Skip to main content

Spectral Counting Label-Free Proteomics

  • Protocol
  • First Online:
Shotgun Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1156))

Abstract

Label-free proteome quantification methods used in bottom-up mass-spectrometry based proteomics are gaining more popularity as they are easy to apply and can be integrated into different workflows without any extra effort or cost. In the label-free proteome quantification approach, samples of interest are prepared and analyzed separately. Mass-spectrometry is generally not recognized as a quantitative method as the ionization efficiency of peptides is dependent on composition of peptides. Label-free quantification methods have to overcome this limitation by additional computational calculations. There are several algorithms available that take into account the sequence and length of the peptides and compute the predicted abundance of proteins in the sample. Label-free methods can be divided into two categories: peptide peak intensity based quantification and spectral counting quantification that relies on the number of peptides identified from a given protein.

This protocol will concentrate on spectral counting quantification—exponentially modified protein abundance index (emPAI). Normalized emPAI, most commonly derived from Mascot search results, can be used for broad comparison of entire proteomes. Absolute quantification of proteins based on emPAI values with or without added standards will be demonstrated. Guidelines will be given on how to easily integrate emPAI into existing data; for example, calculating emPAI based absolute protein abundances from iTRAQ data without added standards.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilm M, Shevchenko A, Houthaeve T et al (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379:466–469

    Article  CAS  PubMed  Google Scholar 

  2. Mann M (1999) Quantitative proteomics? Nat Biotechnol 17:954–955

    Article  CAS  PubMed  Google Scholar 

  3. Ong S-E, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  CAS  PubMed  Google Scholar 

  4. Washburn MP, Wolters D, Yates JR et al (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  CAS  PubMed  Google Scholar 

  5. Rappsilber J, Ryder U, Lamond AI et al (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res 12:1231–1245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Ishihama Y, Oda Y, Tabata T et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265–1272

    Article  CAS  PubMed  Google Scholar 

  7. Zybailov B, Mosley AL, Sardiu ME et al (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5:2339–2347

    Article  CAS  PubMed  Google Scholar 

  8. Lu P, Vogel C, Wang R et al (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25:117–124

    Article  CAS  PubMed  Google Scholar 

  9. Griffin NM, Yu J, Long F et al (2010) Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 28:83–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Ahrné E, Molzahn L, Glatter T et al (2013) Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Proteomics 13(17):2567–2578

    Article  PubMed  Google Scholar 

  11. Arike L, Valgepea K, Peil L et al (2012) Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli. J Proteomics 75: 5437–5448

    Article  CAS  PubMed  Google Scholar 

  12. McIlwain S, Mathews M, Bereman MS et al (2012) Estimating relative abundances of proteins from shotgun proteomics data. BMC Bioinformatics 13:308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Trudgian DC, Ridlova G, Fischer R et al (2011) Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline. Proteomics 11:2790–2797

    Article  CAS  PubMed  Google Scholar 

  14. Vogel C, Marcotte EM (2012) Label-free protein quantitation using weighted spectral counting. Methods Mol Biol 893:321–341

    Article  CAS  PubMed  Google Scholar 

  15. Neilson KA, Keighley T, Pascovici D et al (2013) Label-free quantitative shotgun proteomics using normalized spectral abundance factors. Methods Mol Biol 1002:205–222

    Article  CAS  PubMed  Google Scholar 

  16. Ishihama Y, Schmidt T, Rappsilber J et al (2008) Protein abundance profiling of the Escherichia coli cytosol. BMC Genomics 9:102

    Article  PubMed Central  PubMed  Google Scholar 

  17. Shinoda K, Tomita M, Ishihama Y (2010) emPAI Calc-for the estimation of protein abundance from large-scale identification data by liquid chromatography-tandem mass spectrometry. Bioinformatics 26:576–577

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Adams RM, Chourey K et al (2012) Systematic comparison of label-free, metabolic labeling, and isobaric chemical labeling for quantitative proteomics on LTQ Orbitrap Velos. J Proteome Res 11:1582–1590

    Article  CAS  PubMed  Google Scholar 

  19. Adamberg K, Seiman A, Vilu R (2012) Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes. PloS One 7:e48223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kim PD, Patel BB, Yeung AT (2012) Isobaric labeling and data normalization without requiring protein quantitation. J Biomol Tech 23:11–23

    Article  PubMed Central  PubMed  Google Scholar 

  21. Hendrickson EL, Xia Q, Wang T et al (2006) Comparison of spectral counting and metabolic stable isotope labeling for use with quantitative microbial proteomics. Analyst 131:1335–1341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Grossmann J, Roschitzki B, Panse C et al (2010) Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods. J Proteomics 73:1740–1746

    Article  CAS  PubMed  Google Scholar 

  23. Hoehenwarter W, Wienkoop S (2010) Spectral counting robust on high mass accuracy mass spectrometers. Rapid Commun Mass Spectrom 24:3609–3614

    Article  PubMed  Google Scholar 

  24. Lundgren DH, Hwang S-I, Wu L et al (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7:39–53

    Article  CAS  PubMed  Google Scholar 

  25. Vizcaíno JA, Côté RG, Csordas A et al (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41:D1063–D1069

    Article  PubMed Central  PubMed  Google Scholar 

  26. Zhang Y, Wen Z, Washburn MP et al (2009) Effect of dynamic exclusion duration on spectral count based quantitative proteomics. Anal Chem 81:6317–6326

    Article  CAS  PubMed  Google Scholar 

  27. Milo R, Jorgensen P, Moran U et al (2010) BioNumbers – the database of key numbers in molecular and cell biology. Nucleic Acids Res 38:D750–D753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Wiśniewski JR, Ostasiewicz P, Duś K et al (2012) Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Mol Syst Biol 8:611

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liisa Arike .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Arike, L., Peil, L. (2014). Spectral Counting Label-Free Proteomics. In: Martins-de-Souza, D. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 1156. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0685-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0685-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0684-0

  • Online ISBN: 978-1-4939-0685-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics