Skip to main content

Rapid System for Evaluating Bioproduction Capacity of Complex Pharmaceutical Proteins in Plants

  • Protocol
Recombinant Proteins From Plants

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 483))

Summary

Transgene product yield remains a key limitation in commercializing plant-derived pharmaceutical proteins. Although significant progress has been made in understanding the roles of promoters, enhancers, integration sites, codon usage, cryptic RNA sites, silencing, and product compartmentalization on product yield and quality, researchers still cannot reliably predict which proteins will be produced at high levels or what manipulations will guarantee enhanced productivity. We have optimized a simple transient expression system in Nicotiana benthamiana enabling rapid assessment of transgene potential for plant-based bioproduction. Briefly, intact Nicotiana benthamiana plants are vacuum-infiltrated with Agrobacterium tumefaciens cultures carrying the transgene of interest. After 48–96 h of further incubation, leaves are harvested for protein characterization. Using the immunomodulator interleukin-12 as a model pharmaceutical protein, we obtained bioactive recombinant protein at levels exceeding 5% of total soluble leaf protein. Appropriately assembled multimeric proteins have also been obtained following coinfiltration with Agrobacterium tumefaciens strains individually encoding each subunit. This system provides a rapid source of transgene product for assessing posttranslational modifications, purification strategies, and bioactivity as well as an effective system for optimizing construct elements. For vaccines, product purified from two to eight plants may support mouse vaccination trials providing efficacy and immune assessment data early in the development process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fischer, R., Stoger, E., Schillberg, S., Christou, P., and Twyman, R. (2004) Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158.

    Article  CAS  PubMed  Google Scholar 

  2. Guillon, S., Tremouillaux-Guiller, J., Pati, P. K., Rideau, M., and Gantet, P. (2006) Hair y root research: Recent scenario and exciting prospects. Curr. Opin. Plant Biol. 9, 1–6.

    Article  Google Scholar 

  3. Cramer, C. L., Boothe, J. G., and Oishi, K. K. (1999) Transgenic plants for therapeutic proteins: Linking upstream and downstream strategies. Plant Biothecnol. 240, 95–118.

    CAS  Google Scholar 

  4. Garmory, H. S., Brown, K. A., and Titball, R. W. (2003) DNA vaccines: Improving expression of antigens. Genet. Vaccines Ther. 1, 2.

    Article  PubMed  Google Scholar 

  5. Voinnet, O., Rivas, S., Mestre, P., and Baulcome, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956.

    Article  CAS  PubMed  Google Scholar 

  6. Knablein, J. (2005) Plant-based expression of biopharmaceuticals,in Encyclopedia of Molecular Cell Biology and Molecular Medicine (Meyers, R. A., ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 385–410.

    Google Scholar 

  7. Porta, C., Spall, V. E., Lin, T., Johnson, J. E., and Lomonossoff, G. P. (1996) The development of cowpea mosaic virus as a potential source of novel vaccines. Intervirology 39, 79–84.

    CAS  PubMed  Google Scholar 

  8. Stoger, E., Sack, M., Fischer, R., and Christou, P. (2002) Plantibodies: Applications, advantages and bottlenecks. Curr. Opin. Biotechnol. 13, 161–166.

    Article  CAS  PubMed  Google Scholar 

  9. Sheludko, Y. V., Sindarovska, Y. R., Gerasymenko, I. M., Bannikova, M. A., and Kuchuk, N. V. (2006) Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression. Biotechnol. Bioeng. 96, 608–614.

    Article  Google Scholar 

  10. Ahmad, M. and Mirza, B. (2005) An efficient protocol for transient transformation of intact fruit and transgene expression in citrus. Plant Mol. Biol. Rep. 23, 419a–419k.

    Article  Google Scholar 

  11. Sindarovska, Y. R., Gerasymenko, I. M., Sheludko, Y. V., Komarnytskyy, I. K., Ban-nikova, M. A., and Kuchuk, N. V. (2005) Transgenic plants regenerated from hairy roots of Nicotiana benthamiana : A promising host for transient expression of foreign proteins. Cytology and Genetics 39, 9–14.

    CAS  PubMed  Google Scholar 

  12. Wydro, M., Kozubek, E., and Lehmann, P. (2006) Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana. Acta. Biochim. Pol. 53, 289–298.

    CAS  PubMed  Google Scholar 

  13. Thomas, C. L., Leh, V., Lederer, C., and Maule, A. J. (2003) Turnip crinkle virus coat protein mediates suppression of RNA silencing in Nicotiana benthamiana. Virology 306, 33–41.

    Article  CAS  PubMed  Google Scholar 

  14. Marillonnet, S., Giritch, A., Gils, M., Kanzia, R., Klimyuk, V., and Gleba, Y. (2004) In planta engineering of viral RNA repli-cons: Efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc. Natl. Acad. Sci. USA 101, 6852–6857.

    Article  CAS  PubMed  Google Scholar 

  15. Kapila, J., DeRycke, R., VanMontagu, M., and Angenon, G. (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122, 101–108.

    Article  CAS  Google Scholar 

  16. Kay, R., Chan, A., Daly, M., and McPherson, J. (1987) Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science 236, 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  17. Carrington, J. C. and Freed, D. D. (1990) Cap-independent enhancement of translation by a plant potyvirus 5' nontranslational region. J. Virol. 64, 1590–1597.

    CAS  PubMed  Google Scholar 

  18. Becker, D. (1990) Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res. 18, 203.

    Article  CAS  PubMed  Google Scholar 

  19. Adorini, L. (1999) Interleukin-12, a key cytokine in Th1-mediated autoimmune diseases. Cell. Mol. Life Sci. 55, 1610–1625.

    Article  CAS  PubMed  Google Scholar 

  20. Fieschi, C. and Casanova, J. (2003) Minireview: The role of interleukin-12 in human infectious diseases: Only a faint signature. Eur. J. Immunol. 33, 1461–1464.

    Article  CAS  PubMed  Google Scholar 

  21. Lieschke, G. J., Rao, P. K., Gately, M. K., and Mulligan, R. C. (1997) Bioactive murine and human interleukin-12 fusion proteins which retain antitumor activity in vivo. Nat. Biotechnol. 15, 35–40.

    Article  CAS  PubMed  Google Scholar 

  22. Hellens, R., Mullineaux, P., and Klee, H. (2000) Technical focus: A guide to Agrobacterium binary Ti Vectors. Trends Plant Sci. 5, 446–451.

    Article  CAS  PubMed  Google Scholar 

  23. Holsters, M., de Waele, D., Depicker, A., Messens, E., Van Montangu, M., and Schell, J. (1978) Transfection and transformation of A. tumefaciens. Mol. Gen. Genet. 163, 181–187.

    Article  CAS  PubMed  Google Scholar 

  24. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant. 15, 473–479.

    Article  CAS  Google Scholar 

  25. Clough, S. J. and Bent, A. F. (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J., Dolan, M. C., Reidy, M. J., and Cramer, C. L. (2008) Expression of bioac-tive single-chain murine IL-12 in transgenic plants. J. Interferon Cytokine Res. 28, 27–38.

    Article  Google Scholar 

Download references

Acknowledgments

Research supporting the optimization and utilization of this method was supported by a grant to Drs. Cramer and Dolan from the Arkansas Biosciences Institute funded by the Arkansas Tobacco Settlement Commission.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Medrano, G., Reidy, M.J., Liu, J., Ayala, J., Dolan, M.C., Cramer, C.L. (2009). Rapid System for Evaluating Bioproduction Capacity of Complex Pharmaceutical Proteins in Plants. In: Faye, L., Gomord, V. (eds) Recombinant Proteins From Plants. Methods in Molecular Biology™, vol 483. Humana Press. https://doi.org/10.1007/978-1-59745-407-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-407-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-978-9

  • Online ISBN: 978-1-59745-407-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics