Skip to main content

Proteomic Profiling of Integrin Adhesion Complex Assembly

  • Protocol
  • First Online:
Protein Complex Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1764))

Abstract

Cell adhesion to components of the cellular microenvironment via cell-surface adhesion receptors controls many aspects of cell behavior in a range of physiological and pathological processes. Multimolecular complexes of scaffolding and signaling proteins are recruited to the intracellular domains of adhesion receptors such as integrins, and these adhesion complexes tether the cytoskeleton to the plasma membrane and compartmentalize cellular signaling events. Integrin adhesion complexes are highly dynamic, and their assembly is tightly regulated. Comprehensive, unbiased, quantitative analyses of the composition of different adhesion complexes over the course of their formation will enable better understanding of how the dynamics of adhesion protein recruitment influence the functions of adhesion complexes in fundamental cellular processes. Here, a pipeline is detailed integrating biochemical isolation of integrin adhesion complexes during a time course, quantitative proteomic analysis of isolated adhesion complexes, and computational analysis of temporal proteomic data. This approach enables the characterization of adhesion complex composition and dynamics during complex assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326(5957):1216–1219. https://doi.org/10.1126/science.1176009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Byron A, Morgan MR, Humphries MJ (2010) Adhesion signalling complexes. Curr Biol 20(24):R1063–R1067. https://doi.org/10.1016/j.cub.2010.10.059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Winograd-Katz SE, Fässler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15(4):273–288. https://doi.org/10.1038/nrm3769

    Article  PubMed  CAS  Google Scholar 

  4. Larjava H, Koivisto L, Heino J, Häkkinen L (2014) Integrins in periodontal disease. Exp Cell Res 325(2):104–110. https://doi.org/10.1016/j.yexcr.2014.03.010

    Article  PubMed  CAS  Google Scholar 

  5. Lennon R, Randles MJ, Humphries MJ (2014) The importance of podocyte adhesion for a healthy glomerulus. Front Endocrinol 5:160. https://doi.org/10.3389/fendo.2014.00160

    Article  Google Scholar 

  6. Wright DB, Meurs H, Dekkers BG (2014) Integrins: therapeutic targets in airway hyperresponsiveness and remodelling? Trends Pharmacol Sci 35(11):567–574. https://doi.org/10.1016/j.tips.2014.09.006

    Article  PubMed  CAS  Google Scholar 

  7. Allen S, Moran N (2015) Cell adhesion molecules: therapeutic targets for inhibition of inflammatory states. Semin Thromb Hemost 41(6):563–571. https://doi.org/10.1055/s-0035-1556588

    Article  PubMed  CAS  Google Scholar 

  8. Bravatà I, Allocca M, Fiorino G, Danese S (2015) Integrins and adhesion molecules as targets to treat inflammatory bowel disease. Curr Opin Pharmacol 25:67–71. https://doi.org/10.1016/j.coph.2015.11.007

    Article  PubMed  CAS  Google Scholar 

  9. Coelho NM, McCulloch CA (2016) Contribution of collagen adhesion receptors to tissue fibrosis. Cell Tissue Res 365(3):521–538. https://doi.org/10.1007/s00441-016-2440-8

    Article  PubMed  CAS  Google Scholar 

  10. Hamidi H, Pietilä M, Ivaska J (2016) The complexity of integrins in cancer and new scopes for therapeutic targeting. Br J Cancer 115(9):1017–1023. https://doi.org/10.1038/bjc.2016.312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Filla MS, Faralli JA, Peotter JL, Peters DM (2017) The role of integrins in glaucoma. Exp Eye Res 158:124–136. https://doi.org/10.1016/j.exer.2016.05.011

    Article  PubMed  CAS  Google Scholar 

  12. Finney AC, Stokes KY, Pattillo CB, Orr AW (2017) Integrin signaling in atherosclerosis. Cell Mol Life Sci 74(12):2263–2282. https://doi.org/10.1007/s00018-017-2490-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119(Pt 19):3901–3903. https://doi.org/10.1242/jcs.03098

    Article  PubMed  CAS  Google Scholar 

  14. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114(Pt 20):3583–3590

    PubMed  CAS  Google Scholar 

  15. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B (2003) Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci 116(Pt 22):4605–4613. https://doi.org/10.1242/jcs.00792

    Article  PubMed  CAS  Google Scholar 

  16. Bachir AI, Zareno J, Moissoglu K, Plow EF, Gratton E, Horwitz AR (2014) Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions. Curr Biol 24(16):1845–1853. https://doi.org/10.1016/j.cub.2014.07.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hoffmann JE, Fermin Y, Stricker RL, Ickstadt K, Zamir E (2014) Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol. elife 3:e02257. https://doi.org/10.7554/eLife.02257

    Article  PubMed  PubMed Central  Google Scholar 

  18. Horton ER, Byron A, Askari JA, Ng DHJ, Millon-Frémillon A, Robertson J, Koper EJ, Paul NR, Warwood S, Knight D, Humphries JD, Humphries MJ (2015) Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol 17(12):1577–1587. https://doi.org/10.1038/ncb3257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Carisey A, Tsang R, Greiner AM, Nijenhuis N, Heath N, Nazgiewicz A, Kemkemer R, Derby B, Spatz J, Ballestrem C (2013) Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr Biol 23(4):271–281. https://doi.org/10.1016/j.cub.2013.01.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Iskratsch T, Yu CH, Mathur A, Liu S, Stévenin V, Dwyer J, Hone J, Ehler E, Sheetz M (2013) FHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration. Dev Cell 27(5):545–559. https://doi.org/10.1016/j.devcel.2013.11.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ciobanasu C, Faivre B, Le Clainche C (2014) Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat Commun 5:3095. https://doi.org/10.1038/ncomms4095

    Article  PubMed  CAS  Google Scholar 

  22. Yao M, Goult BT, Chen H, Cong P, Sheetz MP, Yan J (2014) Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci Rep 4:4610. https://doi.org/10.1038/srep04610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Hernández-Varas P, Berge U, Lock JG, Strömblad S (2015) A plastic relationship between vinculin-mediated tension and adhesion complex area defines adhesion size and lifetime. Nat Commun 6:7524. https://doi.org/10.1038/ncomms8524

    Article  PubMed  CAS  Google Scholar 

  24. Austen K, Ringer P, Mehlich A, Chrostek-Grashoff A, Kluger C, Klingner C, Sabass B, Zent R, Rief M, Grashoff C (2015) Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nat Cell Biol 17(12):1597–1606. https://doi.org/10.1038/ncb3268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Roper JA, Williamson RC, Bass MD (2012) Syndecan and integrin interactomes: large complexes in small spaces. Curr Opin Struct Biol 22(5):583–590. https://doi.org/10.1016/j.sbi.2012.07.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bass MD, Williamson RC, Nunan RD, Humphries JD, Byron A, Morgan MR, Martin P, Humphries MJ (2011) A syndecan-4 hair trigger initiates wound healing through caveolin- and RhoG-regulated integrin endocytosis. Dev Cell 21(4):681–693. https://doi.org/10.1016/j.devcel.2011.08.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Morgan MR, Hamidi H, Bass MD, Warwood S, Ballestrem C, Humphries MJ (2013) Syndecan-4 phosphorylation is a control point for integrin recycling. Dev Cell 24(5):472–485. https://doi.org/10.1016/j.devcel.2013.01.027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Guo Z, Neilson LJ, Zhong H, Murray PS, Zanivan S, Zaidel-Bar R (2014) E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci Signal 7(354):rs7. https://doi.org/10.1126/scisignal.2005473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura S (2006) Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res 312(9):1637–1650. https://doi.org/10.1016/j.yexcr.2006.01.031

    Article  PubMed  CAS  Google Scholar 

  30. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ, Ruiz SA, Nelson CM, Chen CS (2010) Mechanical tugging force regulates the size of cell-cell junctions. Proc Natl Acad Sci U S A 107(22):9944–9949. https://doi.org/10.1073/pnas.0914547107

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9(8):858–867. https://doi.org/10.1038/ncb0807-858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Byron A, Humphries JD, Bass MD, Knight D, Humphries MJ (2011) Proteomic analysis of integrin adhesion complexes. Sci Signal 4(167):pt2. https://doi.org/10.1126/scisignal.2001827

    Article  PubMed  Google Scholar 

  33. Kuo JC, Han X, Yates JR III, Waterman CM (2012) Isolation of focal adhesion proteins for biochemical and proteomic analysis. Methods Mol Biol 757:297–323. https://doi.org/10.1007/978-1-61779-166-6_19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Jones MC, Humphries JD, Byron A, Millon-Frémillon A, Robertson J, Paul NR, Ng DH, Askari JA, Humphries MJ (2015) Isolation of integrin-based adhesion complexes. Curr Protoc Cell Biol 66:9.8.1–9.8.15. https://doi.org/10.1002/0471143030.cb0908s66

    Article  Google Scholar 

  35. Humphries JD, Byron A, Bass MD, Craig SE, Pinney JW, Knight D, Humphries MJ (2009) Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal 2(87):ra51. https://doi.org/10.1126/scisignal.2000396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Schiller HB, Friedel CC, Boulegue C, Fässler R (2011) Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 12(3):259–266. https://doi.org/10.1038/embor.2011.5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kuo JC, Han X, Hsiao CT, Yates JR III, Waterman CM (2011) Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat Cell Biol 13(4):383–393. https://doi.org/10.1038/ncb2216

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Byron A (2017) Clustering and network analysis of reverse phase protein array data. Methods Mol Biol 1606:171–191. https://doi.org/10.1007/978-1-4939-6990-6_12

    Article  PubMed  CAS  Google Scholar 

  39. Carugo O (2010) Clustering criteria and algorithms. Methods Mol Biol 609:175–196. https://doi.org/10.1007/978-1-60327-241-4_11

    Article  PubMed  Google Scholar 

  40. Nugent R, Meila M (2010) An overview of clustering applied to molecular biology. Methods Mol Biol 620:369–404. https://doi.org/10.1007/978-1-60761-580-4_12

    Article  PubMed  Google Scholar 

  41. Chen B, Fan W, Liu J, Wu FX (2014) Identifying protein complexes and functional modules—from static PPI networks to dynamic PPI networks. Brief Bioinform 15(2):177–194. https://doi.org/10.1093/bib/bbt039

    Article  PubMed  CAS  Google Scholar 

  42. Srihari S, Yong CH, Patil A, Wong L (2015) Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes. FEBS Lett 589(19 Pt A):2590–2602. https://doi.org/10.1016/j.febslet.2015.04.026

    Article  PubMed  CAS  Google Scholar 

  43. Byron A (2008) Proteomic analyses of integrin-based adhesion complexes. PhD Thesis. University of Manchester, Manchester, United Kingdom

    Google Scholar 

  44. Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ (2012) Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics 12(13):2107–2114. https://doi.org/10.1002/pmic.201100487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Byron A, Askari JA, Humphries JD, Jacquemet G, Koper EJ, Warwood S, Choi CK, Stroud MJ, Chen CS, Knight D, Humphries MJ (2015) A proteomic approach reveals integrin activation state-dependent control of microtubule cortical targeting. Nat Commun 6:6135. https://doi.org/10.1038/ncomms7135

    Article  PubMed  CAS  Google Scholar 

  46. Millon-Frémillon A, Aureille J, Guilluy C (2017) Analyzing cell surface adhesion remodeling in response to mechanical tension using magnetic beads. J Vis Exp 121:e55330. https://doi.org/10.3791/55330

    Article  CAS  Google Scholar 

  47. Arike L, Peil L (2014) Spectral counting label-free proteomics. Methods Mol Biol 1156:213–222. https://doi.org/10.1007/978-1-4939-0685-7_14

    Article  PubMed  CAS  Google Scholar 

  48. Moulder R, Goo YA, Goodlett DR (2016) Label-free quantitation for clinical proteomics. Methods Mol Biol 1410:65–76. https://doi.org/10.1007/978-1-4939-3524-6_4

    Article  PubMed  CAS  Google Scholar 

  49. Souza GH, Guest PC, Martins-de-Souza D (2017) LC-MSE, multiplex MS/MS, ion mobility, and label-free quantitation in clinical proteomics. Methods Mol Biol 1546:57–73. https://doi.org/10.1007/978-1-4939-6730-8_4

    Article  PubMed  CAS  Google Scholar 

  50. Kani K (2017) Quantitative proteomics using SILAC. Methods Mol Biol 1550:171–184. https://doi.org/10.1007/978-1-4939-6747-6_13

    Article  PubMed  CAS  Google Scholar 

  51. Gritsenko MA, Xu Z, Liu T, Smith RD (2016) Large-scale and deep quantitative proteome profiling using isobaric labeling coupled with two-dimensional LC-MS/MS. Methods Mol Biol 1410:237–247. https://doi.org/10.1007/978-1-4939-3524-6_14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Núñez EV, Domont GB, Nogueira FC (2017) iTRAQ-based shotgun proteomics approach for relative protein quantification. Methods Mol Biol 1546:267–274. https://doi.org/10.1007/978-1-4939-6730-8_23

    Article  PubMed  CAS  Google Scholar 

  53. Zhang L, Elias JE (2017) Relative protein quantification using tandem mass tag mass spectrometry. Methods Mol Biol 1550:185–198. https://doi.org/10.1007/978-1-4939-6747-6_14

    Article  PubMed  CAS  Google Scholar 

  54. Holewinski RJ, Parker SJ, Matlock AD, Venkatraman V, Van Eyk JE (2016) Methods for SWATH™: data independent acquisition on TripleTOF mass spectrometers. Methods Mol Biol 1410:265–279. https://doi.org/10.1007/978-1-4939-3524-6_16

    Article  PubMed  CAS  Google Scholar 

  55. Röst HL, Aebersold R, Schubert OT (2017) Automated SWATH data analysis using targeted extraction of ion chromatograms. Methods Mol Biol 1550:289–307. https://doi.org/10.1007/978-1-4939-6747-6_20

    Article  PubMed  CAS  Google Scholar 

  56. Schilling B, Gibson BW, Hunter CL (2017) Generation of high-quality SWATH® acquisition data for label-free quantitative proteomics studies using TripleTOF® mass spectrometers. Methods Mol Biol 1550:223–233. https://doi.org/10.1007/978-1-4939-6747-6_16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zaidel-Bar R, Milo R, Kam Z, Geiger B (2007) A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J Cell Sci 120(Pt 1):137–148. https://doi.org/10.1242/jcs.03314

    Article  PubMed  CAS  Google Scholar 

  58. Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Puré E, Assoian RK (2014) A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal 7(330):ra57. https://doi.org/10.1126/scisignal.2004838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Qu H, Tu Y, Guan JL, Xiao G, Wu C (2014) Kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch in the integrin outside-in signaling circuit. J Biol Chem 289(45):31001–31013. https://doi.org/10.1074/jbc.M114.580811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Pasapera AM, Plotnikov SV, Fischer RS, Case LB, Egelhoff TT, Waterman CM (2015) Rac1-dependent phosphorylation and focal adhesion recruitment of myosin IIA regulates migration and mechanosensing. Curr Biol 25(2):175–186. https://doi.org/10.1016/j.cub.2014.11.043

    Article  PubMed  CAS  Google Scholar 

  61. Wu JC, Chen YC, Kuo CT, Wenshin Yu H, Chen YQ, Chiou A, Kuo JC (2015) Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration. Sci Rep 5:18476. https://doi.org/10.1038/srep18476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lopez-Sanchez I, Kalogriopoulos N, Lo IC, Kabir F, Midde KK, Wang H, Ghosh P (2015) Focal adhesions are foci for tyrosine-based signal transduction via GIV/Girdin and G proteins. Mol Biol Cell 26(24):4313–4324. https://doi.org/10.1091/mbc.E15-07-0496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Horton ER, Humphries JD, Stutchbury B, Jacquemet G, Ballestrem C, Barry ST, Humphries MJ (2016) Modulation of FAK and Src adhesion signaling occurs independently of adhesion complex composition. J Cell Biol 212(3):349–364. https://doi.org/10.1083/jcb.201508080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Swaminathan V, Fischer RS, Waterman CM (2016) The FAK-Arp2/3 interaction promotes leading edge advance and haptosensing by coupling nascent adhesions to lamellipodia actin. Mol Biol Cell 27(7):1085–1100. https://doi.org/10.1091/mbc.E15-08-0590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Stutchbury B, Atherton P, Tsang R, Wang DY, Ballestrem C (2017) Distinct focal adhesion protein modules control different aspects of mechanotransduction. J Cell Sci 130(9):1612–1624. https://doi.org/10.1242/jcs.195362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kirchner J, Kam Z, Tzur G, Bershadsky AD, Geiger B (2003) Live-cell monitoring of tyrosine phosphorylation in focal adhesions following microtubule disruption. J Cell Sci 116(Pt 6):975–986. https://doi.org/10.1242/jcs.00284

    Article  PubMed  CAS  Google Scholar 

  67. Iyer VV, Ballestrem C, Kirchner J, Geiger B, Schaller MD (2005) Measurement of protein tyrosine phosphorylation in cell adhesion. Methods Mol Biol 294:289–302

    PubMed  CAS  Google Scholar 

  68. Ballestrem C, Erez N, Kirchner J, Kam Z, Bershadsky A, Geiger B (2006) Molecular mapping of tyrosine-phosphorylated proteins in focal adhesions using fluorescence resonance energy transfer. J Cell Sci 119(Pt 5):866–875. https://doi.org/10.1242/jcs.02794

    Article  PubMed  CAS  Google Scholar 

  69. Chen Y, Lu B, Yang Q, Fearns C, Yates JR III, Lee JD (2009) Combined integrin phosphoproteomic analyses and small interfering RNA-based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69(8):3713–3720. https://doi.org/10.1158/0008-5472.CAN-08-2515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Schiller HB, Hermann MR, Polleux J, Vignaud T, Zanivan S, Friedel CC, Sun Z, Raducanu A, Gottschalk KE, Théry M, Mann M, Fässler R (2013) β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol 15(6):625–636. https://doi.org/10.1038/ncb2747

    Article  PubMed  CAS  Google Scholar 

  71. Robertson J, Jacquemet G, Byron A, Jones MC, Warwood S, Selley JN, Knight D, Humphries JD, Humphries MJ (2015) Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun 6:6265. https://doi.org/10.1038/ncomms7265

    Article  PubMed  CAS  Google Scholar 

  72. Steen H, Jebanathirajah JA, Rush J, Morrice N, Kirschner MW (2006) Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements. Mol Cell Proteomics 5(1):172–181. https://doi.org/10.1074/mcp.M500135-MCP200

    Article  PubMed  CAS  Google Scholar 

  73. Robertson J, Humphries JD, Paul NR, Warwood S, Knight D, Byron A, Humphries MJ (2017) Characterization of the phospho-adhesome by mass spectrometry-based proteomics. Methods Mol Biol 1636:235–251. https://doi.org/10.1007/978-1-4939-7154-1_15

    Article  PubMed  CAS  Google Scholar 

  74. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  PubMed  CAS  Google Scholar 

  75. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805. https://doi.org/10.1021/pr101065j

    Article  PubMed  CAS  Google Scholar 

  76. Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901

    Article  PubMed  CAS  Google Scholar 

  77. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20(9):1453–1454. https://doi.org/10.1093/bioinformatics/bth078

    Article  PubMed  CAS  Google Scholar 

  78. Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20(17):3246–3248. https://doi.org/10.1093/bioinformatics/bth349

    Article  PubMed  CAS  Google Scholar 

  79. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Byron A, Humphries JD, Askari JA, Craig SE, Mould AP, Humphries MJ (2009) Anti-integrin monoclonal antibodies. J Cell Sci 122(Pt 22):4009–4011. https://doi.org/10.1242/jcs.056770

    Article  PubMed  CAS  Google Scholar 

  81. Lau HT, Suh HW, Golkowski M, Ong SE (2014) Comparing SILAC- and stable isotope dimethyl-labeling approaches for quantitative proteomics. J Proteome Res 13(9):4164–4174. https://doi.org/10.1021/pr500630a

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. McAlister GC, Nusinow DP, Jedrychowski MP, Wühr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86(14):7150–7158. https://doi.org/10.1021/ac502040v

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. R Development Core Team (2013) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  84. Achtert E, Kriegel H-P, Zimek A (2008) ELKI: a software system for evaluation of subspace clustering algorithms. Lect Notes Comput Sci 5069:580–585. https://doi.org/10.1007/978-3-540-69497-7_41

    Article  Google Scholar 

  85. Sharan R, Maron-Katz A, Shamir R (2003) CLICK and EXPANDER: a system for clustering and visualizing gene expression data. Bioinformatics 19(14):1787–1799. https://doi.org/10.1093/bioinformatics/btg232

    Article  PubMed  CAS  Google Scholar 

  86. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208. https://doi.org/10.1093/bioinformatics/18.1.207

    Article  PubMed  CAS  Google Scholar 

  87. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Int AAAI Conf Web Soc Media. http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

  88. Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJournal Complex Systems: 1695. http://igraph.org

  89. Wu J, Vallenius T, Ovaska K, Westermarck J, Makela TP, Hautaniemi S (2009) Integrated network analysis platform for protein-protein interactions. Nat Methods 6:75–77. https://doi.org/10.1038/nmeth.1282

    Article  PubMed  CAS  Google Scholar 

  90. Humphries MJ (2001) Cell-substrate adhesion assays. Curr Protoc Cell Biol Chapter 9:Unit 9.1. doi:https://doi.org/10.1002/0471143030.cb0901s00

    Article  Google Scholar 

  91. Brunelle JL, Green R (2014) One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 541:151–159. https://doi.org/10.1016/B978-0-12-420119-4.00012-4

    Article  PubMed  CAS  Google Scholar 

  92. Goldman A, Harper S, Speicher DW (2016) Detection of proteins on blot membranes. Curr Protoc Protein Sci 86:10.8.1–10.8.11. https://doi.org/10.1002/cpps.15

    Article  Google Scholar 

  93. Brunelle JL, Green R (2014) Coomassie blue staining. Methods Enzymol 541:161–167. https://doi.org/10.1016/B978-0-12-420119-4.00013-6

    Article  PubMed  CAS  Google Scholar 

  94. Janes KA (2015) An analysis of critical factors for quantitative immunoblotting. Sci Signal 8(371):rs2. https://doi.org/10.1126/scisignal.2005966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  96. Hubner NC, Bird AW, Cox J, Splettstoesser B, Bandilla P, Poser I, Hyman A, Mann M (2010) Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. J Cell Biol 189(4):739–754. https://doi.org/10.1083/jcb.200911091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Turriziani B, Garcia-Munoz A, Pilkington R, Raso C, Kolch W, von Kriegsheim A (2014) On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics. Biology 3(2):320–332. https://doi.org/10.3390/biology3020320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Giansanti P, Tsiatsiani L, Low TY, Heck AJ (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11(5):993–1006. https://doi.org/10.1038/nprot.2016.057

    Article  PubMed  CAS  Google Scholar 

  99. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2(8):1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.A. Askari, J.D. Humphries, M.J. Humphries, and other members of the Humphries Laboratory (University of Manchester) are gratefully acknowledged for the development and optimization of the integrin adhesion complex purification protocol described herein, which was funded by the Wellcome Trust. A.B. is funded by Cancer Research UK (grant C157/A15703 to M.C. Frame, University of Edinburgh).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Byron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Byron, A. (2018). Proteomic Profiling of Integrin Adhesion Complex Assembly. In: Marsh, J. (eds) Protein Complex Assembly. Methods in Molecular Biology, vol 1764. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7759-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7759-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7758-1

  • Online ISBN: 978-1-4939-7759-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics