Skip to main content

LC-MSE, Multiplex MS/MS, Ion Mobility, and Label-Free Quantitation in Clinical Proteomics

  • Protocol
  • First Online:
Multiplex Biomarker Techniques

Abstract

Proteomic tools can only be implemented in clinical settings if high-throughput, automated, sensitive, and accurate methods are developed. This has driven researchers to the edge of mass spectrometry (MS)-based proteomics capacity. Here we provide an overview of recent achievements in mass spectrometric technologies and instruments. This includes development of high and ultra definition-MSE (HDMSE and UDMSE) through implementation of ion mobility (IM) MS towards sensitive and accurate label-free proteomics using ultra performance liquid chromatography (UPLC). Label free UPLC-HDMSE is less expensive than labeled-based quantitative proteomics and has no limits regarding the number of samples that can be analyzed and compared, which is an important requirement for supporting clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee JM, Kohn EC (2010) Proteomics as a guiding tool for more effective personalized therapy. Ann Oncol 21:205–210

    Google Scholar 

  2. Tchabo NE, Liel MS, Kohn EC (2005) Applying proteomics in clinical trials: assessing the potential and practical limitations in ovarian cancer. Am J Pharmacogenomics 5:141–148

    CAS  PubMed  Google Scholar 

  3. Wulfkuhle JD, Edmiston KH, Liotta LA, Petricoin EF 3rd (2006) Technology insight: pharmacoproteomics for cancer—promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol 3:256–268

    CAS  PubMed  Google Scholar 

  4. Patel VJ, Thalassinos K, Slade SE, Connolly JB, Crombie A, Murrell JC et al (2009) A comparison of labeling and label-free mass spectrometry-based proteomics approaches. J Proteome Res 8:3752–3759

    CAS  PubMed  Google Scholar 

  5. Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptides species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res 10:1785–1793

    CAS  PubMed  Google Scholar 

  6. Geromanos SJ, Hughes C, Golick D, Ciavarini S, Gorenstein MV, Richardson K et al (2011) Simulating and validating proteomics data and search results. Proteomics 11:1189–1211

    CAS  PubMed  Google Scholar 

  7. Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV et al (2009) The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependent LC-MS/MS. Proteomics 9:1683–1695

    CAS  PubMed  Google Scholar 

  8. Chakraborty AB, Berger SJ, Gebler JC (2007) Use of an integrated MS-multiplexed MS/MS data acquisition strategy for high-coverage peptide mapping studies. Rapid Commun Mass Spectrom 21:730–744

    CAS  PubMed  Google Scholar 

  9. Tyndall AM, Starr LH, Powell CF (1928) The mobility of ions in air. Part IV. Investigations by two new methods. Proc R Soc Lond A 121:172–184

    CAS  Google Scholar 

  10. Tyndall AM, Grindley GC, Sheppard PA (1928) The mobility of ions in air. Part V. The transformation of positive Ions at short ages. Proc R Soc Lond A 121:185–194

    CAS  Google Scholar 

  11. Bradbury NE (1932) Photoelectric currents in gases between parallel plates as a function of the potential difference. Phys Rev 40:980

    CAS  Google Scholar 

  12. Bradbury NE, Nielsen RA (1936) Absolute values of the electron mobility in hydrogen. Phys Rev 49:388–393

    CAS  Google Scholar 

  13. von Helden G, Hsu M-T, Kemper PR, Bowers MT (1991) Structures of carbon cluster ions from 3 to 60 atoms: linears to rings to fullerenes. J Chem Phys 95:3835–3837

    Google Scholar 

  14. Valentine SJ, Kulchania M, Srebalus Barnes CA, Clemmer DE (2001) Multidimensional separations of complex peptide mixtures: a combined high-performance liquid chromatography/ion mobility/time-of-flight mass spectrometry approach. Int J Mass Spectrom 212:97–109

    CAS  Google Scholar 

  15. Ruotolo BT, Giles K, Campuzano I, Sandercock AM, Bateman RH, Robinson CV (2005) Evidence for macromolecular protein rings in the absence of bulk water. Science 310:1658–1661

    CAS  PubMed  Google Scholar 

  16. Giles K, Williams JP, Campuzano I (2011) Enhancements in travelling wave ion mobility resolution. Rapid Commun Mass Spectrom 25:1559–1566

    CAS  PubMed  Google Scholar 

  17. Ruotolo BT, Benesch JL, Sandercock AM, Hyung SJ, Robinson CV (2008) Ion mobility-mass spectrometry analysis of large protein complexes. Nat Protoc 3:1139–1152

    CAS  PubMed  Google Scholar 

  18. Lalli PM, Corilo YE, de Sa GF, Daroda RJ, de Souza V, Souza GHMF et al (2011) Intrinsic mobility of gaseous cationic and anionic aggregates of ionic liquids. ChemPhysChem 12:1444–1447

    CAS  PubMed  Google Scholar 

  19. Lalli PM, Corilo YE, Fasciotti M, Riccio MF, de Sa GF, Daroda RJ et al (2013) Baseline resolution of isomers by traveling wave ion mobility mass spectrometry: investigating the effects of polarizable drift gases and ionic charge distribution. J Mass Spectrom 48:989–997

    CAS  PubMed  Google Scholar 

  20. Distler U, Kuharev J, Navarro P, Levin Y, Schild H, Tenzer S (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11:167–170

    CAS  PubMed  Google Scholar 

  21. Distler U, Kuharev J, Navarro P, Tenzer S (2016) Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nat Protoc 11:795–812

    CAS  PubMed  Google Scholar 

  22. Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH (2004) Applications of a travelling wave-based ratio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18:2401–2414

    CAS  PubMed  Google Scholar 

  23. Morris HR, Paxton T, Dell A, Langhorne J, Berg M, Bordoli RS et al (1996) High sensitivity collisionally-activated decomposition tandem mass spectrometry on a novel quadrupole/orthogonal-acceleration time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 10:889–896

    CAS  PubMed  Google Scholar 

  24. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC (2003) Enzyme-friendly, mass spectrometry-compatible surfactant for ion-solution enzymatic digestion of proteins. Anal Chem 75:6023–6028

    CAS  PubMed  Google Scholar 

  25. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J Sep Sci 28:1694–1703

    CAS  PubMed  Google Scholar 

  26. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5:144–156

    CAS  PubMed  Google Scholar 

  27. Williams JP, Brown JM, Campuzano I, Sadler PJ (2010) Identifying drug metallation sites on peptides using electron transfer dissociation (ETD), collision induced dissociation (CID) and ion mobility-mass spectrometry (IM-MS). Chem Commun 46:5458–5460

    CAS  Google Scholar 

  28. Li GZ, Vissers JP, Silva JC, Golick D, Gorenstein MV, Geromanos SJ (2009) Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics 9:1696–1719

    CAS  PubMed  Google Scholar 

  29. Turtoi A, Mazzucchelli GD, De Pauw E (2010) Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach. Talanta 80:1487–1495

    CAS  PubMed  Google Scholar 

  30. Lucas JE, Thompson JW, Dubois LG, McCarthy J, Tillmann H, Thompson A et al (2012) Metaprotein expression modeling for label-free quantitative proteomics. BMC Bioinformatics 13:74

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Benjamin AM, Thompson JW, Soderblom EJ, Geromanos SJ, Henao R, Kraus VB et al (2013) A flexible statistical model for alignment of label-free proteomics data-incorporating ion mobility and product ion information. BMC Bioinformatics 14:364

    PubMed  PubMed Central  Google Scholar 

  32. Thalassinos K, Vissers JP, Tenzer S, Levin Y, Thompson JW, Daniel D et al (2012) Design and application of a data-independent precursor and product ion repository. J Am Soc Mass Spectrom 23:1808–1820

    CAS  PubMed  Google Scholar 

  33. Adeola HA, Soares NC, Paccez JD, Kaestner L, Blackburn JM, Zerbini LF (2015) Discovery of novel candidate urinary protein biomarkers for prostate cancer in a multiethnic cohort of South African patients via label-free mass spectrometry. Proteomics Clin Appl 9:597–609

    CAS  PubMed  Google Scholar 

  34. Beretov J, Wasinger VC, Millar EK, Schwartz P, Graham PH, Li Y (2015) Proteomic analysis of urine to identify breast cancer biomarker candidates using a label-free LC-MS/MS approach. PLoS One 10:e0141876

    PubMed  PubMed Central  Google Scholar 

  35. Fan NJ, Chen HM, Song W, Zhang ZY, Zhang MD, Feng LY, Gao CF (2016) Macrophage mannose receptor 1 and S100A9 were identified as serum diagnostic biomarkers for colorectal cancer through a label-free quantitative proteomic analysis. Cancer Biomark 16:235–243

    PubMed  Google Scholar 

  36. Collins MA, An J, Hood BL, Conrads TP, Bowser RP (2015) Label-free LC-MS/MS proteomic analysis of cerebrospinal fluid identifies protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis. J Proteome Res 14:4486–4501

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Csősz É, Emri G, Kalló G, Tsaprailis G, Tőzsér J (2015) Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry. J Eur Acad Dermatol Venereol 29:2024–2031

    PubMed  PubMed Central  Google Scholar 

  38. Song SH, Han M, Choi YS, Dan KS, Yang MG, Song J (2014) Proteomic profiling of serum from patients with tuberculosis. Ann Lab Med 34:345–353

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang M, Xu W, Deng Y (2013) A new strategy for early diagnosis of type 2 diabetes by standard-free, label-free LC-MS/MS quantification of glycated peptides. Diabetes 62:3936–3942

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee J, Joo EJ, Lim HJ, Park JM, Lee KY, Park A et al (2015) Proteomic analysis of serum from patients with major depressive disorder to compare their depressive and remission statuses. Psychiatry Investig 1:249–259

    Google Scholar 

  41. Yang H, Lyutvinskiy Y, Herukka SK, Soininen H, Rutishauser D, Zubarev RA (2014) Prognostic polypeptide blood plasma biomarkers of Alzheimer’s disease progression. J Alzheimers Dis 40:659–666

    CAS  PubMed  Google Scholar 

  42. Steeb H, Ramsey JM, Guest PC, Stocki P, Cooper JD, Rahmoune H et al (2014) Serum proteomic analysis identifies sex-specific differences in lipid metabolism and inflammation profiles in adults diagnosed with Asperger syndrome. Mol Autism 5:4

    PubMed  PubMed Central  Google Scholar 

  43. Zhao Z, Wu F, Ding S, Sun L, Liu Z, Ding K, Lu J (2015) Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol 36:939–951

    CAS  PubMed  Google Scholar 

  44. Dai P, Wang Q, Wang W, Jing R, Wang W, Wang F et al (2016) Unraveling molecular differences of gastric cancer by label-free quantitative proteomics analysis. Int J Mol Sci 17(1):E69. doi:10.3390/ijms17010069, pii

    Article  CAS  PubMed  Google Scholar 

  45. Théron L, Gueugneau M, Coudy C, Viala D, Bijlsma A, Butler-Browne G et al (2014) Label-free quantitative protein profiling of vastuslateralis muscle during human aging. Mol Cell Proteomics 13:283–294

    PubMed  Google Scholar 

  46. Martins-de-Souza D, Guest PC, Guest FL, Bauder C, Rahmoune H, Pietsch S et al (2012) Characterization of the human primary visual cortex and cerebellum proteomes using shotgun mass spectrometry-data-independent analyses. Proteomics 12:500–504

    CAS  PubMed  Google Scholar 

  47. Krishnamurthy D, Harris LW, Levin Y, Koutroukides TA, Rahmoune H, Pietsch S et al (2013) Metabolic, hormonal and stress-related molecular changes in post-mortem pituitary glands from schizophrenia subjects. World J Biol Psychiatry 14:478–489

    PubMed  Google Scholar 

  48. Stelzhammer V, Alsaif M, Chan MK, Rahmoune H, Steeb H, Guest PC et al (2014) Distinct proteomic profiles in post-mortem pituitary glands from bipolar disorder and major depressive disorder patients. J Psychiatr Res 60:40–48

    PubMed  Google Scholar 

  49. Broek JA, Guest PC, Rahmoune H, Bahn S (2014) Proteomic analysis of post mortem brain tissue from autism patients: evidence for opposite changes in prefrontal cortex and cerebellum in synaptic connectivity-related proteins. Mol Autism 5:41

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Prof. Daniel Martins-de-Souza is supported by the São Paulo Research Foundation (FAPESP) grants 13/08711-3 and 14/10068-4 and by the Brazilian National Council for Scientific and Technological Development (CNPq) grant 460289/2014-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Henrique Martins Ferreira Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Souza, G.H.M.F., Guest, P.C., Martins-de-Souza, D. (2017). LC-MSE, Multiplex MS/MS, Ion Mobility, and Label-Free Quantitation in Clinical Proteomics. In: Guest, P.C. (eds) Multiplex Biomarker Techniques. Methods in Molecular Biology, vol 1546. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-6730-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6730-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-6729-2

  • Online ISBN: 978-1-4939-6730-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics