Skip to main content
Log in

Engineering of bacterial strains and vectors for the production of plasmid DNA

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The demand for plasmid DNA (pDNA) is anticipated to increase significantly as DNA vaccines and non-viral gene therapies enter phase 3 clinical trials and are approved for use. This increased demand, along with renewed interest in pDNA as a therapeutic vector, has motivated research targeting the design of high-yield, cost-effective manufacturing processes. An important aspect of this research is engineering bacterial strains and plasmids that are specifically suited to the production of plasmid biopharmaceuticals. This review will survey recent innovations in strain and vector engineering that aim to improve plasmid stability, enhance product safety, increase yield, and facilitate downstream purification. While these innovations all seek to enhance pDNA production, they can vary in complexity from subtle alterations of the host genome or vector backbone to the investigation of non-traditional host strains for higher pDNA yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bi X, Liu LF (1996) A replicational model for DNA recombination between direct repeats. J Mol Biol 256:849–858

    CAS  PubMed  Google Scholar 

  • Boyd AC, Popp F, Michaelis U, Davidson H, Davidson-Smith H, Doherty A, McLachlan G, Porteous DJ, Seeber S (1999) Insertion of natural intron 6a–6b into a human cDNA-derived gene therapy vector for cystic fibrosis improves plasmid stability and permits facile RNA/DNA discrimination. J Gene Med 1:312–321

    CAS  PubMed  Google Scholar 

  • Butler VA (1996) Points to consider on plasmid DNA vaccines for preventive infectious disease indications. Center for Biologics Evaluation and Research, Food and Drug Administration. Docket 96N-0400

  • Carnes AE, Hodgson CP, Williams JA (2006) Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol Appl Biochem 45:155–166

    CAS  PubMed  Google Scholar 

  • Chen JH, Yeh HT (1997) The seventh copy of IS1 in Escherichia coli W3110 belongs to the IS1 A (IS1E) type which is the only IS1 type that transposes from chromosome to plasmids. Proc Natl Sci Counc Repub China B 21:100–105

    CAS  PubMed  Google Scholar 

  • Chen ZY, He CY, Kay MA (2005) Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo. Hum Gene Ther 16:126–131

    CAS  PubMed  Google Scholar 

  • Ciccolini LAS, Shamlou PA, Titchener-Hooker NJ, Ward JM, Dunnill P (1998) Time course of SDS-alkaline lysis of recombinant bacterial cells for plasmid release. Biotechnol Bioeng 60:768–770

    CAS  PubMed  Google Scholar 

  • Cooke GD, Cranenburgh RM, Hanak JAJ, Dunnill P, Thatcher DR, Ward JM (2001) Purification of essentially RNA free plasmid DNA using a modified Escherichia coli host strain expressing ribonuclease A. J Biotechnol 85:297–304

    CAS  PubMed  Google Scholar 

  • Cranenburgh RM, Hanak JA, Williams SG, Sherratt DJ (2001) Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res 29:E26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cranenburgh RM, Lewis KS, Hanak JA (2004) Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator-repressor titration in Escherichia coli. J Mol Microbiol Biotechnol 7:197–203

    CAS  PubMed  Google Scholar 

  • Danquah MK, Forde GM (2007) Growth medium selection and its economic impact on plasmid DNA production. J Biosci Bioeng 104:490–497

    CAS  PubMed  Google Scholar 

  • Darquet AM, Cameron B, Wils P, Scherman D, Crouzet J (1997) A new DNA vehicle for nonviral gene delivery: supercoiled minicircle. Gene Ther 4:1341–1349

    CAS  PubMed  Google Scholar 

  • Dryselius R, Nekhotiaeva N, Nielsen PE, Good L (2003) Antibiotic-free bacterial strain selection using antisense peptide nucleic acid. BioTechniques 35:1060–1064

    CAS  PubMed  Google Scholar 

  • Durfee T, Nelson R, Baldwin S, Plunkett III G, Burland V, Mau B, Petrosino JF, Qin X, Muzny DM, Ayele M, Gibbs RA, Csorgo B, Posfai G, Weinstock GM, Blattner FR (2008) The complete genome sequence of Escherichia coli DH10B: insights into the biology of a laboratory workhorse. J Bacteriol 190:2597–2606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira GNM, Monteiro GA, Prazeres DMF, Cabral JMS (2000) Downstream processing of plasmid DNA for gene therapy and DNA vaccine applications. Trends Biotechnol 18:380–388

    CAS  PubMed  Google Scholar 

  • Goh S, Good L (2008) Plasmid selection in Escherichia coli using an endogenous essential gene marker. BMC Biotechnol 8:61

    PubMed  PubMed Central  Google Scholar 

  • Green JJ, Zugates GT, Tedford NC, Huang YH, Griffith LG, Lauffenburger DA, Sawicki JA, Langer R, Anderson DG (2007) Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Adv Mater 19:2836–2842

    CAS  Google Scholar 

  • Hägg P, de Pohl JW, Abdulkarim F, Isaksson LA (2004) A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. J Biotechnol 111:17–30

    PubMed  Google Scholar 

  • Hanke T, McMichael AJ (2000) Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med 6:951–955

    CAS  PubMed  Google Scholar 

  • Hodgson CP, Williams JA (2006) Improved strains of E. coli for plasmid DNA production. WO 2006/026125 A2

  • Horn NA, Meek JA, Budahazi G, Marquet M (1995) Cancer gene therapy using plasmid DNA: purification of DNA for human clinical trials. Hum Gene Ther 6:565–573

    CAS  PubMed  Google Scholar 

  • Kutzler MA, Weiner DB (2008) DNA vaccines: ready for prime time? Nat Rev Genet 9:776–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mairhofer J, Grabherr R (2008) Rational vector design for efficient non-viral gene delivery: challenges facing the use of plasmid DNA. Mol Biotechnol 39:97–104

    CAS  PubMed  Google Scholar 

  • Mairhofer J, Pfaffenzeller I, Merz D, Grabherr R (2008) A novel antibiotic free plasmid selection system: advances in safe and efficient DNA therapy. Biotechnol J 3:83–89

    CAS  PubMed  Google Scholar 

  • Mayrhofer P, Blaesen M, Schleef M, Jechlinger W (2008) Minicircle-DNA production by site specific recombination and protein-DNA interaction chromatography. J Gene Med 10:1253–1269

    CAS  PubMed  Google Scholar 

  • Moore JP, Klasse PJ, Dolan MJ, Ahuja SK (2008) AIDS/HIV. A STEP into darkness or light? Science 320:753–755

    CAS  PubMed  Google Scholar 

  • Nikaido H (1996) Chapter 5: Outer Membrane. In: Neidhardt F et al (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington D.C. Available via EcoSal. http://www.ecosal.org/ecosal/chapters/index.jsp?005. Accessed 20 Jan 2009

  • NovaRx Corporation (2008) Phase III LucanixTM vaccine therapy in advanced non-small cell lung cancer (NSCLC) following front-line chemotherapy (STOP). In: ClinicalTrials.gov. U.S. National Library of Medicine. http://clinicaltrials.gov/ct2/show/NCT00676507. Accessed 12 Dec 2008

  • O’Kennedy RD, Baldwin C, Keshavarz-Moore E (2000) Effects of growth medium selection on plasmid DNA production and initial processing steps. J Biotechnol 76:175–183

    PubMed  Google Scholar 

  • Okonkowski J, Kizer-Bentley L, Listner K, Robinson D, Chartrain M (2005) Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine. Biotechnol Prog 21:1038–1047

    CAS  PubMed  Google Scholar 

  • Oliveira PH, Lemos F, Monteiro GA, Prazeres DM (2008) Recombination frequency in plasmid DNA containing direct repeats–predictive correlation with repeat and intervening sequence length. Plasmid 60:159–165

    CAS  PubMed  Google Scholar 

  • Ow DS, Nissom PM, Philp R, Oh SK, Yap MG (2006) Global transcriptional analysis of metabolic burden due to plasmid maintenance in Escherichia coli DH5α during batch fermentation. Enzyme Microb Technol 39:391–398

    CAS  Google Scholar 

  • Ow DS, Lee RM, Nissom PM, Philp R, Oh SK, Yap MG (2007) Inactivating FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression and improves growth rate. J Biotechnol 131:261–269

    CAS  PubMed  Google Scholar 

  • Ow DS, Yap MG, Oh SK (2009) Enhancement of plasmid DNA yields during fed-batch culture with a fruR-knockout Escherichia coli strain. Biotechnol Appl Biochem 52:53–59

    CAS  PubMed  Google Scholar 

  • Pan CH, Jimenez GS, Nair N, Wei Q, Adams RJ, Polack FP, Rolland A, Vilalta A, Griffin DE (2008) Use of Vaxfectin adjuvant with DNA vaccine encoding the measles virus hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques against measles virus. Clin Vaccine Immunol 15:1214–1221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phue JN, Noronha SB, Hattacharyya R, Wolfe AJ, Shiloach J (2005) Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol Bioeng 90:805–820

    CAS  PubMed  Google Scholar 

  • Phue JN, Lee SJ, Trinh L, Shiloach J (2008) Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5alpha). Biotechnol Bioeng 101:831–836

    CAS  PubMed  Google Scholar 

  • Pogliano J (2002) Dynamic cellular location of bacterial plasmids. Curr Opin Microbiol 5:586–590

    CAS  PubMed  Google Scholar 

  • Posfai G, Plunkett III G, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    CAS  PubMed  Google Scholar 

  • Prather KL, Edmonds MC, Herod JW (2006) Identification and characterization of IS1 transposition in plasmid amplification mutants of E. coli clones producing DNA vaccines. Appl Microbiol Biotechnol 73:815–826

    PubMed  Google Scholar 

  • Prazeres DMF, Ferreira GNM (2004) Design of flowsheets for the recovery and purification of plasmids for gene therapy and DNA vaccination. Chem Eng Process 43:609–624

    CAS  Google Scholar 

  • Ribeiro SC, Oliveira PH, Prazeres DM, Monteiro GA (2008) High frequency plasmid recombination mediated by 28 bp direct repeats. Mol Biotechnol 40:252–260

    CAS  PubMed  Google Scholar 

  • Sanofi-Aventis (2008) Efficacy and safety of XRP0038/NV1FGF in critical limb ischemia patients with skin lesions (TAMARIS). In: ClinicalTrials.gov. U.S. National Library of Medicine. http://clinicaltrials.gov/ct2/show/NCT00566657. Accessed 12 Dec 2008

  • Schneider D, Duperchy E, Depeyrot J, Coursange E, Lenski R, Blot M (2002) Genomic comparisons among Escherichia coli strains B, K-12, and O157:H7 using IS elements as molecular markers. BMC Microbiol 2:18

    PubMed  PubMed Central  Google Scholar 

  • Soubrier F, Cameron B, Manse B, Somarriba S, Dubertret C, Jaslin G, Jung G, Caer CL, Dang D, Mouvault JM, Scherman D, Mayaux JF, Crouzet J (1999) pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther 6:1482–1488

    CAS  PubMed  Google Scholar 

  • Soubrier F, Laborderie B, Cameron B (2005) Improvement of pCOR plasmid copy number for pharmaceutical applications. Appl Microbiol Biotechnol 66:683–688

    CAS  PubMed  Google Scholar 

  • Summers D (1998) Timing, self-control and a sense of direction are the secrets of multicopy plasmid stability. Mol Microbiol 29:1137–1145

    CAS  PubMed  Google Scholar 

  • Szpirer CY, Milinkovitch MC (2005) Separate-component-stabilization system for protein and DNA production without the use of antibiotics. BioTechniques 38:775–781

    CAS  PubMed  Google Scholar 

  • Tolmachov O, Palaszewski I, Bigger B, Coutelle C (2006) RecET driven chromosomal gene targeting to generate a RecA deficient Escherichia coli strain for Cre mediated production of minicircle DNA. BMC Biotechnol 6:17

    PubMed  PubMed Central  Google Scholar 

  • Twiss E, Coros AM, Tavakoli NP, Derbyshire KM (2005) Transposition is modulated by a diverse set of host factors in Escherichia coli and is stimulated by nutritional stress. Mol Microbiol 57:1593–1607

    CAS  PubMed  Google Scholar 

  • Vical (2008) A Phase 3 pivotal trial comparing Allovectin-7® alone vs. chemotherapy alone in patients with stage 3 or stage 4 melanoma. In: ClinicalTrials.gov. U.S. National Library of Medicine. http://clinicaltrials.gov/ct2/show/NCT00395070. Accessed 12 Dec 2008

  • Vidal L, Pinsach J, Striedner G, Caminal G, Ferrer P (2008) Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli. J Biotechnol 134:127–136

    CAS  PubMed  Google Scholar 

  • Wang Z, Le G, Shi Y, Wegrzyn G (2001) Medium design for plasmid DNA production based on stoichiometric model. Process Biochem 36:1085–1093

    CAS  Google Scholar 

  • Yau SY, Keshavarz-Moore E, Ward J (2008) Host strain influences on supercoiled plasmid DNA production in Escherichia coli: Implications for efficient design of large-scale processes. Biotechnol Bioeng 101:529–544

    CAS  PubMed  Google Scholar 

  • Zhao JB, Wei DZ, Tong WY (2007) Identification of Escherichia coli host cell for high plasmid stability and improved production of antihuman ovarian carcinoma x antihuman CD3 single-chain bispecific antibody. Appl Microbiol Biotechnol 76:795–800

    CAS  PubMed  Google Scholar 

  • Zielenkiewicz U, Ceglowski P (2001) Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. Acta Biochim Pol 48:1003–1023

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Funding for this work was provided by the MIT-Portugal Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristala L. J. Prather.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bower, D.M., Prather, K.L.J. Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol 82, 805–813 (2009). https://doi.org/10.1007/s00253-009-1889-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1889-8

Keywords

Navigation