Skip to main content

Cerebral Metabolism

Implications for Neurocritically Ill Patients

  • Chapter
Critical Care Neurology and Neurosurgery

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

An understanding of normal cerebral metabolism and of the response of metabolism to pathological derangements is helpful in the management of the critically ill patient with neurological disorders. This article reviews the basic principles of cerebral metabolism, especially the relationship between cerebral metabolism and cerebral blood flow (CBF) in normal physiology and in the pathological states associated with traumatic brain injury (TBI), cerebral ischemia, cerebral edema, and intracranial hypertension. Management of secondary brain insults and the methods available for monitoring cerebral metabolism will also be discussed as a practical review of how cerebral metabolic derangements are managed in the neurosciences critical care unit (NSU).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wade OL, Bishop JM. Cardiac output and Regional Blood Flow. Oxford: Blackwell Scientific Publications, 1962.

    Google Scholar 

  2. Go KG. The cerebral blood supply. Energy metabolism of the brain. In: Go KG, ed. Cerebral Pathophysiology Amsterdam: Elsevier, 1991, pp. 66–172.

    Google Scholar 

  3. Astrup J. Energy requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy. J. Neurosurg. 1982; 56: 482–97.

    Article  PubMed  CAS  Google Scholar 

  4. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiological neural activity. Science 1988; 241: 462–464.

    Article  PubMed  CAS  Google Scholar 

  5. Prichard J, Rothman D, Norothy E, et al. Lactate rise detected by HNMR in visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. USA 1991; 88: 5829–5831.

    Article  PubMed  CAS  Google Scholar 

  6. Hatazawa J, Matsuzawa T, Ido T, Watanuki S. Measurement of the ratio of cerebral oxygen consumption to glucose utilization by positron emission tomography: Its consistency with values determined by Kety Schmidt method in normal volunteers. J. Cereb. Blood Flow Metab. 1988; 8: 426–432.

    Article  PubMed  CAS  Google Scholar 

  7. Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman lP, Holm S, Paulsen OB. Brain metabolism during short-term starvation in humans. J. Cereb. Blood Flow Metab. 1994; 14: 125–131.

    Article  PubMed  CAS  Google Scholar 

  8. Hasselbalch SG, Madsen PL, Hageman LP, Olsen KS, Justesen N, Holm S, Paulsen OB. Changes in cerebral blood flow and carbohydrate metabolism during acute hyperketonemia. Am. J. Physiol. 1996; 270: E746–E751.

    PubMed  CAS  Google Scholar 

  9. Tsacopoulos M, Magiestretti PJ. Metabolic coupling between glia and neurons. J. Neuroscience 1996; 16: 877–885.

    CAS  Google Scholar 

  10. Chih C-P, Lipton P, Roberts EL Jr. Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci. 2001; 24: 573–578.

    Article  PubMed  CAS  Google Scholar 

  11. Andersen BJ, Marmarou A. Post-traumatic selective stimulation of glycolysis. Brain Res. 1992; 585: 184–189.

    Article  PubMed  CAS  Google Scholar 

  12. Yoshino A, Hovda DA, Kawamata T, et al. Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: Evidence of a hyper-and subsequent hypometabolic state. Brain Res. 1991; 561: 106–119.

    Article  PubMed  CAS  Google Scholar 

  13. Yang M, De Witt D, Becker D, et al. Regional brain metabolite levels following mild experimental head injury in cat. J. Neurosurg. 1985; 63: 617.

    Article  PubMed  CAS  Google Scholar 

  14. Kawamata T, Katayama Y, Hovda DA, et al. Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. J Cereb. Blood Flow Metab. 1992; 12: 12–24.

    Article  PubMed  CAS  Google Scholar 

  15. Hovda DA, Lee SM, Smith ML, et al. The neurochemical and metabolic cascade following brain injury: moving from animal models to man. J. Neurotrauma 1995; 12: 903–906.

    Article  PubMed  CAS  Google Scholar 

  16. Bergsneider M, Hovda DA, Shalmon E, et al. Cerebral hyperglycolysis following severe human traumatic brain injury in humans: A positron emission tomography study. J. Neurosurg. 1997; 86: 241–245.

    Article  PubMed  CAS  Google Scholar 

  17. Obrist WD, Langfitt TW, Jaggi JL, et al. Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J. Neurosurg. 1984; 61: 241–253.

    Article  PubMed  CAS  Google Scholar 

  18. Jaggi JL, Obrist WD, Genarelli TA, et al. Relationship of early cerebral blood flow and metabolism to outcome in acute head injury. J. Neurosurg. 1990; 72: 176–182.

    Article  PubMed  CAS  Google Scholar 

  19. Robertson CS, Contant CF, Gokaslan ZL, et al. Cerebral blood flow, arteriovenous oxygen difference and outcome in head injured patients. J. Neurol. Neurosurg. Psych. 1992; 55: 594–603.

    Article  CAS  Google Scholar 

  20. Muizelaar JP, Marmarou A, De Salles AA, et al. Cerebral blood flow and metabolism in severely head injured children. Part 1: Relationship with GCS score, outcome, ICP, and PVI. J. Neurosurg. 1989; 71: 63–71.

    Article  PubMed  CAS  Google Scholar 

  21. Robertson CS, Clifton GL, Grossman RG, et al. Alterations in cerebral availability of metabolic substrates after severe head injury. J. Trauma 1988; 28: 1523–1532.

    Article  PubMed  CAS  Google Scholar 

  22. Robertson CS, Goodman JC, Narayan RK, et al. Effect of glucose administration on carbohydrate metabolism after head injury. J. Neurosurg. 1991; 74: 43–50

    Article  PubMed  CAS  Google Scholar 

  23. Bouma GJ, Muizelaar JP, et al. Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J. Neurosurg. 1991; 75: 685–693.

    Article  PubMed  CAS  Google Scholar 

  24. Robertson CS, Grossman R, Goodman C, et al. The predictive value of cerebral anaerobic metabolism with cerebral infarction after head injury. J. Neurosurg. 1987; 67: 361–368.

    Article  PubMed  CAS  Google Scholar 

  25. Bergsneider M, Hovda DA, Lee SM, et al. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J. Neurotrauma 2000; 17: 389–401.

    Article  PubMed  CAS  Google Scholar 

  26. Inao S, Mamarou A, Clarke G, et al. Production and clearance of lactate from brain tissue, cerebrospinal fluid, serum following experimental brain injury. J. Neurosurg. 1988; 69: 736.

    Article  PubMed  CAS  Google Scholar 

  27. De Salles A, Muizelaar J, Young H. Hyperglycemia, cerebrospinal fluid lactic acidosis, and cerebral blood flow in severely head injured patients. Neurosurgery 1987; 21: 45–50.

    Article  PubMed  Google Scholar 

  28. Martin NA, Patwardhan RV, Alexander MJ, et al. Characterization of cerebral hemodynamic phases following severe head trauma: Hypoperfusion, hyperemia, and vasospasm. J. Neurosurg. 1997; 87: 9–19.

    Article  PubMed  CAS  Google Scholar 

  29. Morawetz RB, Krowell RH, DeGirolami U, et al. Regional cerebral blood flow thresholds during cerebral ischemia. Fed. Proc. 1979; 38: 2493–2494.

    PubMed  CAS  Google Scholar 

  30. Astrup J, Symon L, Branston NM, et al. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 1977; 8: 51–57.

    Article  PubMed  CAS  Google Scholar 

  31. Morawetz RB, DeGirolami U, Ojemann RG, et al. Cerebral blood flow determined by hydrogen clearance during middle cerebral artery occluion in unanesthetized monkeys. Stroke 1978; 9: 143–149.

    Article  PubMed  CAS  Google Scholar 

  32. Gopinath SP, Valadka AB, Uzura M, Robertson CS. Comparison of jugular venous O2 saturation and brain tissue pO2 as monitors of cerebral ischemia after head injury. Crit. Care Med. 1999; 27: 2337–2345.

    Article  PubMed  CAS  Google Scholar 

  33. Hegstad E, Berg-Johnsen J, Haugstad TS, Hauglie-Hanssen E, Langmoen IA. Amino acid release from human cerebral cortex during simulated ischemia in vitro. Acto Neurochir (Wien) 1996;138:234–241.

    Google Scholar 

  34. Gopinath SP, Robertson CS, Contant CF, et al. Jugular venous desaturation and outcome after head injury. J. Neurol. Neurosurg. Psych. 1994; 57: 712–723.

    Article  Google Scholar 

  35. Obrist WD, Langfitt TW, Jaggi JL, et al. Cerebral blood flow and metabolism in comatose patients with acute head injury. Relationship to intracranial hypertension. J. Neurosurg. 1984; 61: 241–253.

    Article  PubMed  CAS  Google Scholar 

  36. Kelly DF, Kordestani RK, Martin NA, et al. Hyperemia following traumatic brain injury: relation to intracranial hypertension and outcome. J. Neurosurg. 1996; 85: 762–771.

    Article  PubMed  CAS  Google Scholar 

  37. Bruce DA, Alavi A, Bilaniuk L, Dolinskas C, Obrist W, Uzzell B. Diffuse cerebral swelling following head injuries in children: the syndrome of “malignant brain edema.” J. Neurosurg. 1981; 54: 170–178.

    Article  PubMed  CAS  Google Scholar 

  38. Kita H, Marmarou A. The cause of acute brain swelling after the closed head injury in rats. Acta. Neurochir. Suppl. (Wien) 1994; 60: 452–455.

    CAS  Google Scholar 

  39. Marmarou A, Barzo P, Fatouros P, Yamamoto T, Bullock R, Young H, Traumatic brain swelling in head injured patients: brain edema or vascular engorgement? Acta. Neurochir. Suppl. (Wien) 1997; 70: 68–70.

    CAS  Google Scholar 

  40. Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F. Biphasic pathophysiological response of vasogenic and cellular edema in traumatic brain swelling. Acta. Neurochir. Suppl. (Wien) 1997; 70: 119–122.

    CAS  Google Scholar 

  41. Ito J, Marmarou A, Barzo P, Fatouros P, Corwin F. Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J. Neurosurg. 1996; 84: 97–103.

    Article  PubMed  CAS  Google Scholar 

  42. Andrews BT, Chiles BW III, Oslen WL, et al. The effect of intracerebral hematoma location on the risk of brain stem compression and on clinical outcome. J. Neurosurg. 1988; 69: 518–522.

    Article  PubMed  CAS  Google Scholar 

  43. Kety SS, Schmidt CF. The nitrous oxide method for quantitative determination of CBF in man: Theory, procedure, and normal values. J. Clin. Invest. 1948; 27: 476–483.

    Article  PubMed  CAS  Google Scholar 

  44. Robertson CS. Measurement of CBF and measurement of metabolism in severe head injury using Kety-Schmidt technique. Acta. Neurochir. (Wien) 1993; 59 (Suppl): 25–27.

    CAS  Google Scholar 

  45. Sharples PM, Stuart AG, Aynsley-Green A, et al. A practical method of serial bedside measurement of CBF and metabolism during neurointensive care. Arch. Dis. Child. 1991; 66: 1326–1332.

    Article  PubMed  CAS  Google Scholar 

  46. van Santbrink H, Mass AIR, Avezaat CJJ. Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery 1996; 38: 21–31.

    Article  PubMed  Google Scholar 

  47. Zauner A, Doppenberg E, Woodward JJ, et al. Multiparametric continuous monitoring of brain metabolism and substrate delivery in neurosurgical patients. Neurol. Res. 1997; 19: 265–273.

    PubMed  CAS  Google Scholar 

  48. Kiening KL, Unterberg AW, Bardt TF, et al. Monitoring of cerebral oxygenation in patients with severe head injuries: Brain tissue PO2 versus jugular vein oxygen saturation. J. Neurosurg. 1996; 85: 751–757.

    Article  PubMed  CAS  Google Scholar 

  49. De Witt DS, Jenkins LW, Prough DS. Enhanced vulnerability to secondary ischemic insults after experimental TBI. New Horizon 1995; 3: 372–383.

    Google Scholar 

  50. Signorini DF, Andrews PJ, Jones PA, Wardlaw J, Miller JD. Adding insult to injury: The prognostic value of early secondary insult for survival after traumatic brain injury. J. Neurol. Neurosurg. Psych. 1999; 66 (1): 26–31.

    Article  CAS  Google Scholar 

  51. Miller JD, Sweet RC, Narayan RK, et al. Early insults to the injured brain. JAMA 1978; 240: 439–442.

    Article  PubMed  CAS  Google Scholar 

  52. Chestnut RM, Marshall LF, Klauber MR, et al. The role of secondary brain injury in determining outcome for severe head injury. J. Trauma 1993; 34: 216–222.

    Article  Google Scholar 

  53. Chambers IR, Treadwell L, Mendelow AD. The cause and incidence of secondary insults in severe head injury—adults and children. Br. J. Neurosurg. 2000; 14: 424–431.

    Article  PubMed  CAS  Google Scholar 

  54. Sarrafzadeh AS, Peltonen EE, Kaisers U, Kuchler I, Lanksch WR, Unterberg AW. Secondary insults in severe head injury. Crit. Care Med. 2001; 29: 1116–1123.

    Article  PubMed  CAS  Google Scholar 

  55. Rowe GG, Maxwell GM, Castillo CA, Freeman DJ, Crumpton CW. A study in man of cerebral blood flow and cerebral glucose, lactate and pyruvate metabolism before and after eating. J. Clin. Invest. 1959; 38: 2154–2158.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Briones-Galang, M., Robertson, C. (2004). Cerebral Metabolism. In: Suarez, J.I. (eds) Critical Care Neurology and Neurosurgery. Current Clinical Neurology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-660-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-660-7_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-350-3

  • Online ISBN: 978-1-59259-660-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics