Skip to main content

Ribosome Display: A Perspective

  • Protocol
  • First Online:
Ribosome Display and Related Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 805))

Abstract

Ribosome display is an in vitro evolution technology for proteins. It is based on in vitro translation, but prevents the newly synthesized protein and the mRNA encoding it from leaving the ribosome. It thereby couples phenotype and genotype. Since no cells need to be transformed, very large libraries can be used directly in selections, and the in vitro amplification provides a very convenient integration of random mutagenesis that can be incorporated into the procedure. This review highlights concepts, mechanisms, and different variations of ribosome display and compares it to related methods. Applications of ribosome display are summarized, e.g., the directed evolution of proteins for higher binding affinity, for higher stability or other improved biophysical parameters and enzymatic properties. Ribosome display has developed into a robust technology used in academia and industry alike, and it has made the cell-free Darwinian evolution of proteins over multiple generations a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fields, S. & Song, O. (1989) A novel genetic system to detect protein–protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  2. Pelletier, J. N., Arndt, K. M., Plückthun, A. & Michnick, S. W. (1999) An in vivo library-versus-library selection of optimized protein–protein interactions. Nat. Biotechnol. 17, 683–690.

    Article  PubMed  CAS  Google Scholar 

  3. Wilson, C. G., Magliery, T. J. & Regan, L. (2004) Detecting protein–protein interactions with GFP-fragment reassembly. Nat. Methods 1, 255–262.

    Article  PubMed  CAS  Google Scholar 

  4. Cabantous, S., Pedelacq, J. D., Mark, B. L., Naranjo, C., Terwilliger, T. C. & Waldo, G. S. (2005) Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis. J. Struct. Funct. Genomics 6, 113–119.

    CAS  Google Scholar 

  5. Rossi, F., Charlton, C. A. & Blau, H. M. (1997) Monitoring protein–protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc. Natl. Acad. Sci. U. S. A. 94, 8405–8410.

    Article  PubMed  CAS  Google Scholar 

  6. Francisco, J. A., Campbell, R., Iverson, B. L. & Georgiou, G. (1993) Production and fluorescence-activated cell sorting of Escherichia coli expressing a functional antibody fragment on the external surface. Proc. Natl. Acad. Sci. U. S. A. 90, 10444–10448.

    Article  PubMed  CAS  Google Scholar 

  7. Boder, E. T. & Wittrup, K. D. (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557.

    Article  PubMed  CAS  Google Scholar 

  8. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  9. Cwirla, S. E., Peters, E. A., Barrett, R. W. & Dower, W. J. (1990) Peptides on phage: a vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. U. S. A. 87, 6378–6382.

    Article  PubMed  CAS  Google Scholar 

  10. Devlin, J. J., Panganiban, L. C. & Devlin, P. E. (1990) Random peptide libraries: a source of specific protein binding molecules. Science 249, 404–406.

    Article  PubMed  CAS  Google Scholar 

  11. Scott, J. K. & Smith, G. P. (1990) Searching for peptide ligands with an epitope library. Science 249, 386–390.

    Article  PubMed  CAS  Google Scholar 

  12. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  13. Bass, S., Greene, R. & Wells, J. A. (1990) Hormone phage: an enrichment method for variant proteins with altered binding properties. Proteins 8, 309–314.

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi, T. T. & Roberts, R. W. (2009) In vitro selection of protein and peptide libraries using mRNA display. Methods Mol. Biol. 535, 293–314.

    Article  PubMed  CAS  Google Scholar 

  15. Levin, A. M. & Weiss, G. A. (2006) Optimizing the affinity and specificity of proteins with molecular display. Mol. Biosyst. 2, 49–57.

    Article  PubMed  CAS  Google Scholar 

  16. Leemhuis, H., Stein, V., Griffiths, A. D. & Hollfelder, F. (2005) New genotype-phenotype linkages for directed evolution of functional proteins. Curr. Opin. Struct. Biol. 15, 472–478.

    Article  PubMed  CAS  Google Scholar 

  17. Daugherty, P. S. (2007) Protein engineering with bacterial display. Curr. Opin. Struct. Biol. 17, 474–480.

    Article  PubMed  CAS  Google Scholar 

  18. Pepper, L. R., Cho, Y. K., Boder, E. T. & Shusta, E. V. (2008) A decade of yeast surface display technology: where are we now? Comb. Chem. High Throughput Screen. 11, 127–134.

    Article  PubMed  CAS  Google Scholar 

  19. Mondon, P., Dubreuil, O., Bouayadi, K. & Kharrat, H. (2008) Human antibody libraries: a race to engineer and explore a larger diversity. Front. Biosci. 13, 1117–1129.

    Article  PubMed  CAS  Google Scholar 

  20. Bratkovic, T. (2010) Progress in phage display: evolution of the technique and its application. Cell. Mol. Life Sci. 67, 749–767.

    Article  PubMed  CAS  Google Scholar 

  21. Labrou, N. E. (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr. Protein Pept. Sci. 11, 91–100.

    Article  PubMed  CAS  Google Scholar 

  22. Horst, J. P., Wu, T. H. & Marinus, M. G. (1999) Escherichia coli mutator genes. Trends Microbiol. 7, 29–36.

    CAS  Google Scholar 

  23. Wang, L., Jackson, W. C., Steinbach, P. A. & Tsien, R. Y. (2004) Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. U. S. A. 101, 16745–16749.

    Article  PubMed  CAS  Google Scholar 

  24. Virnekäs, B., Ge, L., Plückthun, A., Schneider, K. C., Wellnhofer, G. & Moroney, S. E. (1994) Trinucleotide phosphoramidites: Ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 22, 5600–5607.

    Article  PubMed  Google Scholar 

  25. Zaccolo, M., Williams, D. M., Brown, D. M. & Gherardi, E. (1996) An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J. Mol. Biol. 255, 589–603.

    Article  PubMed  CAS  Google Scholar 

  26. Zhao, H., Giver, L., Shao, Z., Affholter, J. A. & Arnold, F. H. (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261.

    Article  PubMed  CAS  Google Scholar 

  27. Stemmer, W. P. (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391.

    Article  PubMed  CAS  Google Scholar 

  28. Kraus, J. P. & Rosenberg, L. E. (1982) Purification of low-abundance messenger RNAs from rat liver by polysome immunoadsorption. Proc. Natl. Acad. Sci. U. S. A. 79, 4015–4019.

    Article  PubMed  CAS  Google Scholar 

  29. Korman, A. J., Knudsen, P. J., Kaufman, J. F. & Strominger, J. L. (1982) cDNA clones for the heavy chain of HLA-DR antigens obtained after immunopurification of polysomes by monoclonal antibody. Proc. Natl. Acad. Sci. U. S. A. 79, 1844–1848.

    Article  PubMed  CAS  Google Scholar 

  30. Tuerk, C. & Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  31. Mattheakis, L. C., Dias, J. M. & Dower, W. J. (1996) Cell-free synthesis of peptide libraries displayed on polysomes. Methods Enzymol. 267, 195–207.

    Article  PubMed  CAS  Google Scholar 

  32. Mattheakis, L. C., Bhatt, R. R. & Dower, W. J. (1994) An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. U. S. A. 91, 9022–9026.

    Article  PubMed  CAS  Google Scholar 

  33. Kawasaki, G. H. (1991) Cell-free synthesis and isolation of novel genes and polypeptides. PCT Int. Appl., WO 91/05058.

    Google Scholar 

  34. Gersuk, G. M., Corey, M. J., Corey, E., Stray, J. E., Kawasaki, G. H. & Vessella, R. L. (1997) High-affinity peptide ligands to prostate-specific antigen identified by polysome selection. Biochem. Biophys. Res. Commun. 232, 578–582.

    Article  PubMed  CAS  Google Scholar 

  35. Hanes, J. & Plückthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  36. Ryabova, L. A., Desplancq, D., Spirin, A. S. & Plückthun, A. (1997) Functional antibody production using cell-free translation: Effects of protein disulfide isomerase and chaperones. Nat. Biotechnol. 15, 79–84.

    Article  PubMed  CAS  Google Scholar 

  37. Hanes, J., Jermutus, L., Weber-Bornhauser, S., Bosshard, H. R. & Plückthun, A. (1998) Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl. Acad. Sci. USA 95, 14130–14135.

    Article  PubMed  CAS  Google Scholar 

  38. Hanes, J., Schaffitzel, C., Knappik, A. & Plückthun, A. (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–1292.

    Article  PubMed  CAS  Google Scholar 

  39. He, M. & Taussig, M. J. (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res. 25, 5132–5134.

    Article  PubMed  CAS  Google Scholar 

  40. He, M., Menges, M., Groves, M. A., Corps, E., Liu, H., Brüggemann, M. & Taussig, M. J. (1999) Selection of a human anti-progesterone antibody fragment from a transgenic mouse library by ARM ribosome display. J. Immunol. Methods 231, 105–117.

    Article  PubMed  CAS  Google Scholar 

  41. Kisselev, L., Ehrenberg, M. & Frolova, L. (2003) Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J. 22, 175–182.

    Article  PubMed  CAS  Google Scholar 

  42. Pavlov, M. Y., Antoun, A., Lovmar, M. & Ehrenberg, M. (2008) Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting. EMBO J. 27, 1706–1717.

    Article  PubMed  CAS  Google Scholar 

  43. Hauryliuk, V., Zavialov, A., Kisselev, L. & Ehrenberg, M. (2006) Class-1 release factor eRF1 promotes GTP binding by class-2 release factor eRF3. Biochimie 88, 747–757.

    Article  PubMed  CAS  Google Scholar 

  44. Douthwaite, J. A., Groves, M. A., Dufner, P. & Jermutus, L. (2006) An improved method for an efficient and easily accessible eukaryotic ribosome display technology. Protein Eng. Des. Sel. 19, 85–90.

    Article  PubMed  CAS  Google Scholar 

  45. Cheng, K., Ivanova, N., Scheres, S. H., Pavlov, M. Y., Carazo, J. M., Hebert, H., Ehrenberg, M. & Lindahl, M. (2010) tmRNA·SmpB complex mimics native aminoacyl-tRNAs in the A site of stalled ribosomes. J. Struct. Biol. 169, 342–348.

    Article  PubMed  CAS  Google Scholar 

  46. Moore, S. D. & Sauer, R. T. (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124.

    Article  PubMed  CAS  Google Scholar 

  47. Shine, J. & Dalgarno, L. (1975) Terminal-sequence analysis of bacterial ribosomal RNA. Correlation between the 3′-terminal-polypyrimidine sequence of 16-S RNA and translational specificity of the ribosome. Eur. J. Biochem. 57, 221–230.

    Article  PubMed  CAS  Google Scholar 

  48. Salis, H. M., Mirsky, E. A. & Voigt, C. A. (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950.

    Article  PubMed  CAS  Google Scholar 

  49. Kozak, M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208.

    Article  PubMed  CAS  Google Scholar 

  50. Carpousis, A. J. (2007) The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61, 71–87.

    Article  PubMed  CAS  Google Scholar 

  51. Carpousis, A. J., Luisi, B. F. & McDowall, K. J. (2009) Endonucleolytic initiation of mRNA decay in Escherichia coli. Prog. Mol. Biol. Transl. Sci. 85, 91–135.

    Article  PubMed  CAS  Google Scholar 

  52. Regnier, P. & Hajnsdorf, E. (2009) Poly(A)-assisted RNA decay and modulators of RNA stability. Prog. Mol. Biol. Transl. Sci. 85, 137–185.

    Article  PubMed  CAS  Google Scholar 

  53. Schatz, P. J. (1993) Use of peptide libraries to map the substrate specificity of a peptide-modifying enzyme: a 13 residue consensus peptide specifies biotinylation in Escherichia coli. Biotechnology (N. Y.) 11, 1138–1143.

    Google Scholar 

  54. Hoffmann, A., Bukau, B. & Kramer, G. (2010) Structure and function of the molecular chaperone Trigger Factor. Biochim. Biophys. Acta 1803, 650–661.

    Article  PubMed  CAS  Google Scholar 

  55. Hoffmann, F. & Rinas, U. (2004) Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89, 143–161.

    PubMed  CAS  Google Scholar 

  56. Schimmele, B., Gräfe, N. & Plückthun, A. (2005) Ribosome display of mammalian receptor domains. Protein Eng. Des. Sel. 18, 285–294.

    Article  PubMed  CAS  Google Scholar 

  57. Schimmele, B. & Plückthun, A. (2005) Identification of a functional epitope of the Nogo receptor by a combinatorial approach using ribosome display. J. Mol. Biol. 352, 229–241.

    Article  PubMed  CAS  Google Scholar 

  58. He, M. & Taussig, M. J. (2007) Eukaryotic ribosome display with in situ DNA recovery. Nat. Methods 4, 281–288.

    Article  PubMed  CAS  Google Scholar 

  59. Villemagne, D., Jackson, R. & Douthwaite, J. A. (2006) Highly efficient ribosome display selection by use of purified components for in vitro translation. J. Immunol. Methods 313, 140–148.

    Article  PubMed  CAS  Google Scholar 

  60. Matsuura, T., Yanagida, H., Ushioda, J., Urabe, I. & Yomo, T. (2007) Nascent chain, mRNA, and ribosome complexes generated by a pure translation system. Biochem. Biophys. Res. Commun. 352, 372–377.

    Article  PubMed  CAS  Google Scholar 

  61. Ohashi, H., Shimizu, Y., Ying, B. W. & Ueda, T. (2007) Efficient protein selection based on ribosome display system with purified components. Biochem. Biophys. Res. Commun. 352, 270–276.

    Article  PubMed  CAS  Google Scholar 

  62. Ueda, T., Kanamori, T. & Ohashi, H. (2010) Ribosome display with the PURE technology. Methods Mol. Biol. 607, 219–225.

    Article  PubMed  CAS  Google Scholar 

  63. Hanes, J., Jermutus, L., Schaffitzel, C. & Plückthun, A. (1999) Comparison of Escherichia coli and rabbit reticulocyte ribosome display systems. FEBS Lett. 450, 105–110.

    Article  PubMed  CAS  Google Scholar 

  64. Nakatogawa, H. & Ito, K. (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636.

    Article  PubMed  CAS  Google Scholar 

  65. Ogawa, A., Sando, S. & Aoyama, Y. (2005) In vitro read-through polysome/ribosome display of full-length protein ORF and its applications. Nucleic Acids. Symp. Ser. (Oxf.), 267–268.

    Google Scholar 

  66. Ogawa, A., Sando, S. & Aoyama, Y. (2006) Termination-free prokaryotic protein translation by using anticodon-adjusted E. coli tRNASer as unified suppressors of the UAA/UGA/UAG stop codons. Read-through ribosome display of full-length DHFR with translated UTR as a buried spacer arm. ChemBioChem 7, 249–252.

    Article  PubMed  CAS  Google Scholar 

  67. Glockshuber, R., Malia, M., Pfitzinger, I. & Plückthun, A. (1990) A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29, 1362–1367.

    Article  PubMed  CAS  Google Scholar 

  68. Groves, M., Lane, S., Douthwaite, J., Lowne, D., Rees, D. G., Edwards, B. & Jackson, R. H. (2006) Affinity maturation of phage display antibody populations using ribosome display. J. Immunol. Methods 313, 129–139.

    Article  PubMed  CAS  Google Scholar 

  69. Binz, H. K., Stumpp, M. T., Forrer, P., Amstutz, P. & Plückthun, A. (2003) Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503.

    Article  PubMed  CAS  Google Scholar 

  70. Binz, H. K., Amstutz, P., Kohl, A., Stumpp, M. T., Briand, C., Forrer, P., Grütter, M. G. & Plückthun, A. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–582.

    Article  PubMed  CAS  Google Scholar 

  71. Wetzel, S. K., Ewald, C., Settanni, G., Jurt, S., Plückthun, A. & Zerbe, O. (2010) Residue-resolved stability of full-consensus ankyrin repeat proteins probed by NMR. J. Mol. Biol. 402, 241–258.

    Article  PubMed  CAS  Google Scholar 

  72. Wetzel, S. K., Settanni, G., Kenig, M., Binz, H. K. & Plückthun, A. (2008) Folding and unfolding mechanism of highly stable full-consensus ankyrin repeat proteins. J. Mol. Biol. 376, 241–257.

    Article  PubMed  CAS  Google Scholar 

  73. Milovnik, P., Ferrari, D., Sarkar, C. A. & Plückthun, A. (2009) Selection and characterization of DARPins specific for the neurotensin receptor 1. Protein Eng. Des. Sel. 22, 357–366.

    Article  PubMed  CAS  Google Scholar 

  74. Zahnd, C., Wyler, E., Schwenk, J. M., Steiner, D., Lawrence, M. C., McKern, N. M., Pecorari, F., Ward, C. W., Joos, T. O. & Plückthun, A. (2007) A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369, 1015–1028.

    Article  PubMed  CAS  Google Scholar 

  75. Schweizer, A., Roschitzki-Voser, H., Amstutz, P., Briand, C., Gulotti-Georgieva, M., Prenosil, E., Binz, H. K., Capitani, G., Baici, A., Plückthun, A. & Grütter, M. G. (2007) Inhibition of caspase-2 by a designed ankyrin repeat protein: specificity, structure, and inhibition mechanism. Structure 15, 625–636.

    Article  PubMed  CAS  Google Scholar 

  76. Zahnd, C., Pécorari, F., Straumann, N., Wyler, E. & Plückthun, A. (2006) Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J. Biol. Chem. 281, 35167–35175.

    Article  PubMed  CAS  Google Scholar 

  77. Amstutz, P., Koch, H., Binz, H. K., Deuber, S. A. & Plückthun, A. (2006) Rapid selection of specific MAP kinase-binders from designed ankyrin repeat protein libraries. Protein Eng. Des. Sel. 19, 219–229.

    Article  PubMed  CAS  Google Scholar 

  78. Amstutz, P., Binz, H. K., Parizek, P., Stumpp, M. T., Kohl, A., Grütter, M. G., Forrer, P. & Plückthun, A. (2005) Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280, 24715–24722.

    Article  PubMed  CAS  Google Scholar 

  79. Dreier, B., Mikheeva, G., Belousova, N., Parizek, P., Boczek, E., Jelesarov, I., Forrer, P., Plückthun, A. & Krasnykh, V. (2010) Her2-specific multivalent adapters confer designed tropism to adenovirus for gene targeting. J. Mol. Biol. 405, 410–426.

    Google Scholar 

  80. Veesler, D., Dreier, B., Blangy, S., Lichière, J., Tremblay, D., Moineau, S., Spinelli, S., Tegoni, M., Plückthun, A., Campanacci, V. & Cambillau, C. (2009) Crystal structure of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camelid VHH binding mode J. Biol. Chem. 384, 30718–30726.

    Google Scholar 

  81. Yau, K. Y., Dubuc, G., Li, S., Hirama, T., Mackenzie, C. R., Jermutus, L., Hall, J. C. & Tanha, J. (2005) Affinity maturation of a V(H)H by mutational hotspot randomization. J. Immunol. Methods 297, 213–224.

    Article  PubMed  CAS  Google Scholar 

  82. Perruchini, C., Pecorari, F., Bourgeois, J. P., Duyckaerts, C., Rougeon, F. & Lafaye, P. (2009) Llama VHH antibody fragments against GFAP: better diffusion in fixed tissues than classical monoclonal antibodies. Acta Neuropathol. 118, 685–695.

    Article  PubMed  CAS  Google Scholar 

  83. Cho, G. S. & Szostak, J. W. (2006) Directed evolution of ATP binding proteins from a zinc finger domain by using mRNA display. Chem. Biol. 13, 139–147.

    Article  PubMed  CAS  Google Scholar 

  84. Keefe, A. D. & Szostak, J. W. (2001) Functional proteins from a random-sequence library. Nature 410, 715–718.

    Article  PubMed  CAS  Google Scholar 

  85. Seelig, B. & Szostak, J. W. (2007) Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831.

    Article  PubMed  CAS  Google Scholar 

  86. Parker, M. H., Chen, Y., Danehy, F., Dufu, K., Ekstrom, J., Getmanova, E., Gokemeijer, J., Xu, L. & Lipovsek, D. (2005) Antibody mimics based on human fibronectin type three domain engineered for thermostability and high-affinity binding to vascular endothelial growth factor receptor two. Protein Eng. Des. Sel. 18, 435–444.

    Article  PubMed  CAS  Google Scholar 

  87. Xu, L., Aha, P., Gu, K., Kuimelis, R. G., Kurz, M., Lam, T., Lim, A. C., Liu, H., Lohse, P. A., Sun, L., Weng, S., Wagner, R. W. & Lipovsek, D. (2002) Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol. 9, 933–942.

    Article  PubMed  CAS  Google Scholar 

  88. Olson, C. A. & Roberts, R. W. (2007) Design, expression, and stability of a diverse protein library based on the human fibronectin type III domain. Protein Sci. 16, 476–484.

    Article  PubMed  CAS  Google Scholar 

  89. Fukuda, I., Kojoh, K., Tabata, N., Doi, N., Takashima, H., Miyamoto-Sato, E. & Yanagawa, H. (2006) In vitro evolution of single-chain antibodies using mRNA display. Nucleic Acids Res. 34, e127.

    Article  PubMed  CAS  Google Scholar 

  90. Shen, X., Valencia, C. A., Szostak, J. W., Dong, B. & Liu, R. (2005) Scanning the human proteome for calmodulin-binding proteins. Proc. Natl. Acad. Sci. U. S. A. 102, 5969–5974.

    Article  PubMed  CAS  Google Scholar 

  91. Doi, N. & Yanagawa, H. (1999) STABLE: protein-DNA fusion system for screening of combinatorial protein libraries in vitro. FEBS Lett. 457, 227–230.

    Article  PubMed  CAS  Google Scholar 

  92. Yonezawa, M., Doi, N., Higashinakagawa, T. & Yanagawa, H. (2004) DNA display of biologically active proteins for in vitro protein selection. J. Biochem. 135, 285–288.

    Article  PubMed  CAS  Google Scholar 

  93. Yonezawa, M., Doi, N., Kawahashi, Y., Higashinakagawa, T. & Yanagawa, H. (2003) DNA display for in vitro selection of diverse peptide libraries. Nucleic Acids Res. 31, e118.

    Article  PubMed  CAS  Google Scholar 

  94. Griffiths, A. D. & Tawfik, D. S. (2003) Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J. 22, 24–35.

    Article  PubMed  CAS  Google Scholar 

  95. Miller, O. J., Bernath, K., Agresti, J. J., Amitai, G., Kelly, B. T., Mastrobattista, E., Taly, V., Magdassi, S., Tawfik, D. S. & Griffiths, A. D. (2006) Directed evolution by in vitro compartmentalization. Nat. Methods 3, 561–570.

    Article  PubMed  CAS  Google Scholar 

  96. Sumida, T., Doi, N. & Yanagawa, H. (2009) Bicistronic DNA display for in vitro selection of Fab fragments. Nucleic Acids Res. 37, e147.

    Article  PubMed  CAS  Google Scholar 

  97. Dreier, B. & Plückthun, A. (2012) Rapid selection of high affinity binders using ribosome display. Methods Mol. Biol., 805, 261–286.

    Google Scholar 

  98. Bremer, H. & Dennis, P. P. (1996). Modulation of chemical composition and other parameters of the cell by growth rate. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhard, F. C., Curtiss, R., Ingraham, J. L., Lin, E. C. C., Low, K. B., Magasanik, B., Reznikoff, W. S., Riley, M., Schaechter, M. & Umbarger, H. E., eds.), Vol. 2, pp. 1553–1569. American Society for Microbiology Press, Washington, DC.

    Google Scholar 

  99. Northrup, S. H. & Erickson, H. P. (1992) Kinetics of protein–protein association explained by Brownian dynamics computer simulation. Proc. Natl. Acad. Sci. U. S. A. 89, 3338–3342.

    Article  PubMed  CAS  Google Scholar 

  100. Schreiber, G. & Fersht, A. R. (1996) Rapid, electrostatically assisted association of proteins. Nat. Struct. Biol. 3, 427–431.

    Article  PubMed  CAS  Google Scholar 

  101. Selzer, T., Albeck, S. & Schreiber, G. (2000) Rational design of faster associating and tighter binding protein complexes. Nat. Struct. Biol. 7, 537–541.

    Article  PubMed  CAS  Google Scholar 

  102. Berger, C., Weber-Bornhauser, S., Eggenberger, J., Hanes, J., Plückthun, A. & Bosshard, H. R. (1999) Antigen recognition by conformational selection. FEBS Lett. 450, 149–153.

    Article  PubMed  CAS  Google Scholar 

  103. Foote, J. & Milstein, C. (1994) Conformational isomerism and the diversity of antibodies. Proc. Natl. Acad. Sci. U. S. A. 91, 10370–10374.

    Article  PubMed  CAS  Google Scholar 

  104. Koshland, D. E. (1958) Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. U. S. A. 44, 98–104.

    Article  PubMed  CAS  Google Scholar 

  105. Hawkins, R. E., Russell, S. J. & Winter, G. (1992) Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J. Mol. Biol. 226, 889–896.

    CAS  Google Scholar 

  106. Jermutus, L., Honegger, A., Schwesinger, F., Hanes, J. & Plückthun, A. (2001) Tailoring in vitro evolution for protein affinity or stability. Proc. Natl. Acad. Sci. U.S.A. 98, 75–80.

    Article  PubMed  CAS  Google Scholar 

  107. Zahnd, C., Spinelli, S., Luginbühl, B., Amstutz, P., Cambillau, C. & Plückthun, A. (2004) Directed in vitro evolution and crystallographic analysis of a peptide binding scFv antibody with low picomolar affinity. J. Biol. Chem. 279, 18870–18877.

    Article  PubMed  CAS  Google Scholar 

  108. Zahnd, C., Sarkar, C. A. & Plückthun, A. (2010) Computational analysis of off-rate selection experiments to optimize affinity maturation by directed evolution. Protein Eng. Des. Sel. 23, 175–184.

    Article  PubMed  CAS  Google Scholar 

  109. Forrer, P., Jung, S. & Plückthun, A. (1999) Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr. Opin. Struct. Biol. 9, 514–520.

    Article  PubMed  CAS  Google Scholar 

  110. Amstutz, P., Forrer, P., Zahnd, C. & Plückthun, A. (2001) In vitro display technologies: Novel developments and applications. Curr. Opin. Biotechnol. 12, 400–405.

    Article  PubMed  CAS  Google Scholar 

  111. Zahnd, C., Amstutz, P. & Plückthun, A. (2007) Ribosome display: selecting and evolving proteins in vitro that specifically bind to a target. Nat. Methods 4, 269–279.

    Article  PubMed  CAS  Google Scholar 

  112. Lipovsek, D. & Plückthun, A. (2004) In-vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods 290, 51–67.

    Article  PubMed  CAS  Google Scholar 

  113. Seidelt, B., Innis, C. A., Wilson, D. N., Gartmann, M., Armache, J. P., Villa, E., Trabuco, L. G., Becker, T., Mielke, T., Schulten, K., Steitz, T. A. & Beckmann, R. (2009) Structural insight into nascent polypeptide chain-mediated translational stalling. Science 326, 1412–1415.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

My sincere thanks go to the many coworkers mentioned in the references who have developed and continuously improved the ribosome display technology over the years. I am grateful to Drs. Birgit Dreier, Oliver Scholz, Erik Sedlak and to Johannes Schilling for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Plückthun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Plückthun, A. (2012). Ribosome Display: A Perspective. In: Douthwaite, J., Jackson, R. (eds) Ribosome Display and Related Technologies. Methods in Molecular Biology, vol 805. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-379-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-379-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-378-3

  • Online ISBN: 978-1-61779-379-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics