Skip to main content

Microcoil NMR Spectroscopy: a Novel Tool for Biological High Throughput NMR Spectroscopy

  • Protocol
Structural Proteomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 426))

Microcoil NMR spectroscopy is based on the increase of coil sensitivity for smaller coil diameters (approximately 1/d). Microcoil NMR probes deliver a remarkable mass-based sensitivity increase (8- to 12-fold) when compared with commonly used 5-mm NMR probes. Although microcoil NMR probes are a well established analytical tool for small molecule liquid-state NMR spectroscopy, after spectroscopy only recently have microcoil NMR probes become available for biomolecular NMR spectroscopy. This chapter highlights differences between commercially available microcoil NMR probes suitable for biomolecular NMR spectroscopy. Furthermore, it provides practical guidance for the use of microcoil probes and shows direct applications for structural biology and structural genomics, such as optimal target screening and structure determination, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wüthrich, K. (2003) NMR studies of structure and function of biological macromolecules (Nobel lecture). J. Biomol. NMR 27, 13–39.

    Article  PubMed  Google Scholar 

  2. Hewitt, L., and McDonnell, J. M. (2004) Screening and optimizing protein production in E. coli. Methods Mol. Biol. 278, 1–16.

    CAS  PubMed  Google Scholar 

  3. Lesley, S. A., Kuhn, P., Godzik, A., Deacon, A. M., Mathews, I., Kreusch, A., Spraggon, G., Klock, H. E., McMullan, D., Shin, T., Vincent, J., Robb, A., Brinen, L. S., Miller, M. D., McPhillips, T. M., Miller, M. A., Scheibe, D., Canaves, J. M., Guda, C., Jaroszewski, L., Selby, T. L., Elsliger, M. A., Wooley, J., Taylor, S. S., Hodgson, K. O., Wilson, I. A., Schultz, P. G., and Stevens, R. C. (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high throughput structure determination pipeline. Proc. Natl. Acad. Sci. USA 99, 11664–11669.

    Article  CAS  PubMed  Google Scholar 

  4. Lesley, S. A., and Wilson, I. A. (2005) Protein production and crystallization at the joint center for structural genomics. J. Struct. Funct. Genom. 6, 71–79.

    Article  CAS  Google Scholar 

  5. Kennedy, M. A., Montelione, G. T., Arrowsmith, C. H., and Markley, J. L. (2002) Role for NMR in structural genomics. J. Struct. Funct. Genom. 2, 155–169.

    Article  CAS  Google Scholar 

  6. Yee, A., Gutmanas, A., and Arrowsmith, C. H. (2006) Solution NMR in structural genomics. Curr. Opin. Struct. Biol. 6, 611–617.

    Article  Google Scholar 

  7. Peti, W., and Page, R. (2007) Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr. Purif. 51, 1–10.

    Article  CAS  PubMed  Google Scholar 

  8. Pervushin, K., Riek, R., Wider, G., and Wüthrich, K. (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl. Acad. Sci. USA 94, 12366–12371.

    Article  CAS  PubMed  Google Scholar 

  9. Styles, P., Soffe, N. F., Scott, C. A., Cragg, D. A., Row, F., White, D. J., and White, P.C. J. (1984) A high-resolution NMR probe in which the coil and preamplifier are cooled with liquid helium. J. Magn. Reson. 60, 397–404.

    CAS  Google Scholar 

  10. Styles, P., Soffe, N. F., and Scott, C. A. (1989) An improved cryogenically cooled probe for high-resolution NMR. J. Magn. Reson. 84, 376–378.

    Google Scholar 

  11. Hajduk, P. J., Gerfin, T., Boehlen, J. M., Haberli, M., Marek, D., and Fesik, S. W. (1999) High throughput nuclear magnetic resonance-based screening. J. Med. Chem. 42, 2315–2317.

    Article  CAS  PubMed  Google Scholar 

  12. Olson, D. L., Norcross, J. A., O'Neil-Johnson, M., Molitor, P. F., Detlefsen, D. J., Wilson, A. G., and Peck, T. L. (2004) Microflow NMR: concepts and capabilities. Anal. Chem. 76, 2966–2974.

    Article  CAS  PubMed  Google Scholar 

  13. Olson, D. L., Peck, T. L., Webb, A. G., Magin, R. L., and Sweedler, J. V. (1995) High-resolution microcoil 1h-nmr for mass-limited, nanoliter-volume samples. Science 270, 1967–1970.

    Article  CAS  Google Scholar 

  14. Peck, T. L., Magin, R. L., and Lauterbur, P. C. (1995) Design and analysis of microcoils for NMR microscopy. J. Magn. Reson. B 108, 114–124.

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y., Logan, T. M., Edison, A. S., and Webb, A. (2003) Design of small volume HX and triple-resonance probes for improved limits of detection in protein NMR experiments. J. Magn. Reson. 164, 128–135.

    Article  CAS  PubMed  Google Scholar 

  16. Peti, W., Norcross, J., Eldridge, G., and O'Neil-Johnson, M. (2004) Biomolecular NMR using a microcoil NMR probe—new technique for the chemical shift assignment of aromatic side chains in proteins. J. Am. Chem. Soc. 126, 5873–5878.

    Article  CAS  PubMed  Google Scholar 

  17. Peti, W., Page, R., Moy, K., O'Neil-Johnson, M., Wilson, I. A., Stevens, R. C., and Wüthrich, K. (2005) Towards miniaturization of a structural genomics pipeline using microexpression and microcoil NMR. J. Struct. Funct. Genom. 6, 259–267.

    Article  CAS  Google Scholar 

  18. Schroeder, F. C., and Gronquist, M. (2006) Extending the scope of NMR spectroscopy with microcoil probes. Angew Chem. Int. Ed. Engl. 45, 7122–7131.

    Article  CAS  PubMed  Google Scholar 

  19. Olson, D. L., Lacey, M. E., and Sweedler, J. V. (1998) High-resolution microcoil NMR for analysis of mass-limited, nanoliter samples. Anal. Chem. 70, 645–650.

    Article  CAS  PubMed  Google Scholar 

  20. Webb, A. G. (2005) Microcoil nuclear magnetic resonance spectroscopy. J. Pharm. Biomed. Anal. 38, 892–903.

    Article  CAS  PubMed  Google Scholar 

  21. Eldridge, G. R., Vervoort, H. C., Lee, C. M., Cremin, P. A., Williams, C. T., Hart, S. M., Goering, M. G., O'Neil-Johnson, M., and Zeng, L. (2002) High throughput method for the production and analysis of large natural product libraries for drug discovery. Anal. Chem. 74, 3963–3971.

    Article  CAS  PubMed  Google Scholar 

  22. Wider, G., Hosur, R. V., and Wüthrich, K. (1983) Suppression of the solvent resonance in 2D NMR spectra of proteins in H2O solution. J. Magn. Reson. 52, 130–135.

    CAS  Google Scholar 

  23. Piotto, M., Saudek, V., and Sklenar, V. (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665.

    Article  CAS  PubMed  Google Scholar 

  24. Kay, L. E. (1995) Field gradient techniques in NMR spectroscopy. Curr. Opin. Struct. Biol. 5, 674–681.

    Article  CAS  PubMed  Google Scholar 

  25. Schleucher, J., Schwendinger, M., Sattler, M., Schmidt, P., Schedletzky, O., Glaser, S. J., Sorensen, O. W., and Griesinger, C. (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 4, 301–306.

    Article  CAS  PubMed  Google Scholar 

  26. Weiger, M., Speck, T., and Fey, M. (2006) Gradient shimming with spectrum optimisation. J. Magn. Reson. 182, 38–48.

    Article  CAS  PubMed  Google Scholar 

  27. Rehm, T., Huber, R., and Holak, T. A. (2002) Application of NMR in structural proteomics: screening for proteins amenable to structural analysis. Structure 10, 1613–1618.

    Article  CAS  PubMed  Google Scholar 

  28. Page, R., Peti, W., Wilson, I. A., Stevens, R. C., and Wüthrich, K. (2005) NMR screening and crystal quality of bacterially expressed prokaryotic and eukaryotic proteins in a structural genomics pipeline. Proc. Natl. Acad. Sci. USA 102, 1901–1905.

    Article  CAS  PubMed  Google Scholar 

  29. Snyder, D. A., Chen, Y., Denissova, N. G., Acton, T., Aramini, J. M., Ciano, M., Karlin, R., Liu, J., Manor, P., Rajan, P. A., Rossi, P., Swapna, G. V., Xiao, R., Rost, B., Hunt, J., and Montelione, G. T. (2005) Comparisons of NMR spectral quality and success in crystallization demonstrate that NMR and X-ray crystallography are complementary methods for small protein structure determination. J. Am. Chem. Soc. 127, 16505–16511.

    Article  CAS  PubMed  Google Scholar 

  30. Yee, A. A., Savchenko, A., Ignachenko, A., Lukin, J., Xu, X., Skarina, T., Evdokimova, E., Liu, C. S., Semesi, A., Guido, V., Edwards, A. M., and Arrowsmith, C. H. (2005) NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J. Am. Chem. Soc. 127, 16512–16517.

    Article  CAS  PubMed  Google Scholar 

  31. Page, R., Moy, K., Sims, E. C., Velasquez, J., McManus, B., Grittini, C., Clayton, T. L., and Stevens, R. C. (2004) Scalable high throughput microexpression device for recombinant proteins. Biotechniques 37, 364, 366, 368 passim.

    CAS  PubMed  Google Scholar 

  32. Pantazatos, D., Kim, J. S., Klock, H. E., Stevens, R. C., Wilson, I. A., Lesley, S. A., and Woods, V. L., Jr. (2004) Rapid refinement of crystallographic protein construct definition employing enhanced hydrogen/deuterium exchange MS. Proc. Natl. Acad. Sci. USA 101, 751–756.

    Article  CAS  PubMed  Google Scholar 

  33. Spraggon, G., Pantazatos, D., Klock, H. E., Wilson, I. A., Woods, V. L., Jr., and Lesley, S. A. (2004) On the use of DXMS to produce more crystallizable proteins: structures of the T. maritima proteins TM0160 and TM1171. Protein Sci. 13, 3187–3199.

    Article  CAS  PubMed  Google Scholar 

  34. Carlomagno, T., Maurer, M., Sattler, M., Schwendinger, M. G., Glaser, S. J., and Griesinger, C. (1996) PLUSH TACSY: Homonuclear planar TACSY with two-band selective shaped pulses applied to C-alpha, C'transfer, and C-beta, C-aromatic correlations. J. Biomol. NMR 8, 161–170.

    Article  CAS  Google Scholar 

  35. Grzesiek, S., and Bax, A. (1995) Audio-frequency NMR in a nutating frame. Application to the assignment of phenylalanine residues in isotopically enriched proteins. J. Am. Chem. Soc. 117, 6527–6531.

    Article  CAS  Google Scholar 

  36. Prompers, J. J., Groenewegen, A., Hilbers, C. W., and Pepermans, H. A. M. (1998) Two-dimensional NMR experiments for the assignment of aromatic side chains in 13c-labeled proteins. J. Magn. Reson. 130, 68–75.

    Article  CAS  PubMed  Google Scholar 

  37. Yamazaki, T., Forman-Kay, J. D., and Kay, L. E. (1993) Two-dimensional NMR experiments for correlating 13Cβ and 1Hδ/ε chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J. Am. Chem. Soc. 115, 11054–11055.

    Article  CAS  Google Scholar 

  38. Aramini, J. M., Rossi, P., Anklin, C., and Montelione, G. T. (2006) in Experimental NMR Conference Poster Presentation, Asilomar, CA.

    Google Scholar 

  39. Aramini, J. M., Rossi, P., Anklin, C., Xiao, R., and Montelione, G. T. (2007) Microgram-scale protein structure determination by NMR. Nature Methods 4, 491–493.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mark O'Neil-Johnson (Sequoia Sciences) for support and encouragement for the microcoil measurements and Timothy Peck (M. R. M.) for discussions. W. P. thanks his laboratory members, especially Tingting Ju, Matthew Kelker, and Barbara Dancheck, for discussions and critical reading of the manuscript. W. P. is the Manning Assistant Professor for Medical Science at Brown University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hopson, R.E., Peti, W. (2008). Microcoil NMR Spectroscopy: a Novel Tool for Biological High Throughput NMR Spectroscopy. In: Kobe, B., Guss, M., Huber, T. (eds) Structural Proteomics. Methods in Molecular Biology™, vol 426. Humana Press. https://doi.org/10.1007/978-1-60327-058-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-058-8_30

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-809-6

  • Online ISBN: 978-1-60327-058-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics