Skip to main content

Overcoming Enterotoxigenic Escherichia coli Pathogen Diversity: Translational Molecular Approaches to Inform Vaccine Design

  • Protocol
  • First Online:
Vaccine Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1403))

Abstract

Enterotoxigenic Escherichia coli (ETEC) are a genetically diverse E. colipathovar that share in the ability to produce heat-labile toxin and/or heat-stable toxins. While these pathogens contribute substantially to the burden of diarrheal illness in developing countries, at present, there is no suitable broadly protective vaccine to prevent these common infections. Most vaccine development attempts to date have followed a classical approach involving a relatively small group of antigens. The extraordinary underlying genetic plasticity of E. coli has confounded the antigen valency requirements based on this approach. The recent discovery of additional virulence proteins within this group of pathogens, as well as the availability of whole-genome sequences from hundreds of ETEC strains to facilitate identification of conserved molecules, now permits a reconsideration of the classical approaches, and the exploration of novel antigenic targets to complement existing strategies overcoming antigenic diversity that has impeded progress toward a broadly protective vaccine. Progress to date in antigen discovery and methods currently available to explore novel immunogens are outlined here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D et al (2013) Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case–control study. Lancet 382:209–222

    Article  PubMed  Google Scholar 

  2. Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H (2010) Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 12:89–98

    Article  CAS  PubMed  Google Scholar 

  3. Cheng SH, Rich DP, Marshall J, Gregory RJ, Welsh MJ, Smith AE (1991) Phosphorylation of the R domain by cAMP-dependent protein kinase regulates the CFTR chloride channel. Cell 66:1027–1036

    Article  CAS  PubMed  Google Scholar 

  4. Vaandrager AB, Smolenski A, Tilly BC, Houtsmuller AB et al (1998) Membrane targeting of cGMP-dependent protein kinase is required for cystic fibrosis transmembrane conductance regulator Cl- channel activation. Proc Natl Acad Sci U S A 95:1466–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Golin-Bisello F, Bradbury N, Ameen N (2005) STa and cGMP stimulate CFTR translocation to the surface of villus enterocytes in rat jejunum and is regulated by protein kinase G. Am J Physiol Cell Physiol 289:C708–C716

    Article  CAS  PubMed  Google Scholar 

  6. Chao AC, de Sauvage FJ, Dong YJ, Wagner JA, Goeddel DV, Gardner P (1994) Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J 13(5):1065–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Crossman LC, Chaudhuri RR, Beatson SA, Wells TJ, Desvaux M et al (2010) A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia colistrain H10407. J Bacteriol 192:5822–5831

    Google Scholar 

  8. Wolf MK (1997) Occurrence, distribution, and associations of O and H serogroups, colonization factor antigens, and toxins of enterotoxigenic Escherichia coli. Clin Microbiol Rev 10:569–584

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Peruski LF Jr, Kay BA, El-Yazeed RA, El-Etr SH et al (1999) Phenotypic diversity of enterotoxigenic Escherichia coli strains from a community-based study of pediatric diarrhea in periurban Egypt. J Clin Microbiol 37:2974–2978

    PubMed  PubMed Central  Google Scholar 

  10. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. von Mentzer A, Connor TR, Wieler LH, Semmler T et al (2014) Identification of enterotoxigenic Escherichia coli(ETEC) clades with long-term global distribution. Nat Genet 46:1321–1326

    Google Scholar 

  12. Touchon M, Hoede C, Tenaillon O, Barbe V et al (2009) Organised genome dynamics in the Escherichia colispecies results in highly diverse adaptive paths. PLoS Genet 5(1), e1000344

    Google Scholar 

  13. Dorsey FC, Fischer JF, Fleckenstein JM (2006) Directed delivery of heat-labile enterotoxin by enterotoxigenic Escherichia coli. Cell Microbiol 8:1516–1527

    Article  CAS  PubMed  Google Scholar 

  14. Tacket CO, Losonsky G, Link H, Hoang Y, Guesry P, Hilpert H, Levine MM (1988) Protection by milk immunoglobulin concentrate against oral challenge with enterotoxigenic Escherichia coli. N Engl J Med 318:1240–1243

    Article  CAS  PubMed  Google Scholar 

  15. Freedman DJ, Tacket CO, Delehanty A, Maneval DR, Nataro J, Crabb JH (1998) Milk immunoglobulin with specific activity against purified colonization factor antigens can protect against oral challenge with enterotoxigenic Escherichia coli. J Infect Dis 177:662–667

    Article  CAS  PubMed  Google Scholar 

  16. McKenzie R, Darsley M, Thomas N, Randall R et al (2008) A double-blind, placebo-controlled trial to evaluate the efficacy of PTL-003, an attenuated enterotoxigenic E. coli (ETEC) vaccine strain, in protecting against challenge with virulent ETEC. Vaccine 26:4731–4739

    Article  CAS  PubMed  Google Scholar 

  17. Darsley MJ, Chakraborty S, Denearing B, Sack DA et al (2012) ACE527 oral, live attenuated ETEC vaccine reduces the incidence and severity of diarrhea in a human challenge model of diarrheal disease. Clin Vaccine Immunol 19:1921–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sack DA, Shimko J, Torres O, Bourgeois AL et al (2007) Randomised, double-blind, safety and efficacy of a killed oral vaccine for enterotoxigenic E. coli diarrhoea of travellers to Guatemala and Mexico. Vaccine 25:4392–4400

    Article  CAS  PubMed  Google Scholar 

  19. Li YF, Poole S, Rasulova F, McVeigh AL, Savarino SJ, Xia D (2007) A receptor-binding site as revealed by the crystal structure of CfaE, the colonization factor antigen I fimbrial adhesin of enterotoxigenic Escherichia coli. J Biol Chem 282:23970–23980

    Article  CAS  PubMed  Google Scholar 

  20. Li YF, Poole S, Nishio K, Jang K et al (2009) Structure of CFA/I fimbriae from enterotoxigenic Escherichia coli. Proc Natl Acad Sci U S A 106:10793–10798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Giron JA, Levine MM, Kaper JB (1994) Longus: a long pilus ultrastructure produced by human enterotoxigenic Escherichia coli. Mol Microbiol 12:71–82

    Article  CAS  PubMed  Google Scholar 

  22. Roy SP, Rahman MM, Yu XD, Tuittila M, Knight SD, Zavialov AV (2012) Crystal structure of enterotoxigenic Escherichia coli colonization factor CS6 reveals a novel type of functional assembly. Mol Microbiol 86:1100–1115

    Article  CAS  PubMed  Google Scholar 

  23. Isidean SD, Riddle MS, Savarino SJ, Porter CK (2011) A systematic review of ETEC epidemiology focusing on colonization factor and toxin expression. Vaccine 29:6167–6178

    Article  CAS  PubMed  Google Scholar 

  24. Del Canto F, Botkin DJ, Valenzuela P, Popov V et al (2012) Identification of the Coli Surface Antigen 23 (CS23), a novel adhesin of enterotoxigenic Escherichia coli. Infect Immun 80:2791–2801

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rockabrand DM, Shaheen HI, Khalil SB, Peruski LF Jr, Rozmajzl PJ et al (2006) Enterotoxigenic Escherichia coli colonization factor types collected from 1997 to 2001 in US military personnel during operation Bright Star in northern Egypt. Diagn Microbiol Infect Dis 55:9–12

    Article  PubMed  Google Scholar 

  26. Peruski LF Jr, Kay BA, El-Yazeed RA, El-Etr SH, Cravioto A et al (1999) Phenotypic diversity of enterotoxigenic Escherichia colistrains from a community-based study of pediatric diarrhea in periurban Egypt. J Clin Microbiol 37:2974–2978

    Google Scholar 

  27. Manoil C, Beckwith J (1985) TnphoA: a transposon probe for protein export signals. Proc Natl Acad Sci U S A 82:8129–8133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel SK, Dotson J, Allen KP, Fleckenstein JM (2004) Identification and molecular characterization of EatA, an autotransporter protein of enterotoxigenic Escherichia coli. Infect Immun 72:1786–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fleckenstein JM, Roy K, Fischer JF, Burkitt M (2006) Identification of a two-partner secretion locus of enterotoxigenic Escherichia coli. Infect Immun 74:2245–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  PubMed  Google Scholar 

  31. Luo Q, Qadri F, Kansal R, Rasko DA, Sheikh A, Fleckenstein JM (2015) Conservation and immunogenicity of novel antigens in diverse isolates of enterotoxigenic Escherichia coli. PLoS Negl Trop Dis 9(1), e0003446

    Article  PubMed  PubMed Central  Google Scholar 

  32. Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  Google Scholar 

  33. De Gregorio E, Rappuoli R (2014) From empiricism to rational design: a personal perspective of the evolution of vaccine development. Nat Rev Immunol 14:505–514

    Article  PubMed  Google Scholar 

  34. Rinaudo CD, Telford JL, Rappuoli R, Seib KL (2009) Vaccinology in the genome era. J Clin Invest 119:2515–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sahl JW, Steinsland H, Redman JC, Angiuoli SV, Nataro JP, Sommerfelt H, Rasko DA (2011) A comparative genomic analysis of diverse clonal types of enterotoxigenic Escherichia coli reveals pathovar-specific conservation. Infect Immun 79:950–960

    Article  CAS  PubMed  Google Scholar 

  36. Allen KP, Randolph MM, Fleckenstein JM (2006) Importance of heat-labile enterotoxin in colonization of the adult mouse small intestine by human enterotoxigenic Escherichia coli strains. Infect Immun 74:869–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheikh A, Luo Q, Roy K, Shabaan S, Kumar P, Qadri F, Fleckenstein JM (2014) Contribution of the highly conserved EaeH surface protein to enterotoxigenic Escherichia colipathogenesis. Infect Immun 82:3657–3666

    Google Scholar 

  38. Roy K, Hamilton D, Allen KP, Randolph MP, Fleckenstein JM (2008) The EtpA exoprotein of enterotoxigenic Escherichia colipromotes intestinal colonization and is a protective antigen in an experimental model of murine infection. Infect Immun 76:2106–2112

    Google Scholar 

  39. Luo Q, Kumar P, Vickers TJ, Sheikh A, Lewis WG, Rasko DA, Sistrunk J, Fleckenstein JM (2014) Enterotoxigenic Escherichia coli secretes a highly conserved mucin-degrading metalloprotease to effectively engage intestinal epithelial cells. Infect Immun 82:509–521

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kumar P, Luo Q, Vickers TJ, Sheikh A, Lewis WG, Fleckenstein JM (2014) EatA, an immunogenic protective antigen of enterotoxigenic Escherichia coli, degrades intestinal mucin. Infect Immun 82:500–508

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fleckenstein JM, Holland JT, Hasty DL (2002) Interaction of an outer membrane protein of enterotoxigenic Escherichia coli with cell surface heparan sulfate proteoglycans. Infect Immun 70:1530–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Roy K, Kansal R, Bartels SR, Hamilton DJ, Shaaban S, Fleckenstein JM (2011) Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli. J Biol Chem 286:29771–29779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fleckenstein JM, Kopecko DJ, Warren RL, Elsinghorst EA (1996) Molecular characterization of the tia invasion locus from enterotoxigenic Escherichia coli. Infect Immun 64:2256–2265

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Roy K, Hilliard GM, Hamilton DJ, Luo J, Ostmann MM, Fleckenstein JM (2009) Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells. Nature 457:594–598

    Article  CAS  PubMed  Google Scholar 

  45. Sheikh A, Luo Q, Roy K, Shaaban S, Kumar P, Fleckenstein JM (2014) Contribution of the highly conserved EaeH surface protein to enterotoxigenic Escherichia coli pathogenesis. Infect Immun 82:3657–3666

    Article  PubMed  PubMed Central  Google Scholar 

  46. Roy K, Hamilton DJ, Fleckenstein JM (2012) Cooperative role of antibodies against heat-labile toxin and the EtpA Adhesin in preventing toxin delivery and intestinal colonization by enterotoxigenic Escherichia coli. Clin Vaccine Immunol 19:1603–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sachdeva G, Kumar K, Jain P, Ramachandran S (2005) SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21:483–491

    Article  CAS  PubMed  Google Scholar 

  48. Roy K, Bartels S, Qadri F, Fleckenstein JM (2010) Enterotoxigenic Escherichia colielicits immune responses to multiple surface proteins. Infect Immun 78:3027–3035

    Google Scholar 

  49. Roy K, Hamilton D, Ostmann MM, Fleckenstein JM (2009) Vaccination with EtpA glycoprotein or flagellin protects against colonization with enterotoxigenic Escherichia coli in a murine model. Vaccine 27:4601–4608

    Article  CAS  PubMed  Google Scholar 

  50. Harris JA, Roy K, Woo-Rasberry V, Hamilton DJ, Kansal R, Qadri F, Fleckenstein JM (2011) Directed evaluation of enterotoxigenic Escherichia coli autotransporter proteins as putative vaccine candidates. PLoS Negl Trop Dis 5(12), e1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davies DH, Liang X, Hernandez JE, Randall A et al (2005) Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci U S A 102:547–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Crompton PD, Kayala MA, Traore B, Kayentao K et al (2010) A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci U S A 107:6958–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liang L, Juarez S, Nga TV, Dunstan S et al (2013) Immune profiling with a Salmonella Typhiantigen microarray identifies new diagnostic biomarkers of human typhoid. Sci Rep 3:1043

    Google Scholar 

  54. Lee SJ, Liang L, Juarez S, Nanton MR et al (2012) Identification of a common immune signature in murine and human systemic Salmonellosis. Proc Natl Acad Sci U S A 109:4998–5003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Felgner PL, Kayala MA, Vigil A, Burk C, Nakajima-Sasaki R et al (2009) A Burkholderia pseudomalleiprotein microarray reveals serodiagnostic and cross-reactive antigens. Proc Natl Acad Sci U S A 106:13499–13504

    Google Scholar 

  56. Sack RB (2011) The discovery of cholera-like enterotoxins produced by Escherichia colicausing secretory diarrhoea in humans. Indian J Med Res 133:171–180

    Google Scholar 

  57. Sack RB, Gorbach SL, Banwell JG, Jacobs B, Chatterjee BD, Mitra RC (1971) Enterotoxigenic Escherichia coliisolated from patients with severe cholera-like disease. J Infect Dis 123:378–385

    Google Scholar 

  58. Riddle MS, Savarino SJ (2013) Moving beyond a heat-labile enterotoxin-based vaccine against enterotoxigenic Escherichia coli. Lancet Infect Dis 14:174–175

    Article  PubMed  Google Scholar 

  59. Yachdav G, Kloppmann E, Kajan L, Hecht M, Goldberg T et al (2014) PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42(Web Server issue):W337–W343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  61. Bendtsen JD, Jensen LJ, Blom N, Von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356

    Article  CAS  PubMed  Google Scholar 

  62. Bendtsen JD, Kiemer L, Fausboll A, Brunak S (2005) Non-classical protein secretion in bacteria. BMC Microbiol 5:58

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu NY, Wagner JR, Laird MR, Melli G, Rey S et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yu CS, Lin CJ, Hwang JK (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13:1402–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He Y, Xiang Z, Mobley HL (2010) Vaxign: the first web-based vaccine design program for reverse vaccinology and applications for vaccine development. J Biomed Biotechnol 2010:297505

    PubMed  PubMed Central  Google Scholar 

  66. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75

    Article  PubMed  PubMed Central  Google Scholar 

  67. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365

    Article  PubMed  PubMed Central  Google Scholar 

  68. Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A (2009) EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10:154

    Article  PubMed  PubMed Central  Google Scholar 

  69. Minkin I, Pham H, Starostina E, Vyahhi N, Pham S (2013) C-Sibelia: an easy-to-use and highly accurate tool for bacterial genome comparison. F1000Res 2:258

    PubMed  PubMed Central  Google Scholar 

  70. Finn RD, Bateman A, Clements J, Coggill P et al (2014) Pfam: the protein families database. Nucleic Acids Res 42(Database issue):D222–D230

    Article  CAS  PubMed  Google Scholar 

  71. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK et al (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41(Database issue):D348–D352

    Article  CAS  PubMed  Google Scholar 

  72. Grozdanov L, Raasch C, Schulze J, Sonnenborn U et al (2004) Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol 186:5432–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oshima K, Toh H, Ogura Y, Sasamoto H, Morita H et al (2008) Complete genome sequence and comparative analysis of the wild-type commensal Escherichia coli strain SE11 isolated from a healthy adult. DNA Res 15:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Toh H, Oshima K, Toyoda A, Ogura Y, Ooka T et al (2010) Complete genome sequence of the wild-type commensal Escherichia colistrain SE15, belonging to phylogenetic group B2. J Bacteriol 192:1165–1166

    Google Scholar 

  75. de Muinck EJ, Lagesen K, Afset JE, Didelot X et al (2013) Comparisons of infant Escherichia coliisolates link genomic profiles with adaptation to the ecological niche. BMC Genomics 14:81

    Google Scholar 

  76. Peterson MD, Mooseker MS (1992) Characterization of the enterocyte-like brush border cytoskeleton of the C2BBe clones of the human intestinal cell line, Caco-2. J Cell Sci 102(Pt 3):581–600

    CAS  PubMed  Google Scholar 

  77. Tom BH, Rutzky LP, Jakstys MM, Oyasu R, Kaye CI, Kahan BD (1976) Human colonic adenocarcinoma cells. I. Establishment and description of a new line. In Vitro 12:180–191

    Article  CAS  PubMed  Google Scholar 

  78. Dharmsathaphorn K, McRoberts JA, Mandel KG, Tisdale LD, Masui H (1984) A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol 246(2 Pt 1):G204–G208

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described was supported by Grant Number 2R01AI089894 from the National Institute of Allergy and Infectious Diseases (NIAID), the PATH Enteric Vaccine Initiative (EVI), the Bill and Melinda Gates Foundation (OPP1099494), and the Department of Veterans Affairs. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Fleckenstein M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fleckenstein, J.M., Rasko, D.A. (2016). Overcoming Enterotoxigenic Escherichia coli Pathogen Diversity: Translational Molecular Approaches to Inform Vaccine Design. In: Thomas, S. (eds) Vaccine Design. Methods in Molecular Biology, vol 1403. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3387-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3387-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3385-3

  • Online ISBN: 978-1-4939-3387-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics