 1991. 93(1): p. 151–170.

    CAS  Google Scholar 

  35. Kay, L.E., et al., A Gradient-Enhanced Hcch Tocsy Experiment for Recording Side-Chain H-1 and C-13 Correlations in H2o Samples of Proteins. Journal of Magnetic Resonance Series B, 1993. 101(3): p. 333–337.

    Article  CAS  Google Scholar 

  36. Schwalbe, H., et al., Determination of a Complete Set of Coupling-Constants in C-13-Labeled Oligonucleotides. Journal of Biomolecular NMR, 1994. 4(5): p. 631–644.

    Article  PubMed  CAS  Google Scholar 

  37. Schleucher, J., et al., A General Enhancement Scheme in Heteronuclear Multidimensional Nmr Employing Pulsed-Field Gradients. Journal of Biomolecular NMR, 1994. 4(2): p. 301–306.

    Article  PubMed  CAS  Google Scholar 

  38. Marino, J.P., et al., A 3-Dimensional Triple-Resonance H-1,C-13,P-31 Experiment - Sequential through-Bond Correlation of Ribose Protons and Intervening Phosphorus Along the Rna Oligonucleotide Backbone. Journal of the American Chemical Society, 1994. 116(14): p. 6472–6473.

    Article  CAS  Google Scholar 

  39. Buck, J., et al., Time-resolved NMR-spectroscopy: ligand-induced refolding of riboswitches. Methods of Molecular Biology (Riboswitches, A. Serganov (ed.)), 2009. 540: p. 161–71.

    Google Scholar 

  40. Wenter, P., et al., Kinetics of photoinduced RNA refolding by real-time NMR spectroscopy. Angew. Chem. Int. Ed. Engl., 2005. 44(17): p. 2600–3.

    Article  PubMed  CAS  Google Scholar 

  41. Wenter, P., et al., A caged uridine for the selective preparation of an RNA fold and determination of its refolding kinetics by real-time NMR. Chembiochem, 2006. 7(3): p. 417–20.

    Article  PubMed  CAS  Google Scholar 

  42. Jeener, J., et al., Investigation of Exchange Processes by 2-Dimensional Nmr-Spectroscopy. Journal of Chemical Physics, 1979. 71(11): p. 4546–4553.

    Article  CAS  Google Scholar 

  43. Dingley, A.J. and S. Grzesiek, Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2 J NN couplings. J. Am. Chem. Soc., 1998. 120(33): p. 8293–7.

    Article  CAS  Google Scholar 

  44. Zhang, O.W., et al., Backbone H-1 and N-15 Resonance Assignments of the N-Terminal Sh3 Domain of Drk in Folded and Unfolded States Using Enhanced-Sensitivity Pulsed-Field Gradient Nmr Techniques. Journal of Biomolecular Nmr, 1994. 4(6): p. 845–858.

    Article  PubMed  CAS  Google Scholar 

  45. Liu, M., et al., Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J. Magn. Reson., 1998. 132: p. 125–9.

    Article  CAS  Google Scholar 

  46. Sklenar, V. and A. Bax, A new water suppression technique for generating pure-phase spectra with equal excitation over a wide bandwith. J. Magn. Reson., 1987. 75: p. 378–83.

    CAS  Google Scholar 

  47. Duss, O., et al., A fast, efficient and sequence-independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage. Nucleic Acids Res, 2010. 38(20): p. e188.

    Article  PubMed  Google Scholar 

  48. Lapham, J. and D.M. Crothers, RNase H cleavage for processing of in vitro transcribed RNA for NMR studies and RNA ligation. Rna-a Publication of the Rna Society, 1996. 2(3): p. 289–296.

    CAS  Google Scholar 

  49. Xu, J., J. Lapham, and D.M. Crothers, Determining RNA solution structure by segmental isotopic labeling and NMR: Application to Caenorhabditis elegans spliced leader RNA 1. Proceedings of the National Academy of Sciences of the United States of America, 1996. 93(1): p. 44–48.

    Article  PubMed  CAS  Google Scholar 

  50. Buck, J., et al., Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proc. Natl. Acad. Sci. USA, 2007. 104(40): p. 15699–704.

    Article  PubMed  CAS  Google Scholar 

  51. Fedor, M.J. and J.R. Williamson, The catalytic diversity of RNAs. Nat. Rev. Mol. Cell Biol., 2005. 6(5): p. 399–412.

    Article  PubMed  CAS  Google Scholar 

  52. Gorenstein, D.G., Nucleotide conformational analysis by 31P nuclear magnetic resonance spectroscopy. Annu Rev Biophys Bioeng, 1981. 10: p. 355–86.

    Article  PubMed  CAS  Google Scholar 

  53. Fürtig, B., et al., NMR spectroscopy of RNA. Chembiochem, 2003. 4(10): p. 936–62.

    Article  PubMed  Google Scholar 

  54. Wijmenga, S.S. and B.N.M. van Buuren, The use of NMR methods for conformational studies of nucleic acids. Prog. Nucl. Magn. Reson. Spec., 1998. 32: p. 287–387.

    Article  CAS  Google Scholar 

  55. Bodenhausen, G. and D.J. Ruben, Natural abundance Nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem. Phys. Lett., 1980. 69: p. 185–9.

    Article  CAS  Google Scholar 

  56. Mok, K.H., et al., Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: applications to real-time protein folding. J. Am. Chem. Soc., 2003. 125(41): p. 12484–92.

    Article  PubMed  CAS  Google Scholar 

  57. Manoharan, V., et al., Metal-Induced Folding of Diels-Alderase Ribozymes Studied by Static and Time-Resolved NMR Spectroscopy. Journal of the American Chemical Society, 2009. 131(17): p. 6261–6270.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marie-Christine Maurel, Stefan Pitsch, Li Yan-Li, Jacques Vergne, and Philipp Wenter for fruitful collaborations. The work was funded by the DFG. H.S. is member of the DFG-funded cluster of excellence: macromolecular complexes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Schwalbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fürtig, B., Buck, J., Richter, C., Schwalbe, H. (2012). Functional Dynamics of RNA Ribozymes Studied by NMR Spectroscopy. In: Hartig, J. (eds) Ribozymes. Methods in Molecular Biology, vol 848. Humana Press. https://doi.org/10.1007/978-1-61779-545-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-545-9_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-544-2

  • Online ISBN: 978-1-61779-545-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics