Skip to main content

Advertisement

Log in

Cerebral Microdialysis in Neurocritical Care

  • Neurotrauma (D Sandsmark, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

A major goal in neurocritical care is to monitor for and prevent secondary brain injuries. However, injuries occurring at the cellular and molecular levels evade detection by conventional hemodynamic monitoring and the neurological exam. Cerebral microdialysis (CMD) is an invasive means of providing nearly continuous measurements of cerebral metabolism and is a promising tool that can detect signs of cellular distress before systemic manifestations of intracranial catastrophe.

Recent Findings

In this review, we describe the technique of CMD and the common biomarkers used to monitor cerebral energy metabolism. We examine the published evidence on how CMD data reflect secondary injuries and improve understanding of the pathophysiology of traumatic brain injury (TBI) and aneurysmal subarachnoid hemorrhage. We also discuss some of the caveats of the technique, including how CMD probe position affect the sensitivity of capturing energy failures, and how abnormal levels of cerebral glucose and lactate can reflect different states of cerebral energy metabolism.

Summary

In order to best incorporate cerebral metabolic monitoring into the management of neurocritical care patients, neurointensivists must be familiar with the nuances in the limitations as well as the interpretations of data obtained from cerebral microdialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

acetyl-coA:

Acetyl-coenzyme

A. ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

FAD2+ :

Flavin adenine dinucleotide (oxidized form)

FADH2 :

Flavin adenine dinucleotide (reduced form)

G-6-P:

Glucose-6-phosphate

Glu1:

Glucose transporter 1

Glu3:

Glucose transporter 3

LDH1:

Lactate dehydrogenase 1

LDH5:

Lactate dehydrogenase 5

MCT:

Monocarboxylate transporter

NAD+ :

Nicotinamide adenine dinucleotide (oxidized form)

NADH:

Nicotinamide adenine dinucleotide (reduced form)

Pi:

Phosphate

PPP:

Pentose phosphate pathway

TCA:

Tricarboxylic acid (citric acid)

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Stein NR, McArthur DL, Etchepare M, Vespa PM. Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care. 2012;17:49–57.

    PubMed  Google Scholar 

  2. de Lima Oliveira M, Kairalla AC, Fonoff ET, Martinez RCR, Teixeira MJ, Bor-Seng-Shu E. Cerebral microdialysis in traumatic brain injury and subarachnoid hemorrhage: state of the art. Neurocrit Care. 2013;21:152–62.

    Google Scholar 

  3. Carre E, Ogier M, Boret H, Montcriol A, Bourdon L, Risso JJ. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg? Front Neurol. 2013;4:1–6.

    Google Scholar 

  4. Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.

    CAS  PubMed  Google Scholar 

  5. Bungay PM, Dedrick RL, Fox E, Balis FM. Probe calibration in transient microdialysis in vivo. Pharm Res. 2001;18:361–6.

    CAS  PubMed  Google Scholar 

  6. Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009; Chapter: Unit7;47:7.1.1–7.1.28.

    Google Scholar 

  7. Wages SA, Church WH, Justice JB. Sampling considerations for online microbore liquid chromatography of brain dialysis. Anal Chem. 1986;58:1649–56.

    CAS  PubMed  Google Scholar 

  8. Kendrick KM, De la Riva C, Hinton M, Baldwin BA. Microdialysis measurements of monoamine and amino acid release from the medial preoptic region of the sheep in response to heat exposure. Brain Res Bull. 1989;22:541–4.

    CAS  PubMed  Google Scholar 

  9. Stahl N, Mellergard P, Hallstrom A, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis and bedside biochemical analysis in patients with fatal traumatic brain lesions. Acta Anaesthesiol Scand. 2001;45:977–85.

    CAS  PubMed  Google Scholar 

  10. Bellander BM, Cantais E, Enblad P, Hutchinson P, Nordstrom CH, Robertson C, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.

    PubMed  Google Scholar 

  11. Hutchinson PJ, O’Connell MT, Al-Rawi PG, Maskell LB, Kett-White R, Gupta AK, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.

    CAS  PubMed  Google Scholar 

  12. Merenda A, Gugliotta M, Holloway R, Levasseur JE, Alessandri B, Sun D, et al. Validation of brain extracellular glycerol as an indicator of cellular membrane damage due to free radical activity after traumatic brain injury. J Neurotrauma. 2008;25:527–37.

    PubMed  Google Scholar 

  13. Li AL, Zhi DS, Wang Q, Huang HL. Extracellular glycerol in patients with severe traumatic brain injury. Chin J Traumatol. 2008;11:84–8.

    CAS  PubMed  Google Scholar 

  14. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.

    CAS  PubMed  Google Scholar 

  15. Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47(3):709–10.

    CAS  PubMed  Google Scholar 

  16. Shurr A, Payne RS. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: an in vitro electrophysiology study. Neuroscience. 2007;147:613–9.

    Google Scholar 

  17. Persson L, Valtysson J, Enblad P, Warme PE, Cesarini K, Lewen A, et al. Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg. 1996;84:606–16.

    CAS  PubMed  Google Scholar 

  18. Nordstrom CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:465–572.

    PubMed  Google Scholar 

  19. Baron JC, Bousser MG, Rey A, Guillard A, Comar D, Castaigne P. Reversal of focal “misery-perfusion syndrome” by extra-intracranial arterial bypass in hemodynamic cerebral ischemia: a case study with 15O positron emission tomography. Stroke. 1981;12(4):454–9.

    CAS  PubMed  Google Scholar 

  20. Werner C, Engelhard K. Pathophysiology of traumatic brain injury. Br J Anaesth. 2007;99(1):4–9.

    CAS  PubMed  Google Scholar 

  21. Andersen BJ, Marmarou A. Post-traumatic selective stimulation of glycolysis. Brain Res. 1992;585:184–9.

    CAS  PubMed  Google Scholar 

  22. Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP. Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. J Cereb Blood Flow Metab. 1992;12:12–24.

    CAS  PubMed  Google Scholar 

  23. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86:241–51.

    CAS  PubMed  Google Scholar 

  24. • Jalloh I, Carpenter KL, Grice P, Howe DJ, Mason A, Gallagher CN, et al. Glycolysis and pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose. J Cereb Blood Flow Metab. 2015;35(1):111–20 This article sheds light on a concurrent pathway that operates during recovery from TBI. It provides information that could be useful to future researchers who are examining the utility of directly comparing manipulating the two-shunt mechanisms to achieve a better outcome.

    CAS  PubMed  Google Scholar 

  25. Bartnik BL, Sutton RL, Fukushima M, Harris NG, Hovda DA, Lee SM. Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. J Neurotrauma. 2005;22:1052–65.

    PubMed  Google Scholar 

  26. Dusick JR, Glenn TC, Lee MN, Vespa PM, Kelly DF, Lee SM, et al. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans. J Cereb Blood Flow Metab. 2007;27(9):1593–602.

    CAS  PubMed  Google Scholar 

  27. Hutchinson PJ, O’Connell MT, Seal A, Nortje J, Timofeev I, Al-Rawi PG, et al. A combined microdialysis and FDG-PET study of glucose metabolism in head injury. Acta Neurochir. 2009;151(1):51–61.

    PubMed  Google Scholar 

  28. Kawamata T, Katayama Y, Hovda DA, Yoshino A, Becker DP. Lactate accumulation following concussive brain injury: the role of ionic fluxes induced by excitatory amino acids. Brain Res. 1995;674:196–204.

    CAS  PubMed  Google Scholar 

  29. Hovda DA, Katayama Y, Yoshino A, Kawatama T, Becker DP. Pre- or postsynaptic blocking of glutamatergic functioning prevents the increase in glucose utilization following concussive brain injury. In: Globus M, Dietrich WD, editors. The role of neurotransmitters in brain injury. New York: Plenum Press; 1993. p. 327–32.

    Google Scholar 

  30. Yoshino A, Hovda DA, Kawamata T, Katayama Y, Becker DP. Dynamic changes in local cerebral glucose utilization following cerebral conclusion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Res. 1991;561:106–19.

    CAS  PubMed  Google Scholar 

  31. Baquer NZ, Hothersal JS, McLean P. Function and regulation of the pentose phosphate pathway in brain. Curr Top Cell Regul. 1988;29:265–89.

    CAS  PubMed  Google Scholar 

  32. Hothersall JS, Greenbaum AL, Mclean P. The functional significance of the pentose phosphate pathway in synaptosomes: protection against peroxidative damage by catecholamines and oxidants. J Neurochem. 1982;39:1325–32.

    CAS  PubMed  Google Scholar 

  33. Wu HM, Huang SC, Hattori N, Glenn TC, Vespa PM, Yu CL, et al. Selective metabolic reduction in gray matter acutely following human traumatic brain injury. J Neurotrauma. 2004;21(2):149–61.

    PubMed  Google Scholar 

  34. Bergsneider M, Hovda DA, Lee SM, Kelly DF, McArthur DL, Vespa PM, et al. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma. 2000;17:389–401.

    CAS  PubMed  Google Scholar 

  35. García-Panach J, Lull N, Lull JJ, Ferri J, Martínez C, Sopena P, et al. A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas. J Neurotrauma. 2011;28(9):1707–17.

    PubMed  Google Scholar 

  36. Lull N, Noé E, Lull JJ, García-Panach J, Chirivella J, Ferri J, et al. Voxel-based statistical analysis of thalamic glucose metabolism in traumatic brain injury: relationship with consciousness and cognition. Brain Inj. 2010;24(9):1098–107.

    PubMed  Google Scholar 

  37. Kokiko-Cochran ON, Michaels MP, Hamm RJ. Delayed glucose treatment improves cognitive function following fluid-percussion injury. Neurosci Lett. 2008;436(1):27–30.

    CAS  PubMed  Google Scholar 

  38. Kato T, Nakayama N, Yasokawa Y, Okumura A, Shinoda J, Iwama T. Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma. 2007;24(6):919–26.

    PubMed  Google Scholar 

  39. Ley EJ, Clond MA, Bukur M, Park R, Chervonski M, Dagliyan G, et al. β-Adrenergic receptor inhibition affects cerebral glucose metabolism, motor performance, and inflammatory response after traumatic brain injury. J Trauma Acute Care Surg. 2012;73(1):33–40.

    CAS  PubMed  Google Scholar 

  40. • Kurtz P, Claassen J, Schmidt JM, Helbock R, Hanafy KA, Presciutti M, et al. Reduced brain / serum glucose ratios predict cerebral metabolic distress and mortality after severe brain injury. Neurocrit Care. 2013;19:311–9 Although a small study, the authors were able to demonstrate the importance of low cerebral glucose in patients with acute brain injury. This is consistent with other studies where hypoglycemia is associated with worse outcomes in patients with injured brains.

    CAS  PubMed  Google Scholar 

  41. Vespa PM, McArthur D, O’Phelan K, Glenn T, Etchepare M, Kelly D, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.

    CAS  PubMed  Google Scholar 

  42. Hattori N, Huang SC, Wu HM, Yeh E, Glenn TC, Vespa PM, et al. Correlation of regional metabolic rates of glucose with Glasgow Coma Scale after traumatic brain injury. J Nucl Med. 2003;44(11):1709–16.

    PubMed  Google Scholar 

  43. Vespa PM, Boonyaputthikul R, McArthur DL, Miller C, Etchepare M, Bergsneider M, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34(3):850–6.

    CAS  PubMed  Google Scholar 

  44. Prins M, Greco T, Alexander D, Giza CC. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6(6):1307–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Merino MA, Sahuquillo J, Borrull A, Poca MA, Riveiro M, Exposito L. Is lactate a good indicator of brain tissue hypoxia in the acute phase of traumatic brain injury? Result of a pilot study in 21 patients. Neurocirugia (Astur). 2010;21(4):289–301.

    CAS  Google Scholar 

  46. • Timofeev I, Carpenter KH, Nortje J, Al-Rawi PG, O’Connell MT, Czosnyka M, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;68:223–30 This article eloquently summaries the various biochemical elements that can be measured in the brain using a microdialysis catheter. The authors have made a good attempt to connect outcomes after brain injury and biochemical derangements and have correctly left the question of fixing these derangements open.

    Google Scholar 

  47. Xu Y, McArthur DL, Alger JR, Etchepare M, Hovda DA, Glenn TC, et al. Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. J Cereb Blood Flow Metab. 2010;30(4):883–94.

    CAS  PubMed  Google Scholar 

  48. Wright MJ, McArthur DL, Alger JR, Van Horn J, Irimia A, Filippou M, et al. Early metabolic crisis – related brain atrophy and cognition in traumatic brain injury. Brain Imaging Behav. 2013;7(3):307–15.

    PubMed  PubMed Central  Google Scholar 

  49. • Carpenter KL, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci. 2015;9:112 A very good study that attempts to connect lactate metabolism with glycolysis in traumatic brain injury. Conventionally, extracellular lactate is considered a waste product of glycolysis that is transported to the extracellular space. This article touches upon the possible beneficial effects of this lactate in TBI.

    PubMed  PubMed Central  Google Scholar 

  50. Vespa PM, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.

    CAS  PubMed  Google Scholar 

  51. Tyson RL, Gallagher CN, Sutherland GR. 13C-labeled substrate and the cerebral metabolic compartmentalization of acetate and lactate. Brain Res. 2003;992:43–52.

    CAS  PubMed  Google Scholar 

  52. Chen T, Qian YZ, Di X, Rice A, Zhu JP, Bullock R. Lactate/glucose dynamic after rat fluid percussion brain injury. J Neurotrauma. 2000;17(2):135–42.

    CAS  PubMed  Google Scholar 

  53. Ichai C, Armando G, Orban JC, Berthier F, Rami L, Samat-Long C, et al. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med. 2009;35:471–9.

    CAS  PubMed  Google Scholar 

  54. Bouzat P, Sala N, Suys T, Zerlauth JB, Marques-Vidal P, Feihl F, et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014;40:412–21.

    CAS  PubMed  Google Scholar 

  55. Faden AI, Demediuk P, Panter SS, VINK R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science. 1989;344:798–800.

    Google Scholar 

  56. Nilsson P, Hillered L, Ponten U, Ungerstedt U. Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab. 1990;10:631–7.

    CAS  PubMed  Google Scholar 

  57. Globus MYT, Alonson O, Deitrich WD, Busto R, Ginsberg MD. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia. J Neurochem. 1995;65:1704–11.

    CAS  PubMed  Google Scholar 

  58. Zauner A, Bullock R. The role of excitatory amino acids in severe brain trauma: opportunities for therapy: a review. J Neurotrauma. 1995;12:547–54.

    CAS  PubMed  Google Scholar 

  59. Doble A. The pharmacology and mechanism of action of riluzole. Neurology. 1996;47:S233–41.

    CAS  PubMed  Google Scholar 

  60. Obrenovitch TP, Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma. 1997;14(10):677–98.

    CAS  PubMed  Google Scholar 

  61. Brown JIM, Baker AJ, Konasiewicz SJ, Moulton RJ. Clinical significance of CSF glutamate concentrations following severe traumatic brain injury in humans. J Neurotrauma. 1998;15(4):253–63.

    CAS  PubMed  Google Scholar 

  62. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg. 2010;113(3):564–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dorsch NW, King MT. A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage part I: incidence and effects. J Clin Neurosci. 1994;1:19–26.

    CAS  PubMed  Google Scholar 

  64. Dorsch NW. A clinical review of cerebral vasospasm and delayed ischaemia following aneurysm rupture. Acta Neurochir Suppl. 2011;110(Pt 1):5–6.

    PubMed  Google Scholar 

  65. Roos YB, de Haan RJ, Beenen LF, Groen RJ, Albrecht KW, Vermeulen M. Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands. J Neurol Neurosurg Psychiatry. 2000;68:337–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Schmidt JM, Rincon F, Fernandez A, Resor C, Kowalski RG, Claassen J, et al. Cerebral infarction associated with acute subarachnoid hemorrhage. Neurocrit Care. 2007;7(1):10–7.

    PubMed  Google Scholar 

  67. Ecker A, Riemenschneider P. Arteriographic demonstration of spasm of the intracranial arteries, with special reference to saccular arterial aneurysms. J Neurosurg. 1951;8:660–7.

    CAS  PubMed  Google Scholar 

  68. Vergouwen MD, Vermeulen M, van Gijn J, Rinkel GJE, Wijdicks EF, Muizellaar JP, et al. Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke. 2010;41:2391–5.

    PubMed  Google Scholar 

  69. Grubb RL, Raichle ME, Eichling JO, Gado MH. Effects of subarachnoid hemorrhage on cerebral blood volume, blood flow, and oxygen utilization in humans. J Neurosurg. 1977;46:446–53.

    PubMed  Google Scholar 

  70. Simeone FA, Trepper PJ, Brown DJ. Cerebral blood flow evaluation of prolonged experimental vasospasm. J Neurosurg. 1972;37:302–11.

    CAS  PubMed  Google Scholar 

  71. Dankbaar JW, Rijsdijk M, van der Schaaf IC, Velthuis BK, Wermer MJH, Rinkel GJE. Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology. 2009;51:813–9.

    PubMed  PubMed Central  Google Scholar 

  72. Minhas PS, Menon DK, Smielewski P, Czosnyka M, Kirkpatrick PJ, Clark JC, et al. Positron emission tomographic cerebral perfusion disturbances and transcranial Doppler findings among patients with neurological deterioration after subarachnoid hemorrhage. Neurosurgery. 2003;52:1017–24.

    PubMed  Google Scholar 

  73. Dhar R, Scalfani MT, Blackburn S, Zazulia AR, Videen T, Diringer M. Relationship between angiographic vasospasm and regional hypoperfusion in aneurysmal subarachnoid hemorrhage. Stroke. 2012;43:1788–94.

    PubMed  PubMed Central  Google Scholar 

  74. Rowland MJ, Hadjipavlou G, Kelly M, Westbrook J, Pattison KTS. Delayed cerebral ischemia after subarachnoid hemorrhage: looking beyond vasospasm. Brit J Anaesth. 2012;109(3):315–29.

    CAS  PubMed  Google Scholar 

  75. Stein SC, Browne KD, Chen X-H, Smith DH, Graham DI. Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery. 2006;59:781–7.

    PubMed  Google Scholar 

  76. Sehba FA, Pluta RM, Zhang JH. Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol. 2011;43:27–40.

    CAS  PubMed  Google Scholar 

  77. Osuka K, Suzuki Y, Tanazawa T, Hattori K, Yamamoto N, Takayasu M, et al. Interleukin-6 and development of vasospasm after subarachnoid haemorrhage. Acta Neurochir. 1998;140:943–51.

    CAS  PubMed  Google Scholar 

  78. Mathiesen T, Edner G, Ulfarsson E, Andersson B. Cerebrospinal fluid interleukin-1 receptor antagonist and tumor necrosis factor-alpha following subarachnoid hemorrhage. J Neurosurg. 1997;87:215–20.

    CAS  PubMed  Google Scholar 

  79. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH. Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:916–25.

    CAS  PubMed  Google Scholar 

  80. Oddo M, Levine JM, Frangos S, Maloney-Wilensky E, Carrer E, Daniel RT, et al. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke. 2012;43:1418–21.

    CAS  PubMed  Google Scholar 

  81. Sarrafzadeh AS, Haux D, Ludemann L, Amthauer H, Plotkin M, Kuchler I, et al. Cerebral ischemia in aneurysmal subarachnoid hemorrhage: a correlative microdialysis-PET study. Stroke. 2004;35:638–43.

    PubMed  Google Scholar 

  82. Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjere P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;100:8–15.

    CAS  PubMed  Google Scholar 

  83. Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol. 2012;97:14–37.

    PubMed  PubMed Central  Google Scholar 

  84. Sabri M, Elliot L, Macdonald RL. Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat. 2013;2013:394036. 9 pages. https://doi.org/10.1155/2013/394036.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nornes H. The role of intracranial pressure in the arrest of hemorrhage in patients with ruptured intracranial aneurysm. J Neurosurg. 1973;39:226–34.

    CAS  PubMed  Google Scholar 

  86. Claassen J, Carhuapoma J, Kreiter K, Du E, Connolly ES, Mayer SA. Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke. 2002;33:1225–32.

    PubMed  Google Scholar 

  87. Bederson JB, Levy AL, Ding WH, Kahn R, DiPerna CA, Jenkins AL 3rd, et al. Acute vasoconstriction after subarachnoid hemorrhage. Neurosurgery. 1998;42(2):352–60.

    CAS  PubMed  Google Scholar 

  88. Bar B, Mackenzie L, Hurst RW, Grant R, Weigele J, Bhalla PK, Kumar MA, Stiefel MF, Levine JM. Hyperacute vasospasm after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2015;in press.

  89. • Helbok R, Schiefecker AJ, Beer R, Dietmann A, Antunes AP, Sohm F, et al. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal monitoring study. Crit Care. 2015;19:75–83 The authors of this study argue for the utility of multimodal brain monitoring in acute injuries, of which microdialysis is part of. This article also highlights the point that a single modality of brain monitoring is not reliable and several data points might be needed before making a clinical judgment.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhou.

Ethics declarations

Conflict of Interest

Ting Zhou and Atul Kalanuria each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Kalanuria, A. Cerebral Microdialysis in Neurocritical Care. Curr Neurol Neurosci Rep 18, 101 (2018). https://doi.org/10.1007/s11910-018-0915-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0915-6

Keywords

Navigation