Skip to main content

Advertisement

Log in

Amphiregulin: Role in Mammary Gland Development and Breast Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Extensive epithelial cell proliferation underlies the ductal morphogenesis of puberty that generates the mammary tree that will eventually fill the fat pad. This estrogen-dependent process is believed to be essentially dependent on locally produced growth factors that act in a paracrine fashion. EGF-like growth factor ligands, acting through EGF receptors are some of the principal promoters of pubertal ductal morphogenesis. Amphiregulin is the most abundant EGF-like growth factor in the pubertal mammary gland. Its gene is transcriptionally regulated by ERα, and recent evidence identifies it as a key mediator of the estrogen-driven epithelial cell proliferation of puberty: The pubertal deficiency in mammary gland ductal morphogenesis in ERα, amphiregulin, and EGFR knockout mice phenocopy each other. As a prognostic indicator in human breast cancer, amphiregulin indicates an outcome identical to that predicted by ERα presence. Despite this, a range of studies both on preneoplastic human breast tissue and on cell culture based models of breast cancer, suggest a possibly significant role for amphiregulin in driving human breast cancer progression. Here we summarise our current understanding of amphiregulin’s contribution to mammary gland development and breast cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

Areg:

amphiregulin

ChIP:

chromatin immunoprecipitation

ECM:

extracellular matrix

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

ER:

estrogen receptor

ERE:

estrogen response element

FGF:

fibroblast growth factor

HELU:

hyperplastic enlarged lobular units

HGF:

hepatocyte growth factor

IGF:

insulin-like growth factor

KO:

knockout

Prlr:

prolactin receptor

PTHLH:

parathyroid hormone like hormone

TDLU:

terminal ductal lobular units

TEB:

terminal end bud

TGF:

transforming growth factor

References

  1. Shoyab M, McDonald VL, Bradley JG, Todaro GJ. Amphiregulin: a bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7. Proc Natl Acad Sci USA. 1988;85 17:6528–32.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson GR, Saeki T, Gordon AW, Shoyab M, Salomon DS, Stromberg K. Autocrine action of amphiregulin in a colon carcinoma cell line and immunocytochemical localization of amphiregulin in human colon. J Cell Biol. 1992;118 3:741–51.

    Article  PubMed  CAS  Google Scholar 

  3. Cook PW, Mattox PA, Keeble WW, Pittelkow MR, Plowman GD, Shoyab M, et al. A heparin sulfate-regulated human keratinocyte autocrine factor is similar or identical to amphiregulin. Mol Cell Biol. 1991;11 5:2547–57.

    PubMed  CAS  Google Scholar 

  4. Li S, Plowman GD, Buckley SD, Shipley GD. Heparin inhibition of autonomous growth implicates amphiregulin as an autocrine growth factor for normal human mammary epithelial cells. J Cell Physiol. 1992;153 1:103–11.

    Article  PubMed  CAS  Google Scholar 

  5. Normanno N, Selvam MP, Qi CF, Saeki T, Johnson G, Kim N, et al. Amphiregulin as an autocrine growth factor for c-Ha-ras- and c-erbB-2-transformed human mammary epithelial cells. Proc Natl Acad Sci USA. 1994;91 7:2790–4.

    Article  PubMed  CAS  Google Scholar 

  6. Piepkorn M, Lo C, Plowman G. Amphiregulin-dependent proliferation of cultured human keratinocytes: autocrine growth, the effects of exogenous recombinant cytokine, and apparent requirement for heparin-like glycosaminoglycans. J Cell Physiol. 1994;159 1:114–20.

    Article  PubMed  CAS  Google Scholar 

  7. Kato M, Inazu T, Kawai Y, Masamura K, Yoshida M, Tanaka N, et al. Amphiregulin is a potent mitogen for the vascular smooth muscle cell line, A7r5. Biochem Biophys Res Commun. 2003;301 4:1109–15.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson GR, Saeki T, Auersperg N, Gordon AW, Shoyab M, Salomon DS, et al. Response to and expression of amphiregulin by ovarian carcinoma and normal ovarian surface epithelial cells: nuclear localization of endogenous amphiregulin. Biochem Biophys Res Commun. 1991;180 2:481–8.

    Article  PubMed  CAS  Google Scholar 

  9. Brown CL, Meise KS, Plowman GD, Coffey RJ, Dempsey PJ. Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N-glycosylated 43-kDa soluble form. J Biol Chem. 1998;273 27:17258–68.

    Article  PubMed  CAS  Google Scholar 

  10. Shoyab M, Plowman GD, McDonald VL, Bradley JG, Todaro GJ. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Science. 1989;243 4894 Pt 1:1074–6.

    Article  PubMed  CAS  Google Scholar 

  11. Plowman GD, Green JM, McDonald VL, Neubauer MG, Disteche CM, Todaro GJ, et al. The amphiregulin gene encodes a novel epidermal growth factor-related protein with tumor-inhibitory activity. Mol Cell Biol. 1990;10 5:1969–81.

    PubMed  CAS  Google Scholar 

  12. Johnson GR, Kannan B, Shoyab M, Stromberg K. Amphiregulin induces tyrosine phosphorylation of the epidermal growth factor receptor and p185erbB2. Evidence that amphiregulin acts exclusively through the epidermal growth factor receptor at the surface of human epithelial cells. J Biol Chem. 1993;268 4:2924–31.

    PubMed  CAS  Google Scholar 

  13. Beerli RR, Hynes NE. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J Biol Chem. 1996;271 11:6071–6.

    Article  PubMed  CAS  Google Scholar 

  14. Riese DJ, Kim ED, Elenius K, Buckley S, Klagsbrun M, Plowman GD, et al. The epidermal growth factor receptor couples transforming growth factor-alpha, heparin-binding epidermal growth factor-like factor, and amphiregulin to Neu, ErbB-3, and ErbB-4. J Biol Chem. 1996;271 33:20047–52.

    Article  PubMed  CAS  Google Scholar 

  15. Berasain C, Garcia-Trevijano ER, Castillo J, Erroba E, Santamaria M, Lee DC, et al. Novel role for amphiregulin in protection from liver injury. J Biol Chem. 2005;280 19:19012–20.

    Article  PubMed  CAS  Google Scholar 

  16. Berasain C, Garcia-Trevijano ER, Castillo J, Erroba E, Lee DC, Prieto J, et al. Amphiregulin: an early trigger of liver regeneration in mice. Gastroenterology. 2005;128 2:424–32.

    Article  PubMed  CAS  Google Scholar 

  17. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 2006;43 2 Suppl 1:S45–53.

    Article  PubMed  CAS  Google Scholar 

  18. Kenney NJ, Smith GH, Rosenberg K, Cutler ML, Dickson RB. Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ. 1996;7 12:1769–81.

    PubMed  CAS  Google Scholar 

  19. Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z. Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development. 2005;132 17:3923–33.

    Article  PubMed  CAS  Google Scholar 

  20. Ormandy CJ, Naylor M, Harris J, Robertson F, Horseman ND, Lindeman GJ, et al. Investigation of the transcriptional changes underlying functional defects in the mammary glands of prolactin receptor knockout mice. Recent Prog Horm Res. 2003;58:297–323.

    Article  PubMed  CAS  Google Scholar 

  21. Kenney NJ, Huang RP, Johnson GR, Wu JX, Okamura D, Matheny W, et al. Detection and location of amphiregulin and Cripto-1 expression in the developing postnatal mouse mammary gland. Mol Reprod Dev. 1995;41 3:277–86.

    Article  PubMed  CAS  Google Scholar 

  22. Luetteke NC, Qiu TH, Fenton SE, Troyer KL, Riedel RF, Chang A, et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development. 1999;126 12:2739–50.

    PubMed  CAS  Google Scholar 

  23. LaMarca HL, Rosen JM. Estrogen regulation of mammary gland development and breast cancer: amphiregulin takes center stage. Breast Cancer Res. 2007;9 4:304.

    Article  PubMed  Google Scholar 

  24. Cunha GR, Young P, Hom YK, Cooke PS, Taylor JA, Lubahn DB. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia. 1997;2 4:393–402.

    Article  PubMed  CAS  Google Scholar 

  25. Woodward TL, Xie JW, Haslam SZ. The role of mammary stroma in modulating the proliferative response to ovarian hormones in the normal mammary gland. J Mammary Gland Biol Neoplasia. 1998;3 2:117–31.

    Article  PubMed  CAS  Google Scholar 

  26. Martinez-Lacaci I, Saceda M, Plowman GD, Johnson GR, Normanno N, Salomon DS, et al. Estrogen and phorbol esters regulate amphiregulin expression by two separate mechanisms in human breast cancer cell lines. Endocrinology. 1995;136 9:3983–92.

    Article  PubMed  CAS  Google Scholar 

  27. Korach KS, Couse JF, Curtis SW, Washburn TF, Lindzey J, Kimbro KS, et al. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog Horm Res. 1996;51:159–86, (discussion 186–8).

    PubMed  CAS  Google Scholar 

  28. Mueller SO, Clark JA, Myers PH, Korach KS. Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology. 2002;143 6:2357–65.

    Article  PubMed  CAS  Google Scholar 

  29. Mallepell S, Krust A, Chambon P, Brisken C. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc Natl Acad Sci USA. 2006;103 7:2196–201.

    Article  PubMed  CAS  Google Scholar 

  30. Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor alpha function in mammary gland development. Proc Natl Acad Sci USA. 2007;104 13:5455–60.

    Article  PubMed  CAS  Google Scholar 

  31. Britton DJ, Hutcheson IR, Knowlden JM, Barrow D, Giles M, McClelland RA, et al. Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat. 2006;96 2:131–46.

    Article  PubMed  CAS  Google Scholar 

  32. McBryan J, Howlin J, Kenny PA, Shioda T, Martin F. ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis. Oncogene. 2007;26 44:6406–19.

    Article  PubMed  CAS  Google Scholar 

  33. Howlin J, McBryan J, Napoletano S, Lambe T, McArdle E, Shioda T, et al. CITED1 homozygous null mice display aberrant pubertal mammary ductal morphogenesis. Oncogene. 2006;25 10:1532–42.

    Article  PubMed  CAS  Google Scholar 

  34. Yahata T, Shao W, Endoh H, Hur J, Coser KR, Sun H, et al. Selective coactivation of estrogen-dependent transcription by CITED1 CBP/p300-binding protein. Genes Dev. 2001;15 19:2598–612.

    Article  PubMed  CAS  Google Scholar 

  35. Sunnarborg SW, Hinkle CL, Stevenson M, Russell WE, Raska CS, Peschon JJ, et al. Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem. 2002;277 15:12838–45.

    Article  PubMed  CAS  Google Scholar 

  36. Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, Peschon J, et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 2004;164 5:769–79.

    Article  PubMed  CAS  Google Scholar 

  37. Massague J, Pandiella A. Membrane-anchored growth factors. Annu Rev Biochem. 1993;62:515–41.

    Article  PubMed  CAS  Google Scholar 

  38. Qin L, Tamasi J, Raggatt L, Li X, Feyen JH, Lee DC, et al. Amphiregulin is a novel growth factor involved in normal bone development and in the cellular response to parathyroid hormone stimulation. J Biol Chem. 2005;280 5:3974–81.

    Article  PubMed  CAS  Google Scholar 

  39. Schroeder JA, Lee DC. Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ. 1998;9 6:451–64.

    PubMed  CAS  Google Scholar 

  40. Schuger L, Johnson GR, Gilbride K, Plowman GD, Mandel R. Amphiregulin in lung branching morphogenesis: interaction with heparan sulfate proteoglycan modulates cell proliferation. Development. 1996;122 6:1759–67.

    PubMed  CAS  Google Scholar 

  41. Wiesen JF, Young P, Werb Z, Cunha GR. Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development 1999;126 2:335–44.

    PubMed  CAS  Google Scholar 

  42. Morris JK, Lin W, Hauser C, Marchuk Y, Getman D, Lee KF. Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 1999;23 2:273–83.

    Article  PubMed  CAS  Google Scholar 

  43. Woldeyesus MT, Britsch S, Riethmacher D, Xu L, Sonnenberg-Riethmacher E, Abou-Rebyeh F, et al. Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev. 1999;13 19:2538–48.

    Article  PubMed  CAS  Google Scholar 

  44. Jackson-Fisher AJ, Bellinger G, Ramabhadran R, Morris JK, Lee KF, Stern DF. ErbB2 is required for ductal morphogenesis of the mammary gland. Proc Natl Acad Sci USA. 2004;101 49:17138–43.

    Article  PubMed  CAS  Google Scholar 

  45. Andrechek ER, White D, Muller WJ. Targeted disruption of ErbB2/Neu in the mammary epithelium results in impaired ductal outgrowth. Oncogene 2005;24 5:932–7.

    Article  PubMed  CAS  Google Scholar 

  46. Sebastian J, Richards RG, Walker MP, Wiesen JF, Werb Z, Derynck R, et al. Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ. 1998;9 9:777–85.

    PubMed  CAS  Google Scholar 

  47. Qu S, Rinehart C, Wu HH, Wang SE, Carter B, Xin H, et al. Gene targeting of ErbB3 using a Cre-mediated unidirectional DNA inversion strategy. Genesis 2006;44 10:477–86.

    Article  PubMed  CAS  Google Scholar 

  48. Long W, Wagner KU, Lloyd KC, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure of Erbb4-deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development 2003;130 21:5257–68.

    Article  PubMed  CAS  Google Scholar 

  49. Jones FE, Welte T, Fu XY, Stern DF. ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol. 1999;147 1:77–88.

    Article  PubMed  CAS  Google Scholar 

  50. Salomon DS, Normanno N, Ciardiello F, Brandt R, Shoyab M, Todaro GJ. The role of amphiregulin in breast cancer. Breast Cancer Res Treat. 1995;33 2:103–14.

    Article  PubMed  CAS  Google Scholar 

  51. LeJeune S, Leek R, Horak E, Plowman G, Greenall M, Harris AL. Amphiregulin, epidermal growth factor receptor, and estrogen receptor expression in human primary breast cancer. Cancer Res. 1993;53 15:3597–602.

    PubMed  CAS  Google Scholar 

  52. Ma L, Gauville C, Berthois Y, Millot G, Johnson GR, Calvo F. Antisense expression for amphiregulin suppresses tumorigenicity of a transformed human breast epithelial cell line. Oncogene. 1999;18 47:6513–20.

    Article  PubMed  CAS  Google Scholar 

  53. Ma L, Gauville C, Berthois Y, Degeorges A, Millot G, Martin PM, et al. Role of epidermal-growth-factor receptor in tumor progression in transformed human mammary epithelial cells. Int J Cancer. 1998;78 1:112–9.

    Article  PubMed  CAS  Google Scholar 

  54. Lee S, Medina D, Tsimelzon A, Mohsin SK, Mao S, Wu Y, et al. Alterations of gene expression in the development of early hyperplastic precursors of breast cancer. Am J Pathol. 2007;171 1:252–62.

    Article  PubMed  CAS  Google Scholar 

  55. Niemeyer CC, Spencer-Dene B, Wu JX, Adamson ED. Preneoplastic mammary tumor markers: Cripto and Amphiregulin are overexpressed in hyperplastic stages of tumor progression in transgenic mice. Int J Cancer. 1999;81 4:588–91.

    Article  PubMed  CAS  Google Scholar 

  56. Gilmore JL, Scott JA, Bouizar Z, Robling A, Pitfield SE, Riese DJ 2nd, et al. Amphiregulin-EGFR signaling regulates PTHrP gene expression in breast cancer cells. Breast Cancer Res Treat 2007, DOI 10.1007/s10549-007-9748-8.

  57. Narita K, Chien J, Mullany SA, Staub J, Qian X, Lingle WL, et al. Loss of HSulf-1 expression enhances autocrine signaling mediated by amphiregulin in breast cancer. J Biol Chem. 2007;282 19:14413–20.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson GR, Wong L. Heparan sulfate is essential to amphiregulin-induced mitogenic signaling by the epidermal growth factor receptor. J Biol Chem. 1994;269 43:27149–54.

    PubMed  CAS  Google Scholar 

  59. Streicher KL, Willmarth NE, Garcia J, Boerner JL, Dewey TG, Ethier SP. Activation of a nuclear factor kappaB/interleukin-1 positive feedback loop by amphiregulin in human breast cancer cells. Mol Cancer Res. 2007;5 8:847–61.

    Article  PubMed  CAS  Google Scholar 

  60. Silvy M, Giusti C, Martin PM, Berthois Y. Differential regulation of cell proliferation and protease secretion by epidermal growth factor and amphiregulin in tumoral versus normal breast epithelial cells. Br J Cancer. 2001;84 7:936–45.

    Article  PubMed  CAS  Google Scholar 

  61. Giusti C, Desruisseau S, Ma L, Calvo F, Martin PM, Berthois Y. Transforming growth factor beta-1 and amphiregulin act in synergy to increase the production of urokinase-type plasminogen activator in transformed breast epithelial cells. Int J Cancer. 2003;105 6:769–78.

    Article  PubMed  CAS  Google Scholar 

  62. D’Cruz CM, Moody SE, Master SR, Hartman JL, Keiper EA, Imielinski MB, et al. Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol. 2002;16 9:2034–51.

    Article  PubMed  CAS  Google Scholar 

  63. Eckstein N, Servan K, Girard L, Cai D, von Jonquieres G, Jaehde U, et al. Epidermal growth factor receptor pathway analysis identifies amphiregulin as a key factor for cisplatin resistance of human breast cancer cells. J Biol Chem. 2008;283 2:739–50.

    Article  PubMed  CAS  Google Scholar 

  64. Kenny PA, Bissell MJ. Targeting TACE-dependent EGFR ligand shedding in breast cancer. J Clin Invest. 2007;117 2:337–45.

    Article  PubMed  CAS  Google Scholar 

  65. Berquin IM, Dziubinski ML, Nolan GP, Ethier SP. A functional screen for genes inducing epidermal growth factor autonomy of human mammary epithelial cells confirms the role of amphiregulin. Oncogene 2001;20 30:4019–28.

    Article  PubMed  CAS  Google Scholar 

  66. Bocchinfuso WP, Korach KS. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia. 1997;2 4:323–34.

    Article  PubMed  CAS  Google Scholar 

  67. Fowler KJ, Walker F, Alexander W, Hibbs ML, Nice EC, Bohmer RM, et al. A mutation in the epidermal growth factor receptor in waved-2 mice has a profound effect on receptor biochemistry that results in impaired lactation. Proc Natl Acad Sci USA. 1995;92 5:1465–9.

    Article  PubMed  CAS  Google Scholar 

  68. Xie W, Paterson AJ, Chin E, Nabell LM, Kudlow JE. Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol Endocrinol. 1997;11 12:1766–81.

    Article  PubMed  CAS  Google Scholar 

  69. Howlin J, McBryan J, Martin F. Pubertal mammary gland development: insights from mouse models. J Mammary Gland Biol Neoplasia. 2006;11:283–97.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The studies carried out in our laboratory in University College Dublin were supported by grants from Science Foundation Ireland, the Health Research Board, Ireland and the EU Research Training Network programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finian Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McBryan, J., Howlin, J., Napoletano, S. et al. Amphiregulin: Role in Mammary Gland Development and Breast Cancer. J Mammary Gland Biol Neoplasia 13, 159–169 (2008). https://doi.org/10.1007/s10911-008-9075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9075-7

Keywords

Navigation