Skip to main content

Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models

  • Protocol
  • First Online:
Mammary Gland Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1501))

Abstract

During the past 25 years, the combination of increasingly sophisticated gene targeting technology with transplantation techniques has allowed researchers to address a wide array of questions about postnatal mammary gland development. These in turn have significantly contributed to our knowledge of other branched epithelial structures. This review chapter highlights a selection of the mouse models exhibiting a pubertal mammary gland phenotype with a focus on how they have contributed to our overall understanding of in vivo mammary morphogenesis. We discuss mouse models that have enabled us to assign functions to particular genes and proteins and, more importantly, have determined when and where these factors are required for completion of ductal outgrowth and branch patterning. The reason for the success of the mouse mammary gland model is undoubtedly the suitability of the postnatal mammary gland to experimental manipulation. The gland itself is very amenable to investigation and the combination of genetic modification with accessibility to the tissue has allowed an impressive number of studies to inform biology. Excision of the rudimentary epithelial structure postnatally allows genetically modified tissue to be readily transplanted into wild type stroma or vice versa, and has thus defined the contribution of each compartment to particular phenotypes. Similarly, whole gland transplantation has been used to definitively discern local effects from indirect systemic effects of various growth factors and hormones. While appreciative of the power of these tools and techniques, we are also cognizant of some of their limitations, and we discuss some shortcomings and future strategies that can overcome them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couse JF, Korach KS (1999) Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 20:358–417. doi:10.1210/edrv.20.3.0370

    Article  CAS  PubMed  Google Scholar 

  2. Hovey RC, Trott JF, Vonderhaar BK (2002) Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia 7:17–38

    Article  PubMed  Google Scholar 

  3. Bocchinfuso WP, Korach KS (1997) Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 2:323–334

    Article  CAS  PubMed  Google Scholar 

  4. Mallepell S, Krust A, Chambon P, Brisken C (2006) Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci U S A 103:2196–2201. doi:10.1073/pnas.0510974103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feng Y, Manka D, Wagner K-U, Khan SA (2007) Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci U S A 104:14718–14723. doi:10.1073/pnas.0706933104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Manavathi B, Samanthapudi VSK, Gajulapalli VNR (2014) Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development. Front Cell Dev Biol 2:34. doi:10.3389/fcell.2014.00034

    Article  PubMed  PubMed Central  Google Scholar 

  7. Han SJ, DeMayo FJ, Xu J et al (2006) Steroid receptor coactivator (SRC)-1 and SRC-3 differentially modulate tissue-specific activation functions of the progesterone receptor. Mol Endocrinol 20:45–55. doi:10.1210/me.2005-0310

    Article  CAS  PubMed  Google Scholar 

  8. Howlin J, McBryan J, Napoletano S et al (2006) CITED1 homozygous null mice display aberrant pubertal mammary ductal morphogenesis. Oncogene 25:1532–1542. doi:10.1038/sj.onc.1209183

    Article  CAS  PubMed  Google Scholar 

  9. Li M, Fu X, Ma G et al (2012) Atbf1 regulates pubertal mammary gland development likely by inhibiting the pro-proliferative function of estrogen-ER signaling. PLoS One 7, e51283. doi:10.1371/journal.pone.0051283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li M, Zhao D, Ma G et al (2013) Upregulation of ATBF1 by progesterone-PR signaling and its functional implication in mammary epithelial cells. Cancer Cell 430:358–363. doi:10.1016/j.bbrc.2012.11.009

    CAS  Google Scholar 

  11. Brisken C, Park S, Vass T et al (1998) A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci U S A 95:5076–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Humphreys RC, Lydon JP, O'Malley BW, Rosen JM (1997) Use of PRKO mice to study the role of progesterone in mammary gland development. J Mammary Gland Biol Neoplasia 2:343–354

    Article  CAS  PubMed  Google Scholar 

  13. Conneely OM, Mulac-Jericevic B, Lydon JP, De Mayo FJ (2001) Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice. Mol Cell Endocrinol 179:97–103

    Article  CAS  PubMed  Google Scholar 

  14. Mulac-Jericevic B, Mullinax RA, DeMayo FJ et al (2000) Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 289:1751–1754

    Article  CAS  PubMed  Google Scholar 

  15. Shyamala G, Yang X, Silberstein G et al (1998) Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci U S A 95:696–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kleinberg DL (1997) Early mammary development: growth hormone and IGF-1. J Mammary Gland Biol Neoplasia 2:49–57

    Article  CAS  PubMed  Google Scholar 

  17. Ruan W, Kleinberg DL (1999) Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology 140:5075–5081. doi:10.1210/endo.140.11.7095

    CAS  PubMed  Google Scholar 

  18. Ormandy CJ, Camus A, Barra J et al (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 11:167–178

    Article  CAS  PubMed  Google Scholar 

  19. Ormandy CJ, Binart N, Kelly PA (1997) Mammary gland development in prolactin receptor knockout mice. J Mammary Gland Biol Neoplasia 2:355–364

    Article  CAS  PubMed  Google Scholar 

  20. Horseman ND, Zhao W, Montecino-Rodriguez E et al (1997) Defective mammopoiesis, but normal hematopoiesis, in mice with a targeted disruption of the prolactin gene. EMBO J 16:6926–6935. doi:10.1093/emboj/16.23.6926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brisken C, Kaur S, Chavarria TE et al (1999) Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 210:96–106. doi:10.1006/dbio.1999.9271

    Article  CAS  PubMed  Google Scholar 

  22. Kingsley-Kallesen M, Mukhopadhyay SS, Wyszomierski SL et al (2002) The mineralocorticoid receptor may compensate for the loss of the glucocorticoid receptor at specific stages of mammary gland development. Mol Endocrinol 16(9):2008–2018. doi:10.1210/me.2002-0103

    Article  CAS  PubMed  Google Scholar 

  23. Reichardt HM, Horsch K, Grone HJ et al (2001) Mammary gland development and lactation are controlled by different glucocorticoid receptor activities. Eur J Endocrinol 145(4):519–527

    Article  CAS  PubMed  Google Scholar 

  24. Wintermantel TM, Bock D, Fleig V et al (2005) The Epithelial glucocorticoid receptor is required for the normal timing of cell proliferation during mammary lobuloalveolar development but is dispensable for milk production. Mol Endocrinol 19(2):340–349. doi:10.1210/me.2004-0068

    Article  CAS  PubMed  Google Scholar 

  25. Dunbar ME, Dann PR, Robinson GW et al (1999) Parathyroid hormone-related protein signaling is necessary for sexual dimorphism during embryonic mammary development. Development 126(16):3485–3493

    CAS  PubMed  Google Scholar 

  26. Hiremath M, Wysolmerski J (2013) Parathyroid hormone-related protein specifies the mammary mesenchyme and regulates embryonic mammary development. J Mammary Gland Biol Neoplasia 18:171–177. doi:10.1007/s10911-013-9283-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG et al (1995) Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development 121(11):3539–3547

    CAS  PubMed  Google Scholar 

  28. Dunbar ME, Dann P, Brown CW et al (2001) Temporally regulated overexpression of parathyroid hormone-related protein in the mammary gland reveals distinct fetal and pubertal phenotypes. J Endocrinol 171(3):403–416

    Article  CAS  PubMed  Google Scholar 

  29. Zinser G, Packman K, Welsh J (2002) Vitamin D3 receptor ablation alters mammary gland morphogenesis. Development 129(13):3067–3076

    CAS  PubMed  Google Scholar 

  30. Welsh J (2004) Vitamin D and breast cancer: insights from animal models. Am J Clin Nutr 80(6 Suppl):1721–1724

    Google Scholar 

  31. Soto AM, Sonnenschein C (2010) Environmental causes of cancer: endocrine disruptors as carcinogens. Oncogene 6:363–370. doi:10.1038/nrendo.2010.87

    CAS  Google Scholar 

  32. Hilakivi-Clarke L (2014) Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters. Breast Cancer Res 16:208. doi:10.1093/ije/dyl106

    Article  PubMed  PubMed Central  Google Scholar 

  33. Geens T, Aerts D, Berthot C et al (2012) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50:3725–3740. doi:10.1016/j.fct.2012.07.059

    Article  CAS  PubMed  Google Scholar 

  34. Muñoz-de-Toro M, Markey CM, Wadia PR et al (2005) Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology 146:4138–4147. doi:10.1210/en.2005-0340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hilakivi-Clarke L, Cho E, Clarke R (1998) Maternal genistein exposure mimics the effects of estrogen on mammary gland development in female mouse offspring. Oncol Rep 5:609–625. doi:10.3892/or.5.3.609

    CAS  PubMed  Google Scholar 

  36. Johnson MD, Kenney N, Stoica A et al (2003) Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med 9:1081–1084. doi:10.1038/nm902

    Article  CAS  PubMed  Google Scholar 

  37. Hilakivi-Clarke L, Cho E, Raygada M, Kenney N (1997) Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor α, and estrogen receptor antagonist ICI 182,780. J Cell Physiol 170:279–289

    Article  CAS  PubMed  Google Scholar 

  38. Fielden M (2002) Normal mammary gland morphology in pubertal female mice following in utero and lactational exposure to genistein at levels comparable to human dietary exposure. Toxicol Lett 133:181–191. doi:10.1016/S0378-4274(02)00154-6

    Article  CAS  PubMed  Google Scholar 

  39. Wise A, O’Brien K, Woodruff T (2011) Are oral contraceptives a significant contributor to the estrogenicity of drinking water? Environ Sci Technol 45:51–60. doi:10.1021/es1014482

    Article  CAS  PubMed  Google Scholar 

  40. Khan U, Nicell JA (2014) Contraceptive options and their associated estrogenic environmental loads: relationships and trade-offs. PLoS One 9, e92630. doi:10.1371/journal.pone.0092630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. McBryan J, Howlin J, Napoletano S, Martin F (2008) Amphiregulin: role in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 13:159–169. doi:10.1007/s10911-008-9075-7

    Article  PubMed  Google Scholar 

  42. Ciarloni L, Mallepell S, Brisken C (2007) Amphiregulin is an essential mediator of estrogen receptor function in mammary gland development. Proc Natl Acad Sci U S A 104:5455–5460. doi:10.1073/pnas.0611647104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McBryan J, Howlin J, Kenny PA et al (2007) ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene 26:6406–6419. doi:10.1038/sj.onc.1210468

    Article  CAS  PubMed  Google Scholar 

  44. Luetteke NC, Qiu TH, Fenton SE et al (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126:2739–2750

    CAS  PubMed  Google Scholar 

  45. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H et al (2005) Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132:3923–3933. doi:10.1242/dev.01966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wiesen JF, Young P, Werb Z, Cunha GR (1999) Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 126:335–344

    CAS  PubMed  Google Scholar 

  47. Schroeder JA, Lee DC (1998) Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ 9:451–464

    CAS  PubMed  Google Scholar 

  48. Stern D (2003) ErbBs in mammary development. Exp Cell Res 284:89–98. doi:10.1016/S0014-4827(02)00103-9

    Article  CAS  PubMed  Google Scholar 

  49. Sebastian J, Richards RG, Walker MP et al (1998) Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ 9:777–785

    CAS  PubMed  Google Scholar 

  50. Stern DF (2008) ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 13:215–223. doi:10.1007/s10911-008-9083-7

    Article  PubMed  Google Scholar 

  51. Jones FE, Welte T, Fu XY, Stern DF (1999) ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol 147:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Long W, Wagner K-U, Lloyd KCK et al (2003) Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development 130:5257–5268. doi:10.1242/dev.00715

    Article  CAS  PubMed  Google Scholar 

  53. Jackson-Fisher AJ, Bellinger G, Breindel JL et al (2008) ErbB3 is required for ductal morphogenesis in the mouse mammary gland. Breast Cancer Res 10(6):96. doi:10.1186/bcr2198

    Article  CAS  Google Scholar 

  54. Krane IM, Leder P (1996) NDF/heregulin induces persistence of terminal end buds and adenocarcinomas in the mammary glands of transgenic mice. Oncogene 12:1781–1788

    CAS  PubMed  Google Scholar 

  55. Liu JL, LeRoith D (1999) Insulin-like growth factor I is essential for postnatal growth in response to growth hormone. Endocrinology 140:5178–5184. doi:10.1210/endo.140.11.7151

    Article  CAS  PubMed  Google Scholar 

  56. Richards RG, Klotz DM, Walker MP, Diaugustine RP (2004) Mammary gland branching morphogenesis is diminished in mice with a deficiency of insulin-like growth factor-I (IGF-I), but not in mice with a liver-specific deletion of IGF-I. Endocrinology 145:3106–3110. doi:10.1210/en.2003-1112

    Article  CAS  PubMed  Google Scholar 

  57. Loladze AV, Stull MA, Rowzee AM et al (2006) Epithelial-specific and stage-specific functions of insulin-like growth factor-I during postnatal mammary development. Endocrinology 147:5412–5423. doi:10.1210/en.2006-0427

    Article  CAS  PubMed  Google Scholar 

  58. Richert MM, Wood TL (1999) The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology 140:454–461. doi:10.1210/endo.140.1.6413

    CAS  PubMed  Google Scholar 

  59. de Ostrovich KK, Lambertz I, Colby JKL et al (2008) Paracrine overexpression of insulin-like growth factor-1 enhances mammary tumorigenesis in vivo. Am J Pathol 173:824–834. doi:10.2353/ajpath.2008.071005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bonnette SG, Hadsell DL (2001) Targeted disruption of the IGF-I receptor gene decreases cellular proliferation in mammary terminal end buds. Endocrinology 142(11):4937–4945

    Article  CAS  PubMed  Google Scholar 

  61. Jones RA, Campbell CI, Gunther EJ et al (2006) Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 26:1636–1644. doi:10.1038/sj.onc.1209955

    Article  PubMed  CAS  Google Scholar 

  62. Carboni JM (2005) Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res 65:3781–3787. doi:10.1158/0008-5472.CAN-04-4602

    Article  CAS  PubMed  Google Scholar 

  63. Flint DJ, Tonner E, Beattie J, Allan GJ (2008) Role of insulin-like growth factor binding proteins in mammary gland development. Int J Dev Biol 13:443–453. doi:10.1007/s10911-008-9095-3

    CAS  Google Scholar 

  64. Guo L, Degenstein L, Fuchs E (1996) Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 10:165–175

    Article  CAS  PubMed  Google Scholar 

  65. Sekine K, Ohuchi H, Fujiwara M et al (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141. doi:10.1038/5096

    Article  CAS  PubMed  Google Scholar 

  66. Ngan ESW, Ma Z-Q, Chua SS et al (2002) Inducible expression of FGF-3 in mouse mammary gland. Proc Natl Acad Sci U S A 99:11187–11192. doi:10.1073/pnas.172366199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lu P, Ewald AJ, Martin GR, Werb Z (2008) Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Dev Biol 321:77–87. doi:10.1016/j.ydbio.2008.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yant J, Buluwela L, Niranjan B et al (1998) In vivo effects of hepatocyte growth factor/scatter factor on mouse mammary gland development. Exp Cell Res 241:476–481. doi:10.1006/excr.1998.4028

    Article  CAS  PubMed  Google Scholar 

  69. Yang Y, Spitzer E, Meyer D et al (1995) Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J Cell Biol 131:215–226

    Article  CAS  PubMed  Google Scholar 

  70. Garner OB, Bush KT, Nigam KB et al (2011) Stage-dependent regulation of mammary ductal branching by heparan sulfate and HGF-cMet signaling. Dev Biol 355:394–403. doi:10.1016/j.ydbio.2011.04.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Niranjan B, Buluwela L, Yant J et al (1995) HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development 121:2897–2908

    CAS  PubMed  Google Scholar 

  72. Delehedde M, Lyon M, Sergeant N et al (2001) Proteoglycans: pericellular and cell surface multireceptors that integrate external stimuli in the mammary gland. J Mammary Gland Biol Neoplasia 6:253–273. doi:10.1023/A:1011367423085

    Article  CAS  PubMed  Google Scholar 

  73. Liu BY, Kim YC, Leatherberry V et al (2003) Mammary gland development requires syndecan-1 to create a β-catenin/TCF-responsive mammary epithelial subpopulation. Oncogene 22:9243–9253. doi:10.1038/sj.onc.1207217

    Article  CAS  PubMed  Google Scholar 

  74. Wu Z-ZZ, Sun N-KN, Chao CC-KC (2011) Knockdown of CITED2 using short-hairpin RNA sensitizes cancer cells to cisplatin through stabilization of p53 and enhancement of p53-dependent apoptosis. J Cell Physiol 226:2415–2428. doi:10.1002/jcp.22589

    Article  CAS  PubMed  Google Scholar 

  75. Zcharia E, Jia J, Zhang X et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS One 4, e5181. doi:10.1371/journal.pone.0005181.t002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Huebner RJ, Ewald AJ (2014) Cellular foundations of mammary tubulogenesis. Semin Cell Dev Biol 31:124–131. doi:10.1016/j.semcdb.2014.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shackleton M, Vaillant F, Simpson KJ et al (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88. doi:10.1038/nature04372

    Article  CAS  PubMed  Google Scholar 

  78. Stingl J, Smalley M, Glukhova M, Bentires-Alj M (2010) Methods in mammary gland development and cancer: the second ENDBC meeting – intravital imaging, genomics, modeling and metastasis. Breast Cancer Res 12:311. doi:10.1186/bcr2630

    Article  PubMed  PubMed Central  Google Scholar 

  79. Phillips S, Prat A, Sedic M et al (2014) Cell-state transitions regulated by SLUG are critical for tissue regeneration and tumor initiation. Stem Cell Rep 2:633–647. doi:10.1016/j.stemcr.2014.03.008

    Article  CAS  Google Scholar 

  80. Van Keymeulen A, Rocha AS, Ousset M et al (2011) Distinct stem cells contribute to mammary gland development and maintenance. Nature 479:189–193. doi:10.1038/nature10573

    Article  PubMed  CAS  Google Scholar 

  81. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z (2006) GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127:1041–1055. doi:10.1016/j.cell.2006.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Asselin-Labat M-L, Sutherland KD, Barker H et al (2007) Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9:201–209. doi:10.1038/ncb1530

    Article  CAS  PubMed  Google Scholar 

  83. Asselin-Labat ML, Sutherland KD, Vaillant F et al (2011) Gata-3 negatively regulates the tumor-initiating capacity of mammary luminal progenitor cells and targets the putative tumor suppressor caspase-14. Mol Cell Biol 31:4609–4622. doi:10.1128/MCB.05766-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pei X-H, Bai F, Smith MD et al (2009) CDK inhibitor p18INK4c is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Cell 15:389–401. doi:10.1016/j.ccr.2009.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pietersen AM, Evers B, Prasad AA et al (2008) Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol 18:1094–1099. doi:10.1016/j.cub.2008.06.070

    Article  CAS  PubMed  Google Scholar 

  86. Kurpios NA, MacNeil L, Shepherd TG et al (2009) The Pea3 Ets transcription factor regulates differentiation of multipotent progenitor cells during mammary gland development. Dev Biol 325:106–121. doi:10.1016/j.ydbio.2008.09.033

    Article  CAS  PubMed  Google Scholar 

  87. Jia Y (2005) Peroxisome proliferator-activated receptor-binding protein null mutation results in defective mammary gland development. J Biol Chem 280:10766–10773. doi:10.1074/jbc.M413331200

    Article  CAS  PubMed  Google Scholar 

  88. Jiang P, Hu Q, Ito M et al (2010) Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation. Proc Natl Acad Sci U S A 107:6765–6770. doi:10.1073/pnas.1001814107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hasegawa N, Sumitomo A, Fujita A et al (2012) Mediator subunits MED1 and MED24 cooperatively contribute to pubertal mammary gland development and growth of breast carcinoma cells. Mol Cell Biol 32:1483–1495. doi:10.1128/MCB.05245-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Parashurama N, Lobo NA, Ito K et al (2012) Remodeling of endogenous mammary epithelium by breast cancer stem cells. Stem Cells 30:2114–2127. doi:10.1002/stem.1205

    Article  PubMed  PubMed Central  Google Scholar 

  91. Booth BW, Boulanger CA, Anderson LH et al (2010) Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics. Exp Cell Res 316:422–432. doi:10.1016/j.yexcr.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  92. Santos SJ, Haslam SZ, Conrad SE (2010) Signal transducer and activator of transcription 5a mediates mammary ductal branching and proliferation in the nulliparous mouse. Endocrinology 151:2876–2885. doi:10.1210/en.2009-1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yamaji D, Na R, Feuermann Y et al (2009) Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev 23:2382–2387. doi:10.1101/gad.1840109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vafaizadeh V, Klemmt PA, Groner B (2012) Stat5 assumes distinct functions in mammary gland development and mammary tumor formation. Front Biosci 17:1232–1250

    Article  CAS  Google Scholar 

  95. Vafaizadeh V, Klemmt P, Brendel C et al (2010) Mammary epithelial reconstitution with gene-modified stem cells assigns roles to Stat5 in luminal alveolar cell fate decisions, differentiation, involution, and mammary tumor formation. Stem Cells 28:928–938. doi:10.1002/stem.407

    CAS  PubMed  Google Scholar 

  96. Rios AC, Fu NY, Lindeman GJ, Visvader JE (2014) In situ identification of bipotent stem cells in the mammary gland. Nature 506:322–327. doi:10.1038/nature12948

    Article  CAS  PubMed  Google Scholar 

  97. Mani SA, Guo W, Liao M-J et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715. doi:10.1016/j.cell.2008.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bai F, Chan HL, Scott A et al (2014) BRCA1 suppresses epithelial-to-mesenchymal transition and stem cell dedifferentiation during mammary and tumor development. Cancer Res 74(21):6161–6172

    Article  CAS  PubMed  Google Scholar 

  99. Deng C-X, Xu X, Wagner K-U et al (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22:37–43. doi:10.1038/8743

    Article  PubMed  CAS  Google Scholar 

  100. Bai F, Smith MD, Chan HL, Pei X-H (2013) Germline mutation of Brca1 alters the fate of mammary luminal cells and causes luminal-to-basal mammary tumor transformation. Oncogene 32:2715–2725. doi:10.1038/onc.2012.293

    Article  CAS  PubMed  Google Scholar 

  101. Lamber EP, Horwitz AA, Parvin JD (2010) BRCA1 represses amphiregulin gene expression. Cancer Res 70:996–1005. doi:10.1158/0008-5472.CAN-09-2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lee K, Gjorevski N, Boghaert E et al (2011) Snail1, Snail2, and E47 promote mammary epithelial branching morphogenesis. EMBO J 30:2662–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nelson CM, Vanduijn MM, Inman JL et al (2006) Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science 314:298–300. doi:10.1126/science.1131000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kouros-Mehr H, Werb Z (2006) Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn 235:3404–3412. doi:10.1002/dvdy.20978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nelson CM, Inman JL, Bissell MJ (2008) Three-dimensional lithographically defined organotypic tissue arrays for quantitative analysis of morphogenesis and neoplastic progression. Nat Protoc 3:674–678. doi:10.1038/nprot.2008.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ewald AJ, Brenot A, Duong M et al (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jennifer L, Andrews ACKJRH (2012) The role and function of cadherins in the mammary gland. Breast Cancer Res 14:203. doi:10.1186/bcr3065

    Google Scholar 

  108. Daniel CW, Strickland P, Friedmann Y (1995) Expression and functional role of E- and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev Biol 169:511–519. doi:10.1006/dbio.1995.1165

    Article  CAS  PubMed  Google Scholar 

  109. Albergaria A, Ribeiro A-S, Vieira A-F et al (2011) P-cadherin role in normal breast development and cancer. Int J Dev Biol 55:811–822. doi:10.1387/ijdb.113382aa

    Article  PubMed  Google Scholar 

  110. Delmas V, Pla P, Feracci H et al (1999) Expression of the cytoplasmic domain of E-cadherin induces precocious mammary epithelial alveolar formation and affects cell polarity and cell–matrix integrity. Dev Biol 216:491–506. doi:10.1006/dbio.1999.9517

    Article  CAS  PubMed  Google Scholar 

  111. Boussadia O, Kutsch S, Hierholzer A et al (2002) E-cadherin is a survival factor for the lactating mouse mammary gland. Mech Dev 115:53–62. doi:10.1016/S0925-4773(02)00090-4

    Article  CAS  PubMed  Google Scholar 

  112. Gallagher RCJ, Hay T, Meniel V et al (2002) Inactivation of Apc perturbs mammary development, but only directly results in acanthoma in the context of Tcf-1 deficiency. Oncogene 21:6446–6457. doi:10.1038/sj.onc.1205892

    Article  CAS  PubMed  Google Scholar 

  113. Imbert A, Eelkema R, Jordan S et al (2001) Delta N89 beta-catenin induces precocious development, differentiation, and neoplasia in mammary gland. J Cell Biol 153:555–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Incassati A, Chandramouli A, Eelkema R, Cowin P (2010) Key signaling nodes in mammary gland development and cancer: β-catenin. Breast Cancer Res 12:213. doi:10.1186/bcr2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. van Genderen C, Okamura R, Farinas I et al (1994) Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev 8:2691–2703

    Article  PubMed  Google Scholar 

  116. Wheelock MJ, Shintani Y, Maeda M et al (2008) Cadherin switching. J Cell Sci 121:727–735. doi:10.1242/jcs.000455

    Article  CAS  PubMed  Google Scholar 

  117. Qian X, Karpova T, Sheppard AM et al (2004) E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23:1739–1784. doi:10.1038/sj.emboj.7600136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Qian X, Anzovino A, Kim S et al (2013) N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties. Oncogene 33:3411–3421. doi:10.1038/onc.2013.310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Baum B, Georgiou M (2011) Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192(6):907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dow LE, Humbert PO (2007) Polarity Regulators and the Control of Epithelial Architecture, Cell Migration, and Tumorigenesis. International Review of Cytology. Elsevier, Berlin, pp 253–302

    Google Scholar 

  121. Bray K, Gillette M, Young J et al (2013) Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res 15:91

    Article  CAS  Google Scholar 

  122. Gillette M, Bray K, Blumenthaler A, Vargo-Gogola T (2013) P190B RhoGAP overexpression in the developing mammary epithelium induces TGFβ-dependent fibroblast activation. PLoS One 8, e65105. doi:10.1371/journal.pone.0065105

    Article  PubMed  PubMed Central  Google Scholar 

  123. Nathan J et al (2014) Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet. doi:10.1371/journal.pgen.1004323

    Google Scholar 

  124. Srinivasan K, Strickland P, Valdes A et al (2003) Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell 4:371–382

    Article  CAS  PubMed  Google Scholar 

  125. Munarini N, Jäger R, Abderhalden S et al (2002) Altered mammary epithelial development, pattern formation and involution in transgenic mice expressing the EphB4 receptor tyrosine kinase. J Cell Sci 115:25–37

    CAS  PubMed  Google Scholar 

  126. Silberstein G, Daniel C (1987) Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science 237:291–293. doi:10.1126/science.3474783

    Article  CAS  PubMed  Google Scholar 

  127. Pierce DF, Johnson MD, Matsui Y et al (1999) Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1. Genes Dev 7(12):2308–2317

    Google Scholar 

  128. Ewan KB, Shyamala G, Ravani SA et al (2002) Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol 160:2081–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Silberstein GB, Flanders KC, Roberts AB, Daniel CW (1992) Regulation of mammary morphogenesis: evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-β1. Dev Biol 152:354–362. doi:10.1016/0012-1606(92)90142-4

    Article  CAS  PubMed  Google Scholar 

  130. Roarty K, Serra R (2007) Wnt5a is required for proper mammary gland development and TGF-mediated inhibition of ductal growth. Development 134:3929–3939. doi:10.1242/dev.008250

    Article  CAS  PubMed  Google Scholar 

  131. Vogel WF, Aszódi A, Alves F, Pawson T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21:2906–2917. doi:10.1128/MCB.21.8.2906-2917.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Roarty K, Baxley S, Crowley M et al (2009) Loss of TGF-β or Wnt5a results in an increase in Wnt/β-catenin activity and redirects mammary tumour phenotype. Breast Cancer Res 11:R19. doi:10.1186/bcr2244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Silberstein GB (2001) Tumour-stromal interactions. Role of the stroma in mammary development. Breast Cancer Res 3:218–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Paulsson M (1992) Basement membrane proteins: structure, assembly, and cellular interactions. Crit Rev Biochem Mol Biol 27:93–127. doi:10.3109/10409239209082560

    Article  CAS  PubMed  Google Scholar 

  135. Wiseman BS, Sternlicht MD, Lund LR et al (2003) Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 162:1123–1133. doi:10.1083/jcb.200302090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sympson CJ, Talhouk RS, Alexander CM et al (1994) Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol 125:681–693

    Article  CAS  PubMed  Google Scholar 

  137. Thomasset N, Lochter A, Sympson CJ et al (1998) Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am J Pathol 153:457–467. doi:10.1016/S0002-9440(10)65589-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fata JE, Leco KJ, Moorehead RA et al (1999) Timp-1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development. Dev Biol 211:238–254. doi:10.1006/dbio.1999.9313

    Article  CAS  PubMed  Google Scholar 

  139. Taddei I, Deugnier M-A, Faraldo MM et al (2008) Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol 10:716–722. doi:10.1038/ncb1734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Klinowska TC, Soriano JV, Edwards GM et al (1999) Laminin and beta1 integrins are crucial for normal mammary gland development in the mouse. Dev Biol 215:13–32. doi:10.1006/dbio.1999.9435

    Article  CAS  PubMed  Google Scholar 

  141. Nagy T, Wei H, Shen T-L et al (2007) Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. J Biol Chem 282:31766–31776. doi:10.1074/jbc.M705403200

    Article  CAS  PubMed  Google Scholar 

  142. van Miltenburg MHAM, Lalai R, de Bont H et al (2009) Complete focal adhesion kinase deficiency in the mammary gland causes ductal dilation and aberrant branching morphogenesis through defects in Rho kinase-dependent cell contractility. FASEB J 23:3482–3493. doi:10.1096/fj.08-123398

    Article  PubMed  CAS  Google Scholar 

  143. Gomez EW, Chen QK, Gjorevski N, Nelson CM (2010) Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J Cell Biochem 110:44–51. doi:10.1002/jcb.22545

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gjorevski N, Nelson CM (2010) Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol (Camb) 2:424–434. doi:10.1039/c0ib00040j

    Article  CAS  Google Scholar 

  145. Gouon-Evans V, Rothenberg ME, Pollard JW (2000) Postnatal mammary gland development requires macrophages and eosinophils. Development 127:2269–2282

    CAS  PubMed  Google Scholar 

  146. Sferruzzi-Perri AN, Robertson SA, Dent LA (2003) Interleukin-5 transgene expression and eosinophilia are associated with retarded mammary gland development in mice. Biol Reprod 69:224–233. doi:10.1095/biolreprod.102.010611

    Article  CAS  PubMed  Google Scholar 

  147. Lilla JN, Werb Z (2010) Mast cells contribute to the stromal microenvironment in mammary gland branching morphogenesis. Dev Biol 337:124–133. doi:10.1016/j.ydbio.2009.10.021

    Article  CAS  PubMed  Google Scholar 

  148. Van Nguyen A, Pollard JW (2002) Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol 247:11–25. doi:10.1006/dbio.2002.0669

    Article  PubMed  CAS  Google Scholar 

  149. O'Brien J, Martinson H, Durand-Rougely C, Schedin P (2011) Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development 139:269–275. doi:10.1242/dev.071696

    Article  PubMed  CAS  Google Scholar 

  150. Gyorki DE, Asselin-Labat M-L, van Rooijen N et al (2009) Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res 11:R62. doi:10.1186/bcr2353

    Article  PubMed  PubMed Central  Google Scholar 

  151. Doyle A, McGarry MP, Lee NA, Lee JJ (2011) The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res 21:327–349. doi:10.1007/s11248-011-9537-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Ristevski S (2005) Making better transgenic models: conditional, temporal, and spatial approaches. Mol Biotechnol 29:153–164. doi:10.1385/MB:29:2:153

    Article  CAS  PubMed  Google Scholar 

  153. Medina D (2010) Of mice and women: a short history of mouse mammary cancer research with an emphasis on the paradigms inspired by the transplantation method. Cold Spring Harb Perspect Biol 2(10):004523

    Article  CAS  Google Scholar 

  154. SHILLINGFORD J, Hennighausen L (2001) Experimental mouse genetics – answering fundamental questions about mammary gland biology. Trends Endocrinol Metab 12:402–408. doi:10.1016/S1043-2760(01)00471-4

    Article  CAS  PubMed  Google Scholar 

  155. Fantl V, Stamp G, Andrews A et al (1995) Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9(19):2364–2372

    Article  CAS  PubMed  Google Scholar 

  156. Sicinski P, Donaher JL, Parker SB et al (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82:621–630. doi:10.1016/0092-8674(95)90034-9

    Article  CAS  PubMed  Google Scholar 

  157. Casimiro MC, Wang C, Li Z et al (2013) Cyclin D1 determines estrogen signaling in the mammary gland in vivo. Mol Endocrinol 27:1415–1428. doi:10.1210/me.2013-1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xu J, Liao L, Ning G et al (2000) The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 97:6379–6384. doi:10.1073/pnas.120166297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Yang Y-A, Tang B, Robinson G et al (2002) Smad3 in the mammary epithelium has a nonredundant role in the induction of apoptosis, but not in the regulation of proliferation or differentiation by transforming growth factor-beta. Cell Growth Differ 13:123–130

    CAS  PubMed  Google Scholar 

  160. Ucar A, Vafaizadeh V, Jarry H et al (2010) miR-212 and miR-132 are required for epithelial stromal interactions necessary for mouse mammary gland development. Nat Genet 42:1101–1108. doi:10.1038/ng.709

    Article  CAS  PubMed  Google Scholar 

  161. Remenyi J, van den Bosch MWM, Palygin O et al (2013) miR-132/212 knockout mice reveal roles for these mirnas in regulating cortical synaptic transmission and plasticity. PLoS One 8:62509. doi:10.1371/journal.pone.0062509

    Article  CAS  Google Scholar 

  162. Kayo H, Kiga K, Fukuda-Yuzawa Y et al (2014) miR-212 and miR-132 are dispensable for mouse mammary gland development. Nat Genet 46:802–804. doi:10.1038/ng.2990

    Article  CAS  PubMed  Google Scholar 

  163. Ucar A, Erikci E, Ucar O, Chowdhury K (2014) miR-212 and miR-132 are dispensable for mouse mammary gland development. Nat Genet 46:804–805. doi:10.1038/ng.3032

    Article  CAS  PubMed  Google Scholar 

  164. Torres-Ruiz R, Rodriguez-Perales S (2015) CRISPR-Cas9: a revolutionary tool for cancer modelling. Int J Mol Sci 16:22151–22168. doi:10.3390/ijms160922151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Blasco RB, Karaca E, Ambrogio C et al (2014) Simple and rapid in vivo generation of chromosomal rearrangements using CRISPR/Cas9 technology. Cell Rep 9:1219–1227. doi:10.1016/j.celrep.2014.10.051

    Article  CAS  PubMed  Google Scholar 

  166. Maddalo D, Manchado E, Concepcion CP et al (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516:423–427. doi:10.1038/nature13902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R et al (2014) Rapid modeling of cooperating genetic events in cancer through somatic genome editing. Nature 516:428–431. doi:10.1038/nature13906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Mou H, Kennedy Z, Anderson DG et al (2015) Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med 7:53. doi:10.1186/s13073-015-0178-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Yin H, Xue W, Chen S et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551–553. doi:10.1038/nbt.2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Metser G, Shin HY, Wang C et al (2016) An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Res 44(3):1052–1063. doi:10.1093/nar/gkv999

    Article  CAS  PubMed  Google Scholar 

  171. Zhao H, Pearson EK, Brooks DC et al (2012) A humanized pattern of aromatase expression is associated with mammary hyperplasia in mice. Endocrinology 153:2701–2713. doi:10.1210/en.2011-1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gallego MI, Binart N, Robinson GW et al (2001) Prolactin, growth hormone, and epidermal growth factor activate Stat5 in different compartments of mammary tissue and exert different and overlapping developmental effects. Dev Biol 229:163–175. doi:10.1006/dbio.2000.9961

    Article  CAS  PubMed  Google Scholar 

  173. Xu J, Qiu Y, DeMayo FJ et al (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279:1922–1925

    Article  CAS  PubMed  Google Scholar 

  174. Kouros-Mehr H, Kim J-W, Bechis SK, Werb Z (2008) GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 20:164–170. doi:10.1016/j.ceb.2008.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zcharia E, Metzger S, Chajek-Shaul T et al (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18(2):252–263

    Article  CAS  PubMed  Google Scholar 

  176. Hathaway HJ, Shur BD (1996) Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface beta1,4-galactosyltransferase. Development 122(9):2859–2872

    CAS  PubMed  Google Scholar 

  177. Steffgen K, Dufraux K, Hathaway H (2002) Enhanced branching morphogenesis in mammary glands of mice lacking cell surface beta1,4-galactosyltransferase. Dev Biol 244:114–133. doi:10.1006/dbio.2002.0599

    Article  CAS  PubMed  Google Scholar 

  178. Crowley MR, Head KL, Kwiatkowski DJ et al (2000) The mouse mammary gland requires the actin-binding protein gelsolin for proper ductal morphogenesis. Dev Biol 225:407–423. doi:10.1006/dbio.2000.9844

    Article  CAS  PubMed  Google Scholar 

  179. Shillingford JM, Miyoshi K, Flagella M (2002) Mouse mammary epithelial cells express the Na-K-Cl cotransporter, NKCC1: characterization, localization, and involvement in ductal development and morphogenesis. Mol Endocrinol 16(6):1309–1321

    Article  CAS  PubMed  Google Scholar 

  180. Okolowsky N, Furth PA, Hamel PA (2014) Oestrogen receptor-alpha regulates non-canonical Hedgehog-signalling in the mammary gland. Dev Biol 391:219–229. doi:10.1016/j.ydbio.2014.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Vapola MH, Rokka A, Sormunen RT et al (2014) Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice. Dev Biol 391:66–80. doi:10.1016/j.ydbio.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  182. Michalak EM, Nacerddine K, Pietersen A et al (2013) Polycomb group gene Ezh2 regulates mammary gland morphogenesis and maintains the luminal progenitor pool. Stem Cells 31:1910–1920

    Article  CAS  PubMed  Google Scholar 

  183. Stairs DB, Notarfrancesco KL, Chodosh LA (2005) The serine/threonine kinase, Krct, affects endbud morphogenesis during murine mammary gland development. Transgenic Res 14:919–940. doi:10.1007/s11248-005-1806-6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jillian Howlin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

McBryan, J., Howlin, J. (2017). Pubertal Mammary Gland Development: Elucidation of In Vivo Morphogenesis Using Murine Models. In: Martin, F., Stein, T., Howlin, J. (eds) Mammary Gland Development. Methods in Molecular Biology, vol 1501. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6475-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6475-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6473-4

  • Online ISBN: 978-1-4939-6475-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics