Skip to main content

Small Molecules That Inhibit Notch Signaling

  • Protocol
  • First Online:
Notch Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1187))

Abstract

The proteolytic processing of Notch receptors plays a central role in the transduction of Notch signaling, which is involved in a variety of important processes in the body. Abnormal Notch processing has been implicated in a variety of cancers. γ-Secretase is responsible for the third and last cleavage step of Notch receptors. Since γ-secretase plays an important role in Alzheimer’s disease, great effort has been spent to develop γ-secretase inhibitors (GSIs). The majority of these inhibitors block γ-secretase nonselectively, which means that these compounds can be used to block Notch cleavage and thereby regulate Notch signaling. In this review we give an overview of the most-used GSIs in the Notch field, together with examples of their use. It is a huge advantage that these drug-like compounds are already optimized for γ-secretase, and some are already being used in clinical trials. However, their nonspecificity has disadvantages as well, since four Notch receptors exist with different sites of expression and different roles in cell signaling and at least four different γ-secretase proteases are involved in their cleavage. It would be worth the effort to screen many GSIs for their selectivity for the different Notch receptors and γ-secretases, in order to obtain interesting tools for further research and—in the end—to develop safer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hartmann D, de Strooper B, Serneels L et al (2002) The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet 11:2615–2624

    Article  CAS  PubMed  Google Scholar 

  3. De Strooper B, Annaert W, Cupers P et al (1999) A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398:518–522

    Article  PubMed  Google Scholar 

  4. Struhl G, Greenwald I (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398:522–555

    Article  CAS  PubMed  Google Scholar 

  5. De Strooper B (2003) Aph-1, Pen-2, and Nicastrin with Presenilin generate an active gamma-Secretase complex. Neuron 38:9–12

    Article  PubMed  Google Scholar 

  6. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6:99–107

    Article  PubMed Central  PubMed  Google Scholar 

  7. Doody RS, Raman R, Farlow M et al (2013) A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 369:341–350

    Article  CAS  PubMed  Google Scholar 

  8. Wolfe MS, Xia W, Ostaszewski BL et al (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517

    Article  CAS  PubMed  Google Scholar 

  9. Serneels L, Van Biervliet J, Craessaerts K et al (2009) gamma-Secretase heterogeneity in the Aph1 subunit: relevance for Alzheimer’s disease. Science 324:639–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Levitan D, Greenwald I (1995) Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377:351–354

    Article  CAS  PubMed  Google Scholar 

  11. Shen J, Bronson RT, Chen DF et al (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89:629–639

    Article  CAS  PubMed  Google Scholar 

  12. Wong PC, Zheng H, Chen H et al (1997) Presenilin 1 is required for Notch 1 and Dll1 expression in the paraxial mesoderm. Nature 387:288–292

    Article  CAS  PubMed  Google Scholar 

  13. Geling A, Steiner H, Willem M et al (2002) A gamma-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep 3:688–694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Lewis HD, Pérez Revuelta BI, Nadin A et al (2003) Catalytic site-directed gamma-secretase complex inhibitors do not discriminate pharmacologically between Notch S3 and beta-APP cleavages. Biochemistry 42:7580–7586

    Article  CAS  PubMed  Google Scholar 

  15. van Es JH, Clevers H (2005) Notch and Wnt inhibitors as potential new drugs for intestinal neoplastic disease. Trends Mol Med 11:496–502

    Article  PubMed  Google Scholar 

  16. Wong GT, Manfra D, Poulet FM et al (2004) Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279:12876–12882

    Article  CAS  PubMed  Google Scholar 

  17. Demehri S, Turkoz A, Kopan R (2009) Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer Cell 16:55–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Groth C, Fortini ME (2012) Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin Cell Dev Biol 23:465–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Li YM, Xu M, Lai MT et al (2000) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405:689–694

    Article  CAS  PubMed  Google Scholar 

  20. Kreft AF, Martone R, Porte A (2009) Recent advances in the identification of gamma-secretase inhibitors to clinically test the Abeta oligomer hypothesis of Alzheimer’s disease. J Med Chem 52:6169–6188

    Article  CAS  PubMed  Google Scholar 

  21. Das C, Berezovska O, Diehl TS et al (2003) Designed helical peptides inhibit an intramembrane protease. J Am Chem Soc 125:11794–11795

    Article  CAS  PubMed  Google Scholar 

  22. Bihel F, Das C, Bowman MJ et al (2004) Discovery of a subnanomolar helical D-tridecapeptide inhibitor of gamma-secretase. J Med Chem 47:3931–3933

    Article  CAS  PubMed  Google Scholar 

  23. Dovey HF, John V, Anderson JP et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76:173–181

    Article  CAS  PubMed  Google Scholar 

  24. McKee TD, Loureiro RM, Dumin JA et al (2013) An improved cell-based method for determining the γ-secretase enzyme activity against both Notch and APP substrates. J Neurosci Methods 213:14–21

    Article  CAS  PubMed  Google Scholar 

  25. Borgegård T, Gustavsson S, Nilsson C et al (2012) Alzheimer’s disease: presenilin 2-sparing γ-Secretase inhibition is a tolerable Aβ peptide-lowering strategy. J Neurosci 32:17297–17305

    Article  PubMed  Google Scholar 

  26. Churcher I, Ashton K, Butcher JW et al (2003) A new series of potent benzodiazepine gamma-secretase inhibitors. Bioorg Med Chem Lett 13:179–183

    Article  CAS  PubMed  Google Scholar 

  27. Churcher I, Williams S, Kerrad S et al (2003) Design and synthesis of highly potent benzodiazepine gamma-secretase inhibitors: preparation of (2S,3R)-3-(3,4-difluorophenyl)-2-(4-fluorophenyl)-4- hydroxy-N-((3S)-1-methyl-2-oxo-5- phenyl-2,3-dihydro-1H-benzo[e][1,4]-diazepin-3-yl)butyramide by use of an asymmetric Ireland-Claisen rearrangement. J Med Chem 46:2275–2278

    Article  CAS  PubMed  Google Scholar 

  28. Yang MG, Shi JL, Modi DP et al (2007) Design and synthesis of benzoazepinone-derived cyclic malonamides and aminoamides as potent gamma-secretase inhibitors. Bioorg Med Chem Lett 17:3910–3915

    Article  CAS  PubMed  Google Scholar 

  29. Quesnelle C, Kim S-H, Lee F, et al. (2012) Bisfluoroalkyl-1,4-benzodiazepinone compounds WO/2012/129353

    Google Scholar 

  30. http://clinicaltrials.gov/show/NCT01292655

  31. http://clinicaltrials.gov/show/NCT01653470

  32. Wei P, Walls M, Qiu M et al (2010) Evaluation of selective γ-secretase inhibitor PF-03084014 for its antitumor efficacy and gastrointestinal safety to guide optimal clinical trial design. Mol Cancer Ther 9:1618–1628

    Article  CAS  PubMed  Google Scholar 

  33. Zhang CC, Yan Z, Zong Q et al (2013) Synergistic effect of the γ-secretase inhibitor PF-03084014 and docetaxel in breast cancer models. Stem Cells Transl Med 2:233–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Mayer SC, Kreft AF, Harrison B et al (2008) Discovery of begacestat, a Notch-1-sparing gamma-secretase inhibitor for the treatment of Alzheimer’s disease. J Med Chem 51:7348–7351

    Article  CAS  PubMed  Google Scholar 

  35. Krop I, Demuth T, Guthrie T et al (2012) Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J Clin Oncol 30:2307–2313

    Article  CAS  PubMed  Google Scholar 

  36. Chen SM, Liu JP, Zhou JX et al (2011) Suppression of the notch signaling pathway by gamma-secretase inhibitor GSI inhibits human nasopharyngeal carcinoma cell proliferation. Cancer Lett 306:76–84

    Article  CAS  PubMed  Google Scholar 

  37. Shi W, Harris AL (2006) Notch signaling in breast cancer and tumor angiogenesis: cross-talk and therapeutic potentials. J Mammary Gland Biol Neoplasia 11:41–52

    Article  CAS  PubMed  Google Scholar 

  38. Tran IT, Sandy AR, Carulli AJ et al (2013) Blockade of individual Notch ligands and receptors controls graft-versus-host disease. J Clin Invest 123:1590–1604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Shen Y, Lv D, Wang J et al (2012) GSI-I has a better effect in inhibiting hepatocellular carcinoma cell growth than GSI-IX, GSI-X, or GSI-XXI. Anticancer Drugs 23:683–690

    Article  CAS  PubMed  Google Scholar 

  40. Groth C, Alvord WG, Quiñones OA et al (2010) Pharmacological analysis of Drosophila melanogaster gamma-secretase with respect to differential proteolysis of Notch and APP. Mol Pharmacol 77:567–574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kamstrup MR, Biskup E, Gniadecki R (2010) Notch signalling in primary cutaneous CD30+ lymphoproliferative disorders: a new therapeutic approach? Br J Dermatol 163:781–788

    Article  CAS  PubMed  Google Scholar 

  42. Gu W, Xu W, Ding T et al (2012) Fringe controls naive CD4(+)T cells differentiation through modulating notch signaling in asthmatic rat models. PLoS One 7:e47288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Harrison H, Simões BM, Rogerson L et al (2013) Oestrogen increases the activity of oestrogen receptor negative breast cancer stem cells through paracrine EGFR and Notch signalling. Breast Cancer Res 15:R21

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Wang SF, Aoki M, Nakashima Y et al (2008) Development of Notch-dependent T-cell leukemia by deregulated Rap1 signaling. Blood 111:2878–2886

    Article  CAS  PubMed  Google Scholar 

  45. Pancewicz J, Taylor JM, Datta A et al (2010) Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci U S A 107:16619–16624

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Sainson RC, Aoto J, Nakatsu MN et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19:1027–1029

    CAS  PubMed  Google Scholar 

  47. Ota H, Katsube K, Ogawa J et al (2007) Hypoxia/Notch signaling in primary culture of rat lymphatic endothelial cells. FEBS Lett 581:5220–5226

    Article  CAS  PubMed  Google Scholar 

  48. Nwabo Kamdje AH, Bassi G, Pacelli L et al (2012) Role of stromal cell-mediated Notch signaling in CLL resistance to chemotherapy. Blood Cancer J 2:e73

    Article  CAS  PubMed  Google Scholar 

  49. Joshi I, Minter LM, Telfer J et al (2009) Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 113:1689–1698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. van Es JH, van Gijn ME, Riccio O et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–963

    Article  PubMed  Google Scholar 

  51. van Es JH, de Geest N, van de Born M et al (2010) Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors. Nat Commun 1:18

    PubMed  Google Scholar 

  52. Okamoto M, Matsuda H, Joetham A et al (2009) Jagged1 on dendritic cells and Notch on CD4+ T cells initiate lung allergic responsiveness by inducing IL-4 production. J Immunol 183:2995–3003

    Article  CAS  PubMed  Google Scholar 

  53. Liu S, Breit S, Danckwardt S et al (2009) Downregulation of Notch signaling by gamma-secretase inhibition can abrogate chemotherapy-induced apoptosis in T-ALL cell lines. Ann Hematol 88:613–621

    Article  CAS  PubMed  Google Scholar 

  54. Gusscott S, Kuchenbauer F, Humphries RK et al (2012) Notch-mediated repression of miR-223 contributes to IGF1R regulation in T-ALL. Leuk Res 36:905–911

    Article  CAS  PubMed  Google Scholar 

  55. Mizutari K, Fujioka M, Hosoya M et al (2013) Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77:58–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Curry CL, Reed LL, Golde TE et al (2005) Gamma secretase inhibitor blocks Notch activation and induces apoptosis in Kaposi’s sarcoma tumor cells. Oncogene 24:6333–6344

    CAS  PubMed  Google Scholar 

  57. Pandya K, Meeke K, Clementz AG et al (2011) Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br J Cancer 105:796–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Okamoto R, Tsuchiya K, Nemoto Y et al (2009) Requirement of Notch activation during regeneration of the intestinal epithelia. Am J Physiol Gastrointest Liver Physiol 296:G23–G35

    Article  CAS  PubMed  Google Scholar 

  59. Luistro L, He W, Smith M et al (2009) Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res 69:7672–7680

    Article  CAS  PubMed  Google Scholar 

  60. Debeb BG, Cohen EN, Boley K et al (2012) Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells. Breast Cancer Res Treat 134:495–510

    Article  CAS  PubMed  Google Scholar 

  61. Huynh C, Poliseno L, Segura MF et al (2011) The novel gamma secretase inhibitor RO4929097 reduces the tumor initiating potential of melanoma. PLoS One 6:e25264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Osanyingbemi-Obidi J, Dobromilskaya I, Illei PB et al (2011) Notch signaling contributes to lung cancer clonogenic capacity in vitro but may be circumvented in tumorigenesis in vivo. Mol Cancer Res 9:1746–1754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Sethi N, Dai X, Winter CG et al (2011) Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19:192–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Real PJ, Ferrando AA (2009) NOTCH inhibition and glucocorticoid therapy in T-cell acute lymphoblastic leukemia. Leukemia 23:1374–1377

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. DeAngelo DJ, Stone RM, Silverman LB (2006) A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J Clin Oncol 24(18S):6585

    Google Scholar 

  66. Real PJ, Tosello V, Palomero T et al (2009) Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 15:50–58

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Konishi J, Kawaguchi KS, Vo H et al (2007) Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 67:8051–8057

    Article  CAS  PubMed  Google Scholar 

  68. Purow B (2012) Notch inhibition as a promising new approach to cancer therapy. Adv Exp Med Biol 727:305–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by VIB, a Methusalem grant from KU Leuven and the Flemish government, Janssen Pharmaceutica, and the Arthur Bax and Anna Van Luffelen foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bart De Strooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

De Kloe, G.E., De Strooper, B. (2014). Small Molecules That Inhibit Notch Signaling. In: Bellen, H., Yamamoto, S. (eds) Notch Signaling. Methods in Molecular Biology, vol 1187. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1139-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1139-4_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1138-7

  • Online ISBN: 978-1-4939-1139-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics