Skip to main content

Plasmid DNA Production for Therapeutic Applications

  • Protocol
  • First Online:
Recombinant Gene Expression

Part of the book series: Methods in Molecular Biology ((MIMB,volume 824))

Abstract

Plasmid DNA (pDNA) is the base for promising DNA vaccines and gene therapies against many infectious, acquired, and genetic diseases, including HIV-AIDS, Ebola, Malaria, and different types of cancer, enteric pathogens, and influenza. Compared to conventional vaccines, DNA vaccines have many advantages such as high stability, not being infectious, focusing the immune response to only those antigens desired for immunization and long-term persistence of the vaccine protection. Especially in developing countries, where conventional effective vaccines are often unavailable or too expensive, there is a need for both new and improved vaccines. Therefore the demand of pDNA is expected to rise significantly in the near future. Since the injection of pDNA usually only leads to a weak immune response, several milligrams of DNA vaccine are necessary for immunization protection. Hence, there is a special interest to raise the product yield in order to reduce manufacturing costs. In this chapter, the different stages of plasmid DNA production are reviewed, from the vector design to downstream operation options. In particular, recent advances on cell engineering for improving plasmid DNA production are discussed.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-61779-433-9_35

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-61779-433-9_35

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palomares, L. A., Estrada-Mondaca, S., Ramírez, O. T. (2004). Production of recombinant proteins: Challenges and solutions. Methods Molec. Biol. 267, 15–52.

    CAS  Google Scholar 

  2. Rossenberg, S.A., Aebersold, P., Cornetta, K., et al. (1990) Gene transfer into humans- immunotherapy of patients with advanced melanoma, suing tumor-infiltrating lymphocites modified by retroviral gene transduction. N. Engl. J. Med. 323, 570–578.

    Article  Google Scholar 

  3. Journal of Gene Medicine web presence 2010. Gene Therapy Clinical Trials Worldwide. http://www.wiley.co.uk/genmed/clinical/.

  4. Nichols, W. W., Ledwith, B. J., Manam, S. V., et al., (1995) Potential DNA vaccine integration into host cell genome. Ann. NY Acad. Sci. 772, 30–39.

    Article  PubMed  CAS  Google Scholar 

  5. Raper, S. E., Chirmule, N., Lee, F. S., et al., (2003) Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metabol. 80, 148–158.

    Article  CAS  Google Scholar 

  6. Locher, C., Putnam, D., Langer, R., et al., (2003) Enhancement of a human immunodeficiency virus env DNA vaccine using a novel polycationic nanoparticle formulation. Immunol. Lett. 90, 67–70.

    Article  PubMed  CAS  Google Scholar 

  7. Wang, S., Liu, X., Fisher, K., et al., (2000) Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium- or aluminium phosphate. Vaccine 18, 1227–1235.

    Article  PubMed  CAS  Google Scholar 

  8. Aguiar, J., Hedstrom, R., Rogers, W., et al., (2001) Enhancement of the immune response in rabbits to a malaria DNA vaccine by immunization with a needle-free jet device. Vaccine 20, 275–280.

    Article  PubMed  CAS  Google Scholar 

  9. Babiuk, S., Baca-Estrada, M., Foldvari, M., et al., (2004) Increased gene expression and inflammatory cell infiltration caused by electroporation are both important for improving the efficacy of DNA vaccines. J. Biotechnol. 110, 1–10.

    Article  PubMed  CAS  Google Scholar 

  10. Bachy, M., Boudet, F., Bureau, M., et al., (2001) Electric pulses increase the immunogenicity of an influenza DNA vaccine injected intramuscularly in the mouse. Vaccine 19, 1688–1693.

    Article  PubMed  CAS  Google Scholar 

  11. FDA (2007) Guidance for industry: Considerations for plasmid DNA vaccines for infectious disease indications. US Department of Health and Human Services, Food and Drug Administration.

    Google Scholar 

  12. Han, Y., Liu, S., Ho, J., et al., (2009) Using DNA as a drug—Bioprocessing and delivery strategies. Chem. Eng. Res. Des. 87, 343–348.

    Article  CAS  Google Scholar 

  13. Williams, J. A., Carnes, A. E., Hodgson, C. P. (2009) Plasmid DNA vaccine vector design: Impact on efficacy, safety and upstream production. Biotechnol. Adv. 27, 353–370.

    Article  PubMed  CAS  Google Scholar 

  14. Summers, D. K. (1996) The biology of plasmids. Blackwell Science, Oxford, UK.

    Book  Google Scholar 

  15. Bower, D.M., Prather, K.L.J. (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl. Microbio. Biotechnol. 82, 805–813.

    Article  CAS  Google Scholar 

  16. Schumann, W. (2001) The biology of plasmids, in Plasmids for therapy and vaccination (Schleef, M., Ed.), pp. 1–28 Wiley –VCH Verlag GmbH, Weinheim.

    Google Scholar 

  17. Cesareni, G., Muesing, M. A., Polisky, B. (1982) Control of ColE1 DNA replication: the rop gene product negatively affects transcription from the replication primer promoter. Proc. Natl. Acad. Sci. U.S.A. 79, 6313–6317.

    Article  PubMed  CAS  Google Scholar 

  18. Lin-Chao, S., Chen, W., and Wong, T. (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNAII. Molec. Microbiol. 6, 3385–3393.

    Article  CAS  Google Scholar 

  19. Yanisch-Perron, C., Vieira, J., Messing, J. (1995) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33, 103–119.

    Article  Google Scholar 

  20. Manthorpe, M., Hobart, P., Hermanson, G., et al., (2005) Plasmid Vaccines and Therapeutics: From Design to Applications. Adv. Biochem. Eng. Biotechnol. 99, 41–92.

    PubMed  CAS  Google Scholar 

  21. Soubrier, F., Cameron, B., Manse, B., et al. (1999) pCOR: A new design of plasmid vectors for nonviral gene therapy. Gene Ther. 6, 1482–1488.

    Article  PubMed  CAS  Google Scholar 

  22. Butler, V. A. (1996) Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Center for Biologics Evaluation and Research, Food and Drug Administration. Docket 96 N-0400.

    Google Scholar 

  23. Valenzuela, M. S., Siddiqui, K. A., Sarkar, B. L. (1996) High expression of plasmid-encoded tetracycline resistance gene in E. coli causes a decrease in membrane-bound ATPase activity. Plasmid 36, 19–25.

    Article  PubMed  CAS  Google Scholar 

  24. Gill, D. R., Smyth, S. E., Goddard, C. A., et al., (2001) Increased persistence of lung gene expression using plasmids containing the ubiquitin C or elongation factor 1α promoter. Gene Ther. 8, 1539–1546.

    Article  PubMed  CAS  Google Scholar 

  25. Müller, P. P., Oumard, A., Wirth, D., et al., (2001) Polyvalent vector for coexpression of multiple genes, in Plasmids for therapy and vaccination (Schleef, M., Ed.), pp. 119–137, Wiley –VCH Verlag GmbH, Weinheim.

    Google Scholar 

  26. Azzoni, A. R., Ribeiro, S. C., Monteiro G. A., et al., (2007) The impact of polyadenylation signals on plasmid nuclease-resistance and transgene expression. J. Gene Med. 9, 392–402.

    Article  PubMed  CAS  Google Scholar 

  27. Carvalho, J. A., Azzoni, A. R., Prazeres, D. M., et al., (2010). Comparative analysis of antigen-targeting sequences used in DNA vaccines. Molec. Biotechnol. 44, 204–212.

    Article  CAS  Google Scholar 

  28. Ow. D. S. W., Lee, D. Y., Tung, H. H., Chao, S. L. (2009) Plasmid regulation at systems level effects on Escherichia coli metabolism, in Systems Biology and Biotechnology of Escherichia coli, (Lee, S. Y., Ed), pp. 239–294. Springer Science, Heidelberg.

    Google Scholar 

  29. Lee, C. H., Mizusawa, H., Kakefuda, T. (1981) Unwinding of double-stranded DNA helix by dehydration. Proc. Natl. Acad. Sci. U.S.A. 78, 2838–2842.

    Article  PubMed  CAS  Google Scholar 

  30. Dayn, A., Malkhosyan, S., Duzhy, D., et al., (1991). Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions. J. Bact. 173, 2658–2664.

    PubMed  CAS  Google Scholar 

  31. Rothenburg, S., Koch-Nolte, F., Haag, F. (2001) DNA methylation and Z-DNA formation as mediators of quantitative differences in the expression of alleles. Immunol. Rev. 184, 286–298.

    Article  PubMed  CAS  Google Scholar 

  32. Ghosh, A., Bansal, M. (2003) A glossary of DNA structures from A to Z. Acta Crystallogr. D Biol. Crystallogr. 59, 620–626.

    Article  PubMed  CAS  Google Scholar 

  33. Higgins, N. P., Vologodskii, A. (2004). Topo­logical behavior of plasmid DNA, in Plasmids Biology (Funnel, B. E., Philips, G., Eds), pp. 181–201. ASM Press, Washington, DC.

    Google Scholar 

  34. Schmidt, T., Friehs, K., Flaschel, E. (2001) Structures of plasmid DNA, in Plasmids for therapy and vaccination (Schleef, M., Ed.), pp. 119–137, Wiley –VCH Verlag GmbH, Weinheim.

    Google Scholar 

  35. Reece, R. J., Maxwell, A. (1991) DNA gyrase: Structure and function. Crit. Rev. Biochem. Mol. Biol. 26, 335–75.

    Article  PubMed  CAS  Google Scholar 

  36. Bauer, W. R., Crick, F. H. C., White, J. H. (1980) Supercoiled DNA. Sci Am. 243, 100–113.

    CAS  Google Scholar 

  37. Cupillard, L., Juillard, V., Latour, S., et al.,(2005). Impact of plasmid supercoiling on the efficacy of a rabies DNA vaccine to protect cats. Vaccine 23, 1910–1916.

    Article  PubMed  CAS  Google Scholar 

  38. Pillai, V. B., Hellerstein, M., Yu, T., et al.,(2008). Comparative studies on in vitro expression and in vivo immunogenicity of supercoiled and open circular forms of plasmid DNA vaccines. Vaccine 26, 1136–1141.

    Article  PubMed  CAS  Google Scholar 

  39. Leahy, P., Carmichael, G. G., Rossomando, E. F. (1997) Transcription from plasmid expression vectors is increased up to 14-fold when plasmids are transfected as concatemers. Nucl. Acids Res. 25, 449–450.

    Article  PubMed  CAS  Google Scholar 

  40. Haugland, R. P. (1996) Handbook of fluorescence probes and research chemicals. Leiden, The Netherlands: Molecular Probes, Inc.

    Google Scholar 

  41. Singer, V. L., Jones, L. J., Yue, S.T., et al., (1997). Characterization of Picogreen reagent and development of a fluorescence-based solution assay for double stranded DNA quantitation. Anal. Biochem. 249, 228–238.

    Article  PubMed  CAS  Google Scholar 

  42. Noites, I. S., O’Kennedy, R. D., Levy, M. S., et al., (1999) Rapid quantitation and monitoring of plasmid DNA using an ultrasensitive DNA-binding dye. Biotechnol. Bioeng. 66, 195–201.

    Article  PubMed  CAS  Google Scholar 

  43. Rock, C., Shamlou P. A., Levy, M. S. (2003) An automated microplate-based method for monitoring DNA strand breaks in plasmids and bacterial artificial chromosomes. Nucl. Acids Res. 31, e65.

    Article  PubMed  CAS  Google Scholar 

  44. Levy, M. S., Loftian, P., O’Kennedy, R., et al., (2000) Quantitation of supercoiled circular content in plasmid DNA solutions using a fluorescence-based method. Nucl. Acids Res. 28, e57.

    Article  PubMed  CAS  Google Scholar 

  45. Tanaka, H., Mielke, S. P., Benham, C, J., et al., (2008) Visualization of the detailed structure of plasmid DNA. J. Phys. Chem. B. 112, 16788–16792.

    Google Scholar 

  46. Schmidt, T., Friehs, K., Flaschel, E. (1999) Quantitative analysis of plasmid forms by agarose and capillary gel electrophoresis. Anal. Biochem. 274, 235–240.

    Article  PubMed  CAS  Google Scholar 

  47. Keller, W. (1975) Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc. Natl. Acad. Sci. U.S.A. 72, 4876–4880.

    Article  PubMed  CAS  Google Scholar 

  48. Kang, D. S., Wells, R. D. (1985) B-Z DNA junctions containing few, if any, nonpaired bases at physiological superhelical densities. J. Biol. Chem. 260, 7783–7790.

    PubMed  CAS  Google Scholar 

  49. Vetcher, A. A., McEwen, A. E., Abujarour, R., et al., (2010). Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity. Biophys. Chem. 148, 104–111.

    Article  PubMed  CAS  Google Scholar 

  50. Ferreira, G. N. M., Cabral, J. M. S., Prazeres, D. F. M. (1999) Monitoring of process streams in the large-scale purification of plasmid DNA for gene therapy applications. Pharm. Pharmacol. Commun. 5, 57–59.

    Article  CAS  Google Scholar 

  51. Kendall, D., Booth, A. J., Levy, M. S., et al., (2001) Separation of supercoiled and open-circular plasmid DNA by liquid-liquid counter-current chromatography. Biotechnol. Lett. 23, 613–619.

    Article  CAS  Google Scholar 

  52. Diogo M. M., Queiroz, J. A., Prazeres, D. M. F. (2005) Chromatography of plasmid DNA. J Chromatogr A. 1069, 3–22.

    Article  PubMed  CAS  Google Scholar 

  53. Weigl, D., Molloy, M. J., Clayton, T. M., et al., (2006) Characterization of a topologically aberrant plasmid population from pilot-scale production of clinical-grade DNA. J. Biotechnol. 121, 1–12.

    Article  PubMed  CAS  Google Scholar 

  54. Smith, C. R., DePrince, R. B., Dackor, J., et al., (2007) Separation of topological forms of plasmid DNA by anion-exchange HPLC: shifts in elution order of linear DNA. J. Chromatogr. B. 854, 121–127.

    Article  CAS  Google Scholar 

  55. Middaugh C, R., Evans, R. K., Montgomery, D. L., et al., (1998) Analysis of Plasmid DNA from a Pharmaceutical Perspective. J. Pharm. Sci. 87, 130–146.

    Google Scholar 

  56. Latulippe, D. R., Zydney, A. L. (2010) Radius of gyration of plasmid DNA isoforms from static light scattering. Biotechnol. Bioeng. 107, 134–412.

    Article  PubMed  CAS  Google Scholar 

  57. Gao, X., Kim, K.S., Liu, D. (2007) Nonviral gene delivery: what we know and what is next. AAPS J. 9, E92–E104.

    Article  PubMed  CAS  Google Scholar 

  58. Lamb, B. T., Sisodia, S. S., Lawler, A. M., et al., (1993) Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nat. Genet. 5, 22–30.

    Article  PubMed  CAS  Google Scholar 

  59. Lufino, M. M., Edser, P. A., Wade-Martins, R. (2008) Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Molec. Ther. 16, 1525–1538.

    Article  CAS  Google Scholar 

  60. Robertson, J. S., Griffiths, E. (2006) Assuring the quality, safety, and efficacy of DNA vaccines. Methods Mol. Med. 127, 363–374.

    PubMed  CAS  Google Scholar 

  61. Gill, D. R., Pringle, I. A., Hyde, S. C. (2009) Progress and Prospects: The design and production of plasmid vectors. Gene Ther. 16, 165–171.

    Article  PubMed  CAS  Google Scholar 

  62. Valera, A., Perales, J. C., Hatzoglou, M., et al., (1994) Expression of the neomycin resistance (neo) gene induces alterations in gene expression and metabolism. Hum. Gene Ther. 5, 449–456.

    Article  PubMed  CAS  Google Scholar 

  63. Rozkov, A., Avignone-Rossa, C., Ertl, P., et al., (2004) Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 88, 909–915.

    Article  PubMed  CAS  Google Scholar 

  64. Ow, D. S. W., Nissom P. M., Philp R., et al., (2006) Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5α during batch fermentation. Enzyme Microb. Technol. 39, 391–398.

    Article  CAS  Google Scholar 

  65. Wang, Z., Xiang, L., Shao, J., et al.,(2006) Effects of the presence of ColE1 plasmid DNA in Escherichia coli on the host cell metabolism. Microb. Cell Fact. 5, 34.

    Article  PubMed  CAS  Google Scholar 

  66. Mairhofer, J., Cserjan-Puschmann, M., Striedner, G., et al., (2010) Marker-free plasmids for gene therapeutic applications—Lack of antibiotic resistance gene substantially improves the manufacturing process. J. Biotechnol. 146, 130–137.

    Article  PubMed  CAS  Google Scholar 

  67. Cranenburgh, R.M., Hanak, J.A., Williams, S.G., et al., (2001) Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucl. Acids Res. 29, E26.

    Article  PubMed  CAS  Google Scholar 

  68. Cranenburgh, R. M., Lewis, K. S., Hanak J. A. (2004) Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli. J. Mol. Microbiol. Biotechnol. 7, 197–203.

    Article  PubMed  CAS  Google Scholar 

  69. Williams, S. G., R. M. Cranenburgh, A. M. Weiss, C. J. et al., (1998). Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucl. Acids Res. 26, 2120–2124.

    Google Scholar 

  70. Hanke, T., McMichael, A.J. (2000) Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat. Med. 6, 951–955.

    Article  PubMed  CAS  Google Scholar 

  71. Vidal, L., Pinsach, J., Striedner, G., et al., (2008) Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. J. Biotechnol. 134, 127–136.

    Article  PubMed  CAS  Google Scholar 

  72. Hägg, P., de Pohl, J. W., Abdulkarim, F., et al., (2004) A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. J. Biotechnol. 111, 17–30.

    Article  PubMed  CAS  Google Scholar 

  73. Morona, R., Yeadon, J., Considine, A., et al., (1991) Construction of plasmid vectors with a non-antibiotic selection system based on the Escherichia coli thyA gene: application to cholera vaccine development. Gene 107, 139–144.

    Article  PubMed  CAS  Google Scholar 

  74. Marie, C., Vandermeulen, G., Quiviger, M., et al., (2010) pFARs, Plasmids free of antibiotic resistance markers, display high-level transgene expression in muscle, skin and tumour cells. J. Gene Med. 12, 323–332.

    Article  PubMed  CAS  Google Scholar 

  75. Dong, W. R., Xiang, L. X., Shao, J. Z. (2010) Novel Antibiotic-Free Plasmid Selection System Based on Complementation of Host Auxotrophy in the NAD De Novo Synthesis Pathway.Appl. Environ. Microbiol. 76, 2295–2303.

    Article  PubMed  CAS  Google Scholar 

  76. Soubrier, F., Laborderie, B., Cameron, B. (2005) Improvement of pCOR plasmid copy number for pharmaceutical applications. Appl. Microbiol. Biotechnol. 66, 683–688.

    Article  PubMed  CAS  Google Scholar 

  77. Pfaffenzeller, I., Mairhofer, J., Striedner, G., Bayer, K., Grabherr, R. (2006) Using ColE1-derived RNA I for suppression of a bacterially encoded gene: implication for a novel plasmid addiction system. Biotechnol. J. 1, 675–681.

    Article  PubMed  CAS  Google Scholar 

  78. Mairhofer, J., Pfaffenzeller, I., Merz, D., et al., (2008) A novel antibiotic free plasmid selection system: Advances in safe and efficient DNA therapy. Biotechnol. J. 3, 83–89.

    Article  PubMed  CAS  Google Scholar 

  79. Luke, J., Carnes A. E., Hodgson, C. P., et al., (2010) Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine 27, 6454–6459.

    Article  CAS  Google Scholar 

  80. Kreiss, P., Cameron, B., Rangara, R., et al., (1999) Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucl. Acids Res. 27, 3792–3798.

    Article  PubMed  CAS  Google Scholar 

  81. Junhghaus, C., Schroff, M., Koening-Merediz, S. A., et al., (2001) Form follows function: the design of minimalistic immunogenically defined gene expression (MIDGE®) constructs, in Plasmids for therapy and vaccination (Schleef, M., Ed.), pp. 119–137, Wiley –VCH Verlag GmbH, Weinheim.

    Google Scholar 

  82. Moreno, S., López-Fuertes, L., Vila-Coro, A. J., et al., (2004) DNA immunization with minimalistic expression constructs. Vaccine 22, 1709–1716.

    Article  PubMed  CAS  Google Scholar 

  83. López-Fuertes, L., Pérez-Jiménez, E., Vila-Coro, A.J., et al., (2002) DNA vaccination with linear minimalistic (MIDGE) vectors confers protection against Leishmania major infection in mice. Vaccine 21, 247–257.

    Article  PubMed  Google Scholar 

  84. Köchling, J., Prada, J., Bahrami, M., et al., (2008) Anti-tumor effect of DNA-based vaccination and dSLIM immunomodulatory molecules in mice with Ph+ acute lymphoblastic leukaemia. Vaccine 26, 4669–4675.

    Article  PubMed  CAS  Google Scholar 

  85. Schirmbeck, R., Konig-Merediz, S. A., Riedl, P., et al., (2001) Priming of immune responses to hepatitis B surface antigen with minimal DNA expression constructs modified with a nuclear localization signal peptide. J. Molec. Med. 79, 343–50.

    Article  PubMed  CAS  Google Scholar 

  86. Darquet, A. M., Cameron, B., Wils, P., et al., (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther. 4, 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  87. Darquet, A. M., Rangara, R., Kreiss, P., et al., (2009) Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther. 6, 209–218.

    Article  CAS  Google Scholar 

  88. Faurez, F., Dory, D., Le Moigne, V., et al., (2010) Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 28, 3888–3895.

    Article  PubMed  CAS  Google Scholar 

  89. Bigger, B.W., Tolmachov, O., Collombet, J. M., et al., (2001) An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J. Biol. Chem. 276, 23018–23027.

    Google Scholar 

  90. Vaysse, L., Gregory, L. G., Harbottle, R. P., et al., (2006) Nuclear-targeted minicircle to enhance gene transfer with non-viral vectors in vitro and in vivo. J. Gene Med. 8, 754–763.

    Article  PubMed  CAS  Google Scholar 

  91. Zhang, X., Epperly, M. W., Kay, M. A., et al., (2008) Radioprotection in vitro and in vivo by minicircle plasmid carrying the human manganese superoxide dismutase transgene. Hum. Gene Ther. 19, 820–826.

    Article  PubMed  CAS  Google Scholar 

  92. Prather, K. J., Edmonds, M. C., Herods, J. W. (2006) Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines. Appl. Microbiol. Biotechnol. 73, 815–826.

    Article  PubMed  CAS  Google Scholar 

  93. Oliveira, P. H., Prather, K. J., Prazeres, D.M.F., et al., (2009) Structural instability of plasmid biopharmaceuticals: challenges and implications. Trends Biotechnol. 27, 503–511.

    Article  PubMed  CAS  Google Scholar 

  94. Schoenfeld, T., Mendez, J., Storts, D. R., et al., (1995) Effects of Bacterial Strains Carrying the endA1 Genotype on DNA Quality Isolated with Wizard™ Plasmid Purification Systems. Promega Notes 53, 12–19.

    Google Scholar 

  95. Phue, J. N., Lee, S. J., Trinh, L., et al., (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5alpha). Biotechnol. Bioeng. 101, 831–836.

    Article  PubMed  CAS  Google Scholar 

  96. Bell, C. E. (2005) Structure and mechanism of Escherichia coli RecA ATPase. Mol. Microbiol. 58, 358–366.

    Article  PubMed  CAS  Google Scholar 

  97. Kuzminov, A. (1999) Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage l. Microbiol. Mol. Biol. Rev. 63, 751–813.

    PubMed  CAS  Google Scholar 

  98. Voss, C., Schmidt, T., Schleef, M., et al., (2003) Production of supercoiled multimeric plasmid DNA for biopharmaceutical application. J. Biotechnol. 105, 205–213.

    Article  PubMed  CAS  Google Scholar 

  99. Yau, S. Y., Keshavarz-Moore, E., Ward, J. (2008) Host strain influences on supercoiled plasmid DNA production in Escherichia coli: Implications for efficient design of large-scale processes. Biotechnol. Bioeng. 101, 529–544.

    Article  PubMed  CAS  Google Scholar 

  100. Singer, A., Eiteman, M. A., Altman E. (2009) DNA plasmid production in different host strains of Escherichia coli. J. Ind. Microbiol. Biotechnol. 36, 521–530.

    Article  PubMed  CAS  Google Scholar 

  101. Reinikainen, P., Virkajärvi, I. (1989) Escherichia coli growth and plasmid copy numbers in continuous cultures. Biotechnol. Lett. 11, 225–230.

    Article  CAS  Google Scholar 

  102. Zabriskie, D.W., Arcuri, E.J. (1986) Factors influencing productivity of fermentations employing recombinant microorganisms. Enzyme Microb. Technol. 8, 706–717.

    Article  CAS  Google Scholar 

  103. Seo, J., Bailey, J. E. (1986) Continuous cultivation of recombinant Escherichia coli: existence of an optimum dilution rate for maximum plasmid and gene product concentration. Biotechnol. Bioeng. 28, 1590–1594.

    Article  PubMed  CAS  Google Scholar 

  104. Seo, J., Bailey, J.E. (1985) Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnol. Bioeng. 27, 1668–1674.

    Article  PubMed  CAS  Google Scholar 

  105. Reinikainen, P., Korpela, K., Nissinen, V., et al., (1989) Escherichia coli plasmid production in a fermenter. Biotechnol. Bioeng. 33, 386–393.

    Article  PubMed  CAS  Google Scholar 

  106. Chen, W., Graham, C., Ciccarelli, R. B. (1997) Automated fed-batch fermentation with feed-back controls based on dissolved oxygen (DO) and pH for production of DNA vaccines. J. Ind. Microbiol. Biotechnol. 18, 43–48.

    Article  PubMed  CAS  Google Scholar 

  107. Bentley, W. E., Mirjalili, N., Andersen, D. C., et al., (1990) Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol. Bioeng. 35, 668–681.

    Article  PubMed  CAS  Google Scholar 

  108. Engberg, B., Nordström, K. (1975) Replication of R-factor R1 in Escherichia coli K-12 at different growth rates. J. Bact. 123, 179–186.

    PubMed  CAS  Google Scholar 

  109. Kim, J.Y., Ryu, D.D.Y. (1991) The effects of plasmid content, transcription efficiency, and translation efficiency on the productivity of a cloned gene protein in Escherichia coli. Biotechnol. Bioeng. 38, 1271–1279.

    Article  PubMed  CAS  Google Scholar 

  110. Lin-Chao, S., Bremer, H. (1986) Effect of the bacterial growth rate on replication control of plasmid pBR322 in Escherichia coli. Mol. Gen. Genet. 203, 143–149.

    Article  PubMed  CAS  Google Scholar 

  111. Ryan, W., Parulekar, S.J. (1991) Recombinant protein synthesis and plasmid instability in continuous cultures of Escherichia coli JM103 harbouring a high copy number plasmid. Biotechnol. Bioeng. 37, 415–429.

    Article  PubMed  CAS  Google Scholar 

  112. Siegel, R., Ryu, D. D. (1985) Kinetic study of instability of recombinant plasmid pPLc23trpAI in E.  coli using two-stage continuous culture system. Biotechnol. Bioeng. 27, 28–33.

    Article  PubMed  CAS  Google Scholar 

  113. O’Kennedy, R. D., Ward, J.M., Keshavarz-Moore, E. (2003) Effects of fermentation strategy on the characteristics of plasmid DNA production. Biotechnol. Appl. Biochem. 37, 83–90.

    Article  PubMed  Google Scholar 

  114. Rozkov, A., Avignone-Rossa, C. A., Ertl, P. F., et al., (2006) Fed batch culture with declining specific growth rate for high-yielding production of a plasmid containing a gene therapy sequence in Escherichia coli DH1. Enzyme Microb. Technol. 39, 47–50.

    Article  CAS  Google Scholar 

  115. Wunderlich, M. (2010) Diploma Thesis. Technische Universität Dresden, Germany.

    Google Scholar 

  116. Prather, K. J., Sagar, S., Murphy, J., et al., (2003) Industrial scale production of plasmid DNA for vaccine and gene therapy: plasmid design, production, and purification. Enzyme Microbial Technol. 33, 865–883.

    Article  CAS  Google Scholar 

  117. Lahijani, R., Hulley, G., Soriano, G., et al., (1996) High-yield production of pBR322-derived plasmids intended for human gene therapy by employing a temperature-controllable point mutation. Hum. Gene Ther. 7, 1971–1980.

    Article  PubMed  CAS  Google Scholar 

  118. Lin-Chao, S., Chen, W., Wong, T. (1992) High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNAII. Mol. Microbiol. 6, 3385–3393.

    Article  PubMed  CAS  Google Scholar 

  119. Miki, T., Yasukochi, T., Nagatani, H., et al., (1987) Construction of a plasmid vector for the regulatable high level expression of eukaryotic genes in Escherichia coli: an application to overproduction of chicken lysozyme. Protein Eng. 1, 327–332.

    Article  PubMed  CAS  Google Scholar 

  120. Wong, E. M., Muesing, M. A., Polisky, B. (1982) Temperature-sensitive copy number mutants of ColE1 are located in an untranslated region of the plasmid genome. Proc. Natl. Acad. Sci. U.S.A. 79, 3570–3574.

    Article  PubMed  CAS  Google Scholar 

  121. Hofmann, K. H., Neubauer, P., Reithdorf, S., et al., (1990) Amplification of pBR322 plasmid DNA in Escherichia coli relA strains during batch and fed-batch fermentation. J. Basic Microbiol. 30, 37–41.

    Article  PubMed  CAS  Google Scholar 

  122. Hecker, M., Schroeter, A., Mach, F. (1985) Escherichia coli relA strains as hosts for amplification of pBR322 plasmid DNA. FEMS Microbiol. Lett. 29, 331–334.

    Article  CAS  Google Scholar 

  123. Williams, J. A., Luke, J., Langtry, S., et al., (2009b) Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes. Biotechnol. Bioeng. 103, 1129–1243.

    Article  PubMed  CAS  Google Scholar 

  124. O’Kennedy, R. D., Baldwin, C., Keshavarz-Moore, E. (2000) Effects of growth medium selection on plasmid DNA production and initial processing steps. J. Biotechnol. 76, 175–183.

    Article  PubMed  Google Scholar 

  125. Voss, C., Schmidt, T., Schleef, M., et al., (2004) Effect of ammonium chloride on plasmid DNA production in high cell density batch culture for biopharmaceutical use. J. Chem. Technol. Biotechnol. 79, 57–62.

    Article  CAS  Google Scholar 

  126. Zheng, S., Friehs, K., He, N., et al., (2007) Optimization of medium components for plasmid production by recombinant E. coli DH5α pUK21CMVβ1.2. Biotechnol. Bioproc. Eng. 12, 213–221.

    Article  CAS  Google Scholar 

  127. Carnes, A. E., Luke, J. M., Vincent, J. M., et al., (2010) Plasmid DNA fermentation strain and process-specific effects on vector yield, quality and transgene expression. Biotechnol. Bioeng. In press.

    Google Scholar 

  128. Eiteman, M. A., Altman, E. (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24, 530–536.

    Article  PubMed  CAS  Google Scholar 

  129. De Anda, R., Lara, A. R., Hernández, V., et al., (2006) Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab. Eng. 8, 281–290.

    Article  PubMed  CAS  Google Scholar 

  130. Knoll, A., Bartsch, S., Husemann, B., et al., (2007) High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J. Biotechnol. 132, 167–179.

    Article  PubMed  CAS  Google Scholar 

  131. Lara, A. R., Knabben, I., Caspeta, L., et al., (2011) Comparison of oxygen enriched air vs pressurized cultivations to increase oxygen transfer and to scale-up plasmid DNA production fermentations. Eng. Life Sci. 11, 382–386.

    Google Scholar 

  132. Lara, A. R., Galindo, E., Ramírez, O. T., et al., (2006) Living with heterogeneities in bioreactors: Understanding the effects of environmental gradients on cells. Mol. Biotechnol. 34, 355–381.

    Article  PubMed  CAS  Google Scholar 

  133. Lara, A. R., Leal, L. I., Flores, N., et al., (2006) Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol. Bioeng. 93, 373–385.

    Article  CAS  Google Scholar 

  134. Lara A. R., Taymaz-Nikerel, H., van Gulik, W., et al., (2009) Fast dynamic response of Escherichia coli fermentative metabolism to aerobic and anaerobic glucose pulses. Biotechnol. Bioeng. 104, 1153–1161.

    Article  PubMed  CAS  Google Scholar 

  135. Wittmann, C., Weber, J., Betiku, E., et al., (2007). Response of fluxome and metabolome to temperature-induced recombinant protein synthesis in Escherichia coli. J. Biotechnol. 132, 375–384.

    Article  PubMed  CAS  Google Scholar 

  136. Valdéz-Cruz, N. A., Caspeta, L., Pérez, N. O., et al., (2009) Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb. Cell Fact. 9:18.

    Article  CAS  Google Scholar 

  137. Caspeta, L., Flores N., Pérez, N. O., et al., (2009) The effect of heating rate on Escherichia coli metabolism, physiological stress, transcriptional response, and production of temperature-induced recombinant protein: A scale-down study. Biotechnol. Bioeng. 102, 468–482.

    Article  PubMed  CAS  Google Scholar 

  138. Levy, M. S., O’Kennedy R. O., Ayazi-Shamlou, P., et al., (2000) Biochemical engineering approaches to the challenge of producing pure plasmid DNA. Trends Biotechnol. 18, 296–305.

    Article  PubMed  CAS  Google Scholar 

  139. Zhang, H., Kong, S., Booth, A., et al., (2008) Prediction of shear damage of plasmid DNA in pump and centrifuge operations using an ultra scale-down device. Biotechnol. Prog. 23, 858–865.

    Google Scholar 

  140. Birnboim, H. C., Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids Res. 7, 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  141. Clemson, M., Kelly, W. J. (2003) Optimizing alkaline lysis for plasmid DNA recovery. Biotechnol. Appl. Biochem. 37, 235–244.

    Article  PubMed  CAS  Google Scholar 

  142. Chamsart, S., Patel, H., Hanak, J. A. J., et al., (2001) The impact of fluid-dynamic-generated stresses on chDNA and pDNA stability during alkaline cell lysis for gene therapy products. Biotechnol. Bioeng. 75, 387–392.

    Article  PubMed  CAS  Google Scholar 

  143. Stadler, J., Lemmens, R., Nyhammar, T. (2004). Plasmid DNA purification. J. Gene Med. 6, S54-S66.

    CAS  Google Scholar 

  144. Voss, C. (2007). Production of plasmid DNA for pharmaceutical use. Biotechnol. Ann. Rev. 13, 201–221.

    Article  CAS  Google Scholar 

  145. Eon-Duval, A., MacDuff, R. H., Fisher, C. A., et al., (2003) Removal of RNA impurities by tangential flow filtration in an RNase-free plasmid DNA purification process. Anal. Biochem. 316, 66–73.

    Article  PubMed  CAS  Google Scholar 

  146. Levy, M. S., Collins, I. J., Tsai, J. T., et al., (2000) Removal of contaminant nucleic acids by nitrocellulose filtration during pharmaceutical-grade plasmid DNA processing. J. Biotechnol. 76, 197–205.

    Article  PubMed  CAS  Google Scholar 

  147. Kendall, D., Lye, G. J., Levy, M. S. (2002) Purification of plasmid DNA by an integrated operation comprising tangential flow filtration and nitrocellulose adsorption. Biotechnol. Bioeng. 79, 816–822.

    Article  PubMed  CAS  Google Scholar 

  148. Darby, R. A. J., Forde, G. M., Slater N. K. H., et al., (2007) Affinity purification of plasmid DNA directly from crude bacterial cell lysates. Biotechnol. Bioeng. 98, 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  149. Diogo, M. M., Queiroz, J. A., Monteiro, G. A., et al., (2000) Purification of a cystic fibrosis plasmid vector for gene therapy using hydrophobic interaction chromatography. Biotechnol. Bioeng. 68, 576–583.

    Article  PubMed  CAS  Google Scholar 

  150. Diogo, M. M., Ribeiro, S. C., Queiroz, J. A., et al., (2001) Production, purification and analysis of an experimental DNA vaccine against rabies. J. Gene Med. 3, 577–584.

    Article  PubMed  CAS  Google Scholar 

  151. Eon-Duval, A., Burke, G. (2004) Purification of pharmaceutical-grade plasmid DNA by anion-exchange chromatography in an RNase-free process. J. Chrom. B. 804, 327–335.

    Article  CAS  Google Scholar 

  152. Sandberg, L. M., Bjurling, A., Busson, P., et al., (2004) Thiophilic interaction chromatography for supercoiled plasmid DNA purification. J. Biotechnol. 109, 193–199.

    Article  PubMed  CAS  Google Scholar 

  153. Horn, N. A., Meek, J. A., Budahazi, G., et al., (1995) Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials. Hum. Gene Ther. 6, 565–573.

    Article  PubMed  CAS  Google Scholar 

  154. Ferreira, G. N. M., Cabral, J. M. S., Prazeres, D. M. F. (1999) Development of process flow sheets for the purification of supercoiled plasmids for gene therapy applications. Biotechnol. Prog. 15, 725–731.

    Article  PubMed  CAS  Google Scholar 

  155. Guerrero-Germán, P., Prazeres, D. M. F., Guzmán, R., et al., (2009) Purification of plasmid DNA using tangential flow filtration and tandem anion-exchange membrane chromatography. Bioproc. Biosyst. Eng. 32, 615–623.

    Article  CAS  Google Scholar 

  156. Lemmens, R., Olsson, U., Nyhammar, T., et al., (2003) Supercoiled plasmid DNA: selective purification by thiophilic/aromatic adsorption. J. Chrom. B. 784, 291–300.

    Article  CAS  Google Scholar 

  157. Trindade, I. P., Diogo, M. M., Prazeres, D. M. F., et al., (2005) Purification of plasmid DNA vectors by aqueous two-phase extraction and hydrophobic interaction chromatography. J. Chrom A. 1082, 176–184.

    Article  CAS  Google Scholar 

  158. Luechau, F., Ling, T. C., Lyddiatt, A. (2010) Two-step process for initial capture of plasmid DNA and partial removal of RNA using aqueous two-phase systems. Proc. Biochem. 45, 1432–1436.

    Article  CAS  Google Scholar 

  159. Schluep, T., Cooney, C. L. (1998) Purification of plasmids by triplex affinity interaction. Nucl. Acids Res. 26, 4524–4528.

    Article  PubMed  CAS  Google Scholar 

  160. Ferreira, G. M. N., Monteiro, G. A., Prazeres, D. M. F., et al., (2000) Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Trends Biotechnol. 18, 380–388.

    Article  PubMed  CAS  Google Scholar 

  161. Prazeres, D. M. F., Monteiro, G. A., Ferreira, G. N. M., et al., (2001) Purification of plasmids for gene therapy and DNA vaccination. Biotechnol. Ann. Rev. 7, 1–30.

    Article  CAS  Google Scholar 

  162. Ferreira, G.N.M. (2005) Chromatographic approaches in the purification of plasmid DNA for therapy and vaccination. Chem. Eng. Technol. 28, 1285–1294.

    Article  CAS  Google Scholar 

  163. Diogo, M. M., Queiroz, J. A., Prazeres, D. M. F. (2005) Chromatography of plasmid DNA. J. Chrom. A. 1069, 3–22.

    Article  CAS  Google Scholar 

  164. Phue, J., Noronha, S. B., Hattacharyya, R., et al., (2005) Glucose metabolism at high cell density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient utilization in E. coli B as determined by microarrays and northern blot analyses. Biotechnol. Bioeng. 90, 805–820.

    Article  PubMed  CAS  Google Scholar 

  165. Lara, A.R., Caspeta, L., Gosset, G., et al., (2008) Utility of an Escherichia coli strain engineered in the substrate uptake system for improved culture performance at high glucose and cell concentrations: an alternative to fed-batch cultures. Biotechnol. Bioeng. 99, 893–901.

    Article  PubMed  CAS  Google Scholar 

  166. Soto, R., Caspeta, L., Barrón, B. L., et al., (2011) High cell-density cultivation in batch mode for plasmid DNA vaccine production by a metabolically engineered E. coli strain with minimized overflow metabolism. Biochem. Eng. J. 56, 165–171.

    Google Scholar 

  167. Flores, S., Gosset, G., Flores, N., et al., (2002) Analysis of Carbon Metabolism in Escherichia coli Strains with an Inactive Phosphotransferase System by 13  C Labeling and NMR Spectroscopy. Metab. Eng. 4, 124–137.

    Article  PubMed  CAS  Google Scholar 

  168. Knabben, I., Regestein, L., Marquering, F., et al., (2010) High cell-density processes in batch mode of a genetically engineered Escherichia coli strain with minimized overflow metabolism using a pressurized bioreactor. J. Biotechnol. 150, 73–79.

    Article  PubMed  CAS  Google Scholar 

  169. Cunningham, D. S., Liu, Z., Domagalski, N., et al., (2009) Pyruvate Kinase-Deficient Escherichia coli exhibits increased plasmid copy number and cyclic AMP levels. J. Bacteriol. 191, 3041–3049.

    Article  PubMed  CAS  Google Scholar 

  170. OW, D. S. W., Lee, D. Y., Tung, H. H., Lin-Chao, S. (2009). Plasmids regulation and systems-level effects on Escherichia coli metabolism, in Systems Biology and Biotechnology of Escherichia coli (Lee, S. Y., Ed), pp. 273–294. Springer Science, New York.

    Chapter  Google Scholar 

  171. Ow, D. S. W., Lee, R. M. Y., Nissom, P. M., et al., (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J. Biotechnol. 131, 261–269.

    Article  PubMed  CAS  Google Scholar 

  172. Ow, D. S. W., Yap, M. G. S., Oh, S. K. W. (2009) Enhancement of plasmid DNA yields during fed-batch culture of a fruR-knockout Escherichia coli strain. Biotechnol. Appl. Biochem. 52, 53–59.

    Article  PubMed  CAS  Google Scholar 

  173. Cunningham, D. S., Koepsel, R. R., Ataai, M. M., et al., (2009) Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint. Microb. Cell Fact. 8, 27.

    Article  PubMed  CAS  Google Scholar 

  174. Cooke, G. D., Cranenburgh, R. M., Hanak, J. A. J., et al., (2001) Purification of essentially RNA free plasmid DNA using a modified Escherichia coli host strain expressing ribonuclease A. J. Biotechnol. 85, 297–304.

    Article  PubMed  CAS  Google Scholar 

  175. Carnes, A. E., Hodgson, C. P., Luke, J. M., et al., (2009). Plasmid DNA production combining antibiotic-free selection, inducible high yield fermentation, and novel autolytic purification. Biotechnol. Bioeng. 104, 505–515.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACyT grants 84447 and 101847, PROMEP 47410089, and PAPIIT-UNAM IN-223210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro R. Lara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lara, A.R., Ramírez, O.T. (2012). Plasmid DNA Production for Therapeutic Applications. In: Lorence, A. (eds) Recombinant Gene Expression. Methods in Molecular Biology, vol 824. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-433-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-433-9_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-432-2

  • Online ISBN: 978-1-61779-433-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics