Skip to main content

Brain Microdialysis Monitoring

  • Chapter
  • First Online:
Neurocritical Care for Neurosurgeons

Abstract

Cerebral microdialysis (CMD) is a tool increasingly used in neurocritical care units in the management of patients with severe traumatic brain injury and aneurysmal subarachnoid hemorrhage who are comatose. In the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care, CMD monitoring was recommended in patients with or at risk of cerebral ischemia, hypoxia, energy failure, and glucose deprivation. CMD allows knowing, in near real-time, the dynamic changes in the extracellular brain tissue levels of the metabolites involved in cerebral energy substrate delivery and energy metabolism (glucose, pyruvate, and lactate) and to carry out, with some temporal limitations, bedside sequential measurements of ions and various molecules of interest in the injured brain. At present, this technique has progressed from the laboratory to the clinic and progressively is being introduced in the monitoring of neurocritical patients since it offers important neurometabolic information complementary to the variables that are routinely monitored in these patients (intracranial pressure, cerebral perfusion pressure, and cerebral oximetry). In this chapter, we review the rationale and fundamentals of microdialysis techniques, describe basic methodological aspects, and update the possibilities of this powerful brain monitoring technique. CMD combined with methods of brain oxygen monitoring allows a systematic approach to the different classes of brain hypoxia and the disrupted metabolic profiles found after acute brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46(4):301–8. https://doi.org/10.1016/0024-3205(90)90037-R.

    Article  CAS  PubMed  Google Scholar 

  2. Ungerstedt U. Microdialysis: principles and applications for studies in animals and man. J Intern Med. 1991;230(4):365–73. https://doi.org/10.1111/j.1365-2796.1991.tb00459.x.

    Article  CAS  PubMed  Google Scholar 

  3. Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des. 2004;10(18):2145–52. https://doi.org/10.2174/1381612043384105.

    Article  CAS  PubMed  Google Scholar 

  4. Bito L, Davson H, Levin E, Murray M, Snider N. The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog. J Neurochem. 1966;13(11):1057–67. https://doi.org/10.1111/j.1471-4159.1966.tb04265.x.

    Article  CAS  PubMed  Google Scholar 

  5. Hillered L, Persson L, Ponten U, Ungerstedt U. Neurometabolic monitoring of the ischaemic human brain using microdialysis. Acta Neurochir. 1990;102(3–4):91–7. https://doi.org/10.1007/bf01405420.

    Article  CAS  PubMed  Google Scholar 

  6. Nordstrom CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26(4):465–72. https://doi.org/10.1007/s00381-009-1035-z.

    Article  PubMed  Google Scholar 

  7. Kitagawa R, Yokobori S, Mazzeo AT, Bullock R. Microdialysis in the neurocritical care unit. Neurosurg Clin N Am. 2013;24(3):417–26. https://doi.org/10.1016/j.nec.2013.02.002.

    Article  PubMed  Google Scholar 

  8. Hutchinson PJ, O’Connell MT, Al Rawi PG, Kett-White R, Gupta AK, Kirkpatrick PJ, et al. Clinical cerebral microdialysis: determining the true extracellular concentration. Acta Neurochir Suppl. 2002;81:359–62. https://doi.org/10.1007/978-3-7091-6738-0_91.

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Cui Z. Application of microdialysis in tissue engineering monitoring. Prog Nat Sci. 2008;18(5):503–11. https://doi.org/10.1016/j.pnsc.2008.02.001.

    Article  CAS  Google Scholar 

  10. Martinez-Valverde T, Sanchez-Guerrero A, Vidal-Jorge M, Torne R, Castro L, Gandara D, et al. Characterization of the ionic profile of the extracellular space of the injured and ischemic brain: a microdialysis study. J Neurotrauma. 2017;34(1):74–85. https://doi.org/10.1089/neu.2015.4334.

    Article  PubMed  Google Scholar 

  11. Hutchinson PJ, O’Connell MT, Al-Rawi PG, Maskell LB, Kett-White R, Gupta AK, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93(1):37–43. https://doi.org/10.3171/jns.2000.93.1.0037.

    Article  CAS  PubMed  Google Scholar 

  12. Poca MA, Sahuquillo J, Vilalta A, de los Rios J, Robles A, Exposito L. Percutaneous implantation of cerebral microdialysis catheters by twist-drill craniostomy in neurocritical patients: description of the technique and results of a feasibility study in 97 patients. J Neurotrauma. 2006;23(10):1510–7. https://doi.org/10.1089/neu.2006.23.1510.

    Article  PubMed  Google Scholar 

  13. Abi-Saab WM, Maggs DG, Jones T, Jacob R, Srihari V, Thompson J, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab. 2002;22(3):271–9. https://doi.org/10.1097/00004647-200203000-00004.

    Article  CAS  PubMed  Google Scholar 

  14. Sanchez-Guerrero A, Mur-Bonet G, Vidal-Jorge M, Gandara-Sabatini D, Chocron I, Cordero E, et al. Reappraisal of the reference levels for energy metabolites in the extracellular fluid of the human brain. J Cereb Blood Flow Metab. 2017;37(8):2742–55. https://doi.org/10.1177/0271678X16674222.

    Article  CAS  PubMed  Google Scholar 

  15. Reinstrup P, Stahl N, Mellergard P, Uski T, Ungerstedt U, Nordstrom CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47(3):701–9. https://doi.org/10.1097/00006123-200009000-00035.

    Article  CAS  PubMed  Google Scholar 

  16. Oddo M, Levine JM, Frangos S, Maloney-Wilensky E, Carrera E, Daniel RT, et al. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke. 2012;43(5):1418–21. https://doi.org/10.1161/STROKEAHA.111.648568.

    Article  CAS  PubMed  Google Scholar 

  17. Sahuquillo J, Merino MA, Sanchez-Guerrero A, Arikan F, Vidal-Jorge M, Martinez-Valverde T, et al. Lactate and the lactate-to-pyruvate molar ratio cannot be used as independent biomarkers for monitoring brain energetic metabolism: a microdialysis study in patients with traumatic brain injuries. PLoS One. 2014;9(7):e102540. https://doi.org/10.1371/journal.pone.0102540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hillered L, Valtysson J, Enblad P, Persson L. Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry. 1998;64(4):486–91. https://doi.org/10.1136/jnnp.64.4.486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peerdeman SM, Girbes AR, Polderman KH, Vandertop WP. Changes in cerebral interstitial glycerol concentration in head-injured patients; correlation with secondary events. Intensive Care Med. 2003;29(10):1825–8. https://doi.org/10.1007/s00134-003-1850-8.

    Article  PubMed  Google Scholar 

  20. Gliemroth J, Klaus S, Bahlmann L, Klohn A, Duysen K, Reith A, et al. Interstitial glycerol increase in microdialysis after glycerol enema. J Clin Neurosci. 2004;11(1):53–6. https://doi.org/10.1016/s0967-5868(03)00113-9.

    Article  CAS  PubMed  Google Scholar 

  21. Ronne-Engstrom E, Cesarini KG, Enblad P, Hesselager G, Marklund N, Nilsson P, et al. Intracerebral microdialysis in neurointensive care: the use of urea as an endogenous reference compound. J Neurosurg. 2001;94(3):397–402. https://doi.org/10.3171/jns.2001.94.3.0397.

    Article  CAS  PubMed  Google Scholar 

  22. Brunner M, Joukhadar C, Schmid R, Erovic B, Eichler HG, Muller M. Validation of urea as an endogenous reference compound for the in vivo calibration of microdialysis probes. Life Sci. 2000;67(8):977–84. https://doi.org/10.1016/s0024-3205(00)00685-8.

    Article  CAS  PubMed  Google Scholar 

  23. Benveniste H, Diemer NH. Cellular reactions to implantation of a microdialysis tube in the rat hippocampus. Acta Neuropathol (Berl). 1987;74(3):234–8. https://doi.org/10.1007/bf00688186.

    Article  CAS  Google Scholar 

  24. Langemann H, Alessandri B, Mendelowitsch A, Feuerstein T, Landolt H, Gratzl O. Extracellular levels of glucose and lactate measured by quantitative microdialysis in the human brain. Neurol Res. 2001;23(5):531–6. https://doi.org/10.1179/016164101101198785.

    Article  CAS  PubMed  Google Scholar 

  25. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, et al. Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol. 2005;57(2):226–35. https://doi.org/10.1002/ana.20380.

    Article  CAS  PubMed  Google Scholar 

  26. Schulz MK, Wang LP, Tange M, Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;93(5):808–14. https://doi.org/10.3171/jns.2000.93.5.0808.

    Article  CAS  PubMed  Google Scholar 

  27. Hutchinson PJ, Jalloh I, Helmy A, Carpenter KL, Rostami E, Bellander BM, et al. Consensus statement from the 2014 international microdialysis forum. Intensive Care Med. 2015;41(9):1517–28. https://doi.org/10.1007/s00134-015-3930-y.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GW, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15. https://doi.org/10.1227/NEU.0000000000001432.

    Article  PubMed  Google Scholar 

  29. Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C. Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury. J Neurosurg. 2010;113(3):564–70. https://doi.org/10.3171/2009.12.JNS09689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bellander BM, Cantais E, Enblad P, Hutchinson P, Nordstrom CH, Robertson C, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30(12):2166–9. https://doi.org/10.1007/s00134-004-2461-8.

    Article  PubMed  Google Scholar 

  31. Andrews PJ, Citerio G, Longhi L, Polderman K, Sahuquillo J, Vajkoczy P. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med. 2008;34(8):1362–70. https://doi.org/10.1007/s00134-008-1103-y.

    Article  PubMed  Google Scholar 

  32. Poca MA, Sahuquillo J, Arribas M, Baguena M, Amoros S, Rubio E. Fiberoptic intraparenchymal brain pressure monitoring with the Camino V420 monitor: reflections on our experience in 163 severely head-injured patients. J Neurotrauma. 2002;19(4):439–48. https://doi.org/10.1089/08977150252932398.

    Article  PubMed  Google Scholar 

  33. Meixensberger J, Kunze E, Barcsay E, Vaeth A, Roosen K. Clinical cerebral microdialysis: brain metabolism and brain tissue oxygenation after acute brain injury. Neurol Res. 2001;23(8):801–6. https://doi.org/10.1179/016164101101199379.

    Article  CAS  PubMed  Google Scholar 

  34. Sarrafzadeh AS, Kiening KL, Unterberg AW. Neuromonitoring: brain oxygenation and microdialysis. Curr Neurol Neurosci Rep. 2003;3(6):517–23. https://doi.org/10.1007/s11910-003-0057-2.

    Article  PubMed  Google Scholar 

  35. Skjoth-Rasmussen J, Schulz M, Kristensen SR, Bjerre P. Delayed neurological deficits detected by an ischemic pattern in the extracellular cerebral metabolites in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2004;100(1):8–15. https://doi.org/10.3171/jns.2004.100.1.0008.

    Article  CAS  PubMed  Google Scholar 

  36. Bjorkblom B, Jonsson P, Tabatabaei P, Bergstrom P, Johansson M, Asklund T, et al. Metabolic response patterns in brain microdialysis fluids and serum during interstitial cisplatin treatment of high-grade glioma. Br J Cancer. 2019; https://doi.org/10.1038/s41416-019-0652-x.

  37. Stewart C, Campagne O, Davis A, Zhong B, Nair S, Haberman V, et al. CNS penetration of cyclophosphamide and metabolites in mice bearing group 3 medulloblastoma and non-tumor bearing mice. J Pharm Pharm Sci. 2019;22(1):612–29. https://doi.org/10.18433/jpps30608.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hosmann A, Wang WT, Dodier P, Bavinzski G, Engel A, Herta J, et al. The impact of intra-arterial Papaverine-hydrochloride on cerebral metabolism and oxygenation for treatment of delayed-onset post-subarachnoid hemorrhage vasospasm. Neurosurgery. 2019; https://doi.org/10.1093/neuros/nyz500.

  39. Wang Q, Ren T, Zhao J, Wong CH, Chan HYE, Zuo Z. Exclusion of unsuitable CNS drug candidates based on their physicochemical properties and unbound fractions in biomatrices for brain microdialysis investigations. J Pharm Biomed Anal. 2020;178:112946. https://doi.org/10.1016/j.jpba.2019.112946.

    Article  CAS  PubMed  Google Scholar 

  40. Havelund JF, Nygaard KH, Nielsen TH, Nordstrom CH, Poulsen FR, Faergeman NJ, et al. In vivo microdialysis of endogenous and (13)C-labeled TCA metabolites in rat brain: reversible and persistent effects of mitochondrial inhibition and transient cerebral ischemia. Metabolites. 2019;9(10) https://doi.org/10.3390/metabo9100204.

Download references

Acknowledgments

We would like to thank all the nurses of the neuroICU of the VHUH for their continuous help. This work was supported in part by the Fondo de Investigación Sanitaria (Instituto de Salud Carlos III) with grant PI15/01228, which was co-financed by the European Regional Development and awarded to Dr. J. Sahuquillo and by the grants KidsBrainIT (ERA-NET NEURON), co-financed by the European Regional Development Fund (ERDF), and grant 20172430 from the Marató de TV3, awarded to Dr. J. Sahuquillo and Dr. M.A. Poca, respectively.

Disclosure Statement

The authors report no conflict of interest concerning the materials or methods mentioned in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Poca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poca, M.A., Sanchez-Ortiz, D., Baena, J., Sahuquillo, J. (2021). Brain Microdialysis Monitoring. In: Figueiredo, E.G., Welling, L.C., Rabelo, N.N. (eds) Neurocritical Care for Neurosurgeons. Springer, Cham. https://doi.org/10.1007/978-3-030-66572-2_7

Download citation

Publish with us

Policies and ethics