Skip to main content

Freeze Injury of the Tibialis Anterior Muscle

  • Protocol
  • First Online:
Skeletal Muscle Regeneration in the Mouse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1460))

Abstract

Freeze injury is physically induced by exposing skeletal muscle to an extremely cold probe, and results in a robust degenerative and inflammatory response. One unique aspect of freeze injury is that it destroys not only the muscle fiber cells, but also all of the mononuclear cells in the zone of injury. Repair of the muscle is accomplished by satellite cells from outside of the zone of injury, which must migrate in and which may interact with inflammatory cells, hence the length of time before apparent histological recovery of the most damaged zone is typically somewhat longer with freeze injury than with other physical or chemical methods of injury. In this chapter, we present a detailed protocol for the freeze injury of the tibialis anterior (TA) muscle in mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beiner JM, Jokl P, Cholewicki J, Panjabi MM (1999) The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 27(1):2–9

    CAS  PubMed  Google Scholar 

  2. Crisco JJ, Jokl P, Heinen GT, Connell MD, Panjabi MM (1994) A muscle contusion injury model. Biomechanics, physiology, and histology. Am J Sports Med 22(5):702–710

    Article  CAS  PubMed  Google Scholar 

  3. Pavlath GK et al (1998) Heterogeneity among muscle precursor cells in adult skeletal muscles with differing regenerative capacities. Dev Dyn 212(4):495–508

    Article  CAS  PubMed  Google Scholar 

  4. Tidball JG (1995) Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 27(7):1022–1032

    Article  CAS  PubMed  Google Scholar 

  5. Joe AW et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12(2):153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12(2):143–152

    Article  CAS  PubMed  Google Scholar 

  7. Murphy MM, Lawson JA, Mathew SJ, Hutcheson DA, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138(17):3625–3637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collins CA et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301

    Article  CAS  PubMed  Google Scholar 

  10. Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206(3):451–456

    Article  CAS  PubMed  Google Scholar 

  11. Montarras D et al (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309(5743):2064–2067

    Article  CAS  PubMed  Google Scholar 

  12. Bosnakovski D et al (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26(12):3194–3204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cantini M et al (1994) Macrophages regulate proliferation and differentiation of satellite cells. Biochem Biophys Res Commun 202(3):1688–1696

    Article  CAS  PubMed  Google Scholar 

  14. Cantini M, Carraro U (1995) Macrophage-released factor stimulates selectively myogenic cells in primary muscle culture. J Neuropathol Exp Neurol 54(1):121–128

    Article  CAS  PubMed  Google Scholar 

  15. Warren GL et al (2002) Physiological role of tumor necrosis factor alpha in traumatic muscle injury. FASEB J 16(12):1630–1632

    CAS  PubMed  Google Scholar 

  16. Warren GL et al (2005) Chemokine receptor CCR2 involvement in skeletal muscle regeneration. FASEB J 19(3):413–415

    CAS  PubMed  Google Scholar 

  17. Summan M et al (2003) Inflammatory mediators and skeletal muscle injury: a DNA microarray analysis. J Interferon Cytokine Res 23(5):237–245

    Article  CAS  PubMed  Google Scholar 

  18. Summan M et al (2006) Macrophages and skeletal muscle regeneration: a clodronate-containing liposome depletion study. Am J Physiol Regul Integr Comp Physiol 290(6):R1488–R1495

    Article  CAS  PubMed  Google Scholar 

  19. Heredia JE et al (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153(2):376–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lemos DR et al (2015) Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat Med 21(7):786–794

    Article  CAS  PubMed  Google Scholar 

  21. Schultz E, Jaryszak DL, Gibson MC, Albright DJ (1986) Absence of exogenous satellite cell contribution to regeneration of frozen skeletal muscle. J Muscle Res Cell Motil 7(4):361–367

    Article  CAS  PubMed  Google Scholar 

  22. Morgan JE, Coulton GR, Partridge TA (1987) Muscle precursor cells invade and repopulate freeze-killed muscles. J Muscle Res Cell Motil 8(5):386–396

    Article  CAS  PubMed  Google Scholar 

  23. Warren GL et al (2007) Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J Physiol 582(Pt 2):825–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (R01 AR055685 to MK and R01 AG031743 to DL) and Muscular Dystrophy Association (MDA351022). We would like to express our heartfelt gratitude to Dr. Gordon Warren for his significant contribution on development and validation of our freeze injury model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kyba Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Le, G., Lowe, D.A., Kyba, M. (2016). Freeze Injury of the Tibialis Anterior Muscle. In: Kyba, M. (eds) Skeletal Muscle Regeneration in the Mouse. Methods in Molecular Biology, vol 1460. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3810-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3810-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3808-7

  • Online ISBN: 978-1-4939-3810-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics