Skip to main content

Abstract

Oligonucleotide-mediated targeted gene editing encompasses technology described by many names. These include Oligo-Directed Mutagenesis (ODM) and the commercial Rapid Trait Development System (RTDS™) from Cibus. ODM is a non-transgenic (non-GMO) base pair-specific oligonucleotide-directed gene editing platform that has been advanced at Cibus over the past decade and has achieved novel and commercially valuable traits in crops. This technology harnesses the cell’s normal DNA repair system to correct and change specific targeted bases within the genome of a cell. The Gene Repair OligoNucleotide (GRON), a chemically synthesized oligonucleotide, is designed to create mismatched base pairs compared to the target sequence within the host organism’s genome. The GRON hybridizes at the target region and the mismatched base pairs work to direct the cell’s repair system at those sites to correct (replace, insert, or delete) the designated base(s). Once the correction process is complete the GRON is degraded and the now-modified or repaired gene retains its normal pattern of expression and stability within the genome. This technique has been successfully deployed in bacterial, fungal, mammalian, and plant systems. Our work in achieving herbicide tolerance traits in acetohydroxyacid synthase (AHAS) genes in oil seed rape (OSR) as well as work converting a blue fluorescent protein (BFP) transgene to green fluorescent protein (GFP) in an Arabidopsis model system will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts M, Dekker M, de Vries S, van der Wal A, te Riele H (2006) Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells. Nucleic Acids Res 34:e147

    Article  PubMed Central  PubMed  Google Scholar 

  • Alexeev V, Yoon K (1998) Stable and inheritable changes in genotype and phenotype of albino melanocytes induced by an RNA-DNA oligonucleotide. Nat Biotechnol 16:1343–1346

    Article  CAS  PubMed  Google Scholar 

  • Andrieu-Soler C, Casas M, Faussat AM, Gandolphe C, Doat M, Tempe D, Giovannangeli C, Behar-Cohen F, Concordet JP (2005) Stable transmission of targeted gene modification using single-stranded oligonucleotides with flanking LNAs. Nucleic Acids Res 33:3733–3742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics; chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci U S A 96:8774–8778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breyer D, Herman P, Brandenburger A, Gheysen G, Remaut E, Soumillion P, Van Doorsselaere J, Custers R, Pauwels K, Sneyers M, Reheul D (2009) Genetic modification through oligonucleotide-mediated mutagenesis. A GMO regulatory challenge? Environ Biosafety Res 8:57–64

    Article  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cole-Strauss A, Yoon K, Xiang Y, Byrne BC, Rice MC, Gryn J, Holloman WK, Kmiec EB (1996) Correction of the mutations responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 273:1386–1389

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Beetham P, Vincent K, Sharp P (2006) Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep 25:457–465

    Article  CAS  PubMed  Google Scholar 

  • Dovzhenko A (2001) Towards plastid transformation in rapeseed (Brassica napus L.) and sugarbeet (Beta vulgaris L.). Ph.D. dissertation, LMU Munich, Faculty of Biology

    Google Scholar 

  • Gamper HB, Parekh H, Rice MC, Youkey H, Kmiec EB (2000) The DNA strand of chimeric RNA/DNA oligonucleotides can direct gene repair/conversion activity in mammalian and plant cell-free extracts. Nucleic Acids Res 28:4332–4339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guevara-García A, López-Bucio J, Herrera-Estrella L (1999) The mannopine synthase promoter contains vectorial cis-regulatory elements that act as enhancers and silencers. Mol Gen Genet 262:608–617

    Article  PubMed  Google Scholar 

  • Kipp PB, Van Eck J, Beetham PR, May GD (2000) Gene targeting in plants via site-directed mutagenesis. In: Kmiec E (ed) Methods of molecular biology—gene targeting protocols. Humana, Totowa

    Google Scholar 

  • Klaus S (2003) Markerfreie transplastome Tabakpflanzen (Marker-free transplastomic tobacco plants). Ph.D. dissertation, LMU Munich, Faculty of Biology

    Google Scholar 

  • Kmiec EB, Johnson C, May GD (2001) Chloroplast lysates support directed mutagenesis via modified DNA and chimeric RNA/DNA oligonucleotides. Plant J 27:267–274

    Article  CAS  PubMed  Google Scholar 

  • Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate synthase gene. Plant Physiol 132:174–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kren BT, Cole-Strauss A, Kmiec EB, Steer CJ (1997) Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by chimeric RNA/DNA oligonucleotide. Hepatology 25:1462–1468

    Article  CAS  PubMed  Google Scholar 

  • Kuzma J, Kokotovich A (2011) Renegotiating GM crop regulation. Targeted gene-modification technology raises new issues for the oversight of genetically modified crops. EMBO Rep 1:883–888

    Article  Google Scholar 

  • Liu L, Cheng S, van Brabant AJ, Kmiec EB (2002) Rad51p and Rad54p, but not Rad52p, elevate gene repair in Saccharomyces cerevisiae directed by modified single-stranded oligonucleotide vectors. Nucleic Acids Res 30:2742–2750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maguire K, Kmiec EB (2007) Multiple roles for MSH2 in the repair of a deletion mutation directed by modified single-stranded oligonucleotides. Gene 15:107–114

    Google Scholar 

  • Mathur J, Szabados L, Koncz C (1995) A simple method for isolation, liquid culture, transformation and regeneration of Arabidopsis thaliana protoplasts. Plant Cell Rep 14:221–226

    CAS  PubMed  Google Scholar 

  • Metz R, DiCola M, Kurihara T, Bailey A, Frank B, Roecklein B, Blaese M (2002) Mode of action of RNA/DNA oligonucleotides: progress in the development of gene repair as a therapy for alpha(1)-antitrypsin deficiency. Chest 121:91S–97S

    Article  CAS  PubMed  Google Scholar 

  • Moerschell RP, Tsunasawa S, Sherman F (1988) Transformation of yeast with synthetic oligonucleotides. Proc Natl Acad Sci U S A 85:524–528

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morozov V, Wawrousek EF (2008) Single-strand DNA-mediated targeted mutagenesis of genomic DNA in early mouse embryos is stimulated by Rad51/54 and by Ku70/86 inhibition. Gene Ther 15:468–472

    Article  CAS  PubMed  Google Scholar 

  • Negrutiu I, Shillito R, Potrykus I, Biasini G, Sala F (1987) Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol Biol 8:363–373

    Article  CAS  PubMed  Google Scholar 

  • Oh TJ, May GD (2001) Oligonucleotide-directed plant gene targeting. Curr Opin Biotechnol 12:169–172

    Article  CAS  PubMed  Google Scholar 

  • Okuzaki A, Toriyama K (2004) Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep 22:509–512

    Article  CAS  PubMed  Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rouselle P, Renard M (1983) Intergeneric cytoplasm hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250

    Google Scholar 

  • Pierce EA, Liu Q, Igoucheva O, Omarrudin R, Ma H, Diamond SL, Yoon K (2003) Oligonucleotide-directed single-base DNA alterations in mouse embryonic stem cells. Gene Ther 10:24–33

    Article  CAS  PubMed  Google Scholar 

  • Rice MC, May GD, Kipp PB, Parekh H, Kmiec EB (2000) Genetic repair of mutations in plant cell-free extracts directed by specific chimeric oligonucleotides. Plant Physiol 123:427–438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rice MC, Bruner M, Czymmek K, Kmiec EB (2001) In vitro and in vivo nucleotide exchange directed by chimeric RNA/DNA oligonucleotides in Saccharomyces cerevisiae. Mol Microbiol 40:857–868

    Article  CAS  PubMed  Google Scholar 

  • Ruiter R, van den Brande I, Stals E, Delauré S, Cornelissen M, D’Halluin K (2003) Spontaneous mutation frequency in plants obscures the effect of chimeraplasty. Plant Mol Biol 53:675–689

    Article  CAS  PubMed  Google Scholar 

  • Rutledge RG, Quellet T, Hattori J, Miki BL (1991) Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol Gen Genet 229:31–40

    Article  CAS  PubMed  Google Scholar 

  • Sommer JR, Alderson J, Laible G, Petters RM (2006) Reporter system for the detection of in vivo gene conversion. Mol Biotechnol 33:115–121

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, McCracken J, Cole S, Laible G (2010) DNA oligonucleotides and plasmids perform equally as donors for targeted gene conversion. Biochem Genet 48:897–908

    Article  CAS  PubMed  Google Scholar 

  • Yoon K, Cole-Strauss A, Kmiec EB (1996) Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA.DNA oligonucleotide. Proc Natl Acad Sci U S A 93:2071–2076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu T, Peterson DJ, Tagliani L, St. Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci U S A 96:8768–8773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu T, Mettenburg K, Peterson DJ, Tagliani L, Baszczynski CL (2000) Engineering herbicide-resistant maize using chimeric RNA/DNA oligonucleotides. Nat Biotechnol 18:555–558

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg F. W. Gocal M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gocal, G.F.W., Schöpke, C., Beetham, P.R. (2015). Oligo-Mediated Targeted Gene Editing. In: Zhang, F., Puchta, H., Thomson, J. (eds) Advances in New Technology for Targeted Modification of Plant Genomes. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2556-8_5

Download citation

Publish with us

Policies and ethics