Skip to main content

Determination of Lipolytic Enzyme Activities

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Pseudomonas aeruginosa is a versatile human opportunistic pathogen that produces and secretes an arsenal of enzymes, proteins and small molecules many of which serve as virulence factors. Notably, about 40 % of P. aeruginosa genes code for proteins of unknown function, among them more than 80 encoding putative, but still unknown lipolytic enzymes. This group of hydrolases (EC 3.1.1) is known already for decades, but only recently, several of these enzymes have attracted attention as potential virulence factors. Reliable and reproducible enzymatic activity assays are crucial to determine their physiological function and particularly assess their contribution to pathogenicity. As a consequence of the unique biochemical properties of lipids resulting in the formation of micellar structures in water, the reproducible preparation of substrate emulsions is strongly dependent on the method used. Furthermore, the physicochemical properties of the respective substrate emulsion may drastically affect the activities of the tested lipolytic enzymes. Here, we describe common methods for the activity determination of lipase, esterase, phospholipase, and lysophospholipase. These methods cover lipolytic activity assays carried out in vitro, with cell extracts or separated subcellular compartments and with purified enzymes. We have attempted to describe standardized protocols, allowing the determination and comparison of enzymatic activities of lipolytic enzymes from different sources. These methods should also encourage the Pseudomonas community to address the wealth of still unexplored lipolytic enzymes encoded and produced by P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verger R (1997) Interfacial activation of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  2. Ali YB, Verger R, Abousalham A (2012) Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. Methods Mol Biol 861:31–51

    Article  PubMed  CAS  Google Scholar 

  3. Ferrato F, Carriere F, Sarda L, Verger R (1997) A critical reevaluation of the phenomenon of interfacial activation. Methods Enzymol 286:327–347

    Article  CAS  PubMed  Google Scholar 

  4. Sarda L, Desnuelle P (1958) Actions of pancreatic lipase on esters in emulsions. Biochim Biophys Acta 30:513–521

    Article  CAS  PubMed  Google Scholar 

  5. Chahinian H, Nini L, Boitard E, Dubes JP, Comeau LC et al (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653–662

    Article  CAS  PubMed  Google Scholar 

  6. Chahinian H, Sarda L (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149–1161

    Article  CAS  PubMed  Google Scholar 

  7. Fojan P, Jonson PH, Petersen MT, Petersen SB (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041

    Article  CAS  PubMed  Google Scholar 

  8. Lo YC, Lin SC, Shaw JF, Liaw YC (2003) Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network. J Mol Biol 330:539–551

    Article  CAS  PubMed  Google Scholar 

  9. Lescic Asler I, Ivic N, Kovacic F, Schell S, Knorr J et al (2010) Probing enzyme promiscuity of SGNH hydrolases. Chembiochem 11:2158–2167

    Article  PubMed  CAS  Google Scholar 

  10. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M et al (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    Article  CAS  PubMed  Google Scholar 

  11. Kaewprapan K, Wongkongkatep J, Panbangred W, Phinyocheep P, Marie E et al (2011) Lipase-catalyzed synthesis of hydrophobically modified dextrans: activity and regioselectivity of lipase from Candida rugosa. J Biosci Bioeng 112:124–129

    Article  CAS  PubMed  Google Scholar 

  12. Zaidan UH, Abdul Rahman MB, Othman SS, Basri M, Abdulmalek E et al (2011) Kinetic behaviour of free lipase and mica-based immobilized lipase catalyzing the synthesis of sugar esters. Biosci Biotechnol Biochem 75:1446–1450

    Article  CAS  PubMed  Google Scholar 

  13. Bornscheuer UT, Kazlauskas RJ (2006) Phospholipases: sections 7.1–7.2. In: Bornscheuer UT, Kazlauskas RJ (eds) Hydrolases in organic synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 211–214

    Chapter  Google Scholar 

  14. Bornscheuer UT, Kazlauskas RJ (2006) Lipases and esterases: sections 5.3–5.4. In: Bornscheuer UT, Kazlauskas RJ (eds) Hydrolases in organic synthesis. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 141–183

    Chapter  Google Scholar 

  15. Bornscheuer UT, Kazlauskas RJ (2006) Lipases and esterases: sections 5.1–5.2. In: Bornscheuer UT, Kazlauskas RJ (eds) Hydrolases in organic synthesis. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, pp 61–140

    Chapter  Google Scholar 

  16. Schmidtke AJ, Hanson ND (2008) Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:3922–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jaeger KE, Ransac S, Dijkstra BW, Colson C, van Heuvel M et al (1994) Bacterial lipases. FEMS Microbiol Rev 15:29–63

    Article  CAS  PubMed  Google Scholar 

  18. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  19. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  PubMed  Google Scholar 

  20. Mahajan-Miklos S, Rahme LG, Ausubel FM (2000) Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37:981–988

    Article  CAS  PubMed  Google Scholar 

  21. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P et al (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  22. Kovacic F (2010) Novel phospholipases A of Pseudomonas aeruginosa: biochemical characterisation and cellular localisation. PhD thesis, Heinrich-Heine-Universität Düsseldorf, Germany

    Google Scholar 

  23. Adam PB, Adriana IV, Alain F, Genevieve B, Paula JW et al (2004) A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol 53:1089–1098

    Article  CAS  Google Scholar 

  24. Luberto C, Stonehouse MJ, Collins EA, Marchesini N, El-Bawab S et al (2003) Purification, characterization, and identification of a sphingomyelin synthase from Pseudomonas aeruginosa. PlcH is a multifunctional enzyme. J Biol Chem 278:32733–32743

    Article  CAS  PubMed  Google Scholar 

  25. Wohlfarth S, Hoesche C, Strunk C, Winkler UK (1992) Molecular genetics of the extracellular lipase of Pseudomonas aeruginosa PAO1. J Gen Microbiol 138:1325–1335

    Article  CAS  PubMed  Google Scholar 

  26. Ostroff RM, Vasil AI, Vasil ML (1990) Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol 172:5915–5923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salacha R, Kovacic F, Brochier-Armanet C, Wilhelm S, Tommassen J et al (2010) The Pseudomonas aeruginosa patatin-like protein PlpD is the archetype of a novel Type V secretion system. Environ Microbiol 12:1498–1512

    CAS  PubMed  Google Scholar 

  28. Vasil M (2006) Pseudomonas aeruginosa phospholipases and phospholipids. In: Levesque R, Ramos J-L (eds) Pseudomonas. Springer, New York, pp 69–97

    Chapter  Google Scholar 

  29. Wilderman PJ, Vasil AI, Johnson Z, Vasil ML (2001) Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol Microbiol 39:291–303

    Article  CAS  PubMed  Google Scholar 

  30. Pesaresi A, Lamba D (2005) Crystallization, X-ray diffraction analysis and phasing of carboxylesterase PA3859 from Pseudomonas aeruginosa. Biochim Biophys Acta 1752:197–201

    Article  CAS  PubMed  Google Scholar 

  31. Martinez A, Ostrovsky P, Nunn DN (1999) LipC, a second lipase of Pseudomonas aeruginosa, is LipB and Xcp dependent and is transcriptionally regulated by pilus biogenesis components. Mol Microbiol 34:317–326

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez DG, Otero LH, Hernandez CM, Serra AL, Encarnacion S et al (2012) A Pseudomonas aeruginosa PAO1 acetylcholinesterase is encoded by the PA4921 gene and belongs to the SGNH hydrolase family. Microbiol Res 167:317–325

    Article  CAS  PubMed  Google Scholar 

  33. Wilhelm S, Tommassen J, Jaeger KE (1999) A novel lipolytic enzyme located in the outer membrane of Pseudomonas aeruginosa. J Bacteriol 181:6977–6986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  PubMed  Google Scholar 

  35. Jaeger KE, Holliger P (2010) Chemical biotechnology—a marriage of convenience and necessity. Curr Opin Biotechnol 21:711–712

    Article  CAS  PubMed  Google Scholar 

  36. Sitkiewicz I, Stockbauer KE, Musser JM (2007) Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 15:63–69

    Article  CAS  PubMed  Google Scholar 

  37. Istivan TS, Coloe PJ (2006) Phospholipase A in Gram-negative bacteria and its role in pathogenesis. Microbiology 152:1263–1274

    Article  CAS  PubMed  Google Scholar 

  38. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343(Pt 1):177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hausmann S, Jaeger KE (2010) Lipolytic enzymes from bacteria. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1099–1126

    Chapter  Google Scholar 

  40. Beisson F, Tiss A, Rivière C, Verger R (2000) Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Technol 102:133–153

    Article  CAS  Google Scholar 

  41. Alberghina L, Schmid R, Verger R (1991) Lipases: structure, mechanism, and genetic engineering: contributions to the CEC-GBF international workshop, September 13 to 15, 1990. VCH, Braunschweig, Germany

    Google Scholar 

  42. Jaeger KE, Ransac S, Koch HB, Ferrato F, Dijkstra BW (1993) Topological characterization and modeling of the 3D structure of lipase from Pseudomonas aeruginosa. FEBS Lett 332:143–149

    Article  CAS  PubMed  Google Scholar 

  43. Kugimiya W, Otani Y, Hashimoto Y, Takagi Y (1986) Molecular cloning and nucleotide sequence of the lipase gene from Pseudomonas fragi. Biochem Biophys Res Commun 141:185–190

    Article  CAS  PubMed  Google Scholar 

  44. Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kouker G, Jaeger KE (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gubash SM (1991) Improved egg-yolk agar plate medium for the detection of clostridial phospholipase C activity. Res Microbiol 142:87–93

    Article  CAS  PubMed  Google Scholar 

  47. Arzoglou P, Goudoula C, Tsantili P, Lessinger JM, Ferard G et al (1994) Transferability of lipase titrimetric assays: deductions from an interlaboratory study. Eur J Clin Chem Clin Biochem 32:773–777

    CAS  PubMed  Google Scholar 

  48. Abousalham A, Verger R (2000) Egg yolk lipoproteins as substrates for lipases. Biochim Biophys Acta 1485:56–62

    Article  CAS  PubMed  Google Scholar 

  49. Winkler UK, Stuckmann M (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol 138:663–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim HK, Park SY, Lee JK, Oh TK (1998) Gene cloning and characterization of thermostable lipase from Bacillus stearothermophilus L1. Biosci Biotechnol Biochem 62:66–71

    Article  CAS  PubMed  Google Scholar 

  51. Ma J, Zhang Z, Wang B, Kong X, Wang Y et al (2006) Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif 45:22–29

    Article  CAS  PubMed  Google Scholar 

  52. Ahmad S, Kamal MZ, Sankaranarayanan R, Rao NM (2008) Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. J Mol Biol 381:324–340

    Article  CAS  PubMed  Google Scholar 

  53. Dolinsky VW, Douglas DN, Lehner R, Vance DE (2004) Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone. Biochem J 378:967–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jacks TJ, Kircher HW (1967) Fluorometric assay for the hydrolytic activity of lipase using fatty acyl esters of 4-methylumbelliferone. Anal Biochem 21:279–285

    Article  CAS  PubMed  Google Scholar 

  55. Flieger A, Gong S, Faigle M, Deeg M, Bartmann P et al (2000) Novel phospholipase A activity secreted by Legionella species. J Bacteriol 182:1321–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Flieger A, Neumeister B, Cianciotto NP (2002) Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect Immun 70:6094–6106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fluxa VS, Wahler D, Reymond J-L (2008) Enzyme assay and activity fingerprinting of hydrolases with the red-chromogenic adrenaline test. Nat Protoc 3:1270–1277

    Article  CAS  PubMed  Google Scholar 

  58. Wahler D, Boujard O, Lefèvre F, Reymond J-L (2004) Adrenaline profiling of lipases and esterases with 1,2-diol and carbohydrate acetates. Tetrahedron 60:703–710

    Article  CAS  Google Scholar 

  59. Rotticci D, Norin T, Hult K, Martinelle M (2000) An active-site titration method for lipases. Biochim Biophys Acta 1483:132–140

    Article  CAS  PubMed  Google Scholar 

  60. Asler IL, Kovacic F, Marchetti-Deschmann M, Allmaier G, Stefanic Z et al (2012) Inhibition of extracellular lipase from Streptomyces rimosus with 3,4-dichloroisocoumarin. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2012

    Article  PubMed  Google Scholar 

  61. Leroy E, Bensel N, Reymond J-L (2003) Fluorogenic cyanohydrin esters as chiral probes for esterase and lipase activity. Adv Synthesis Catal 345:859–865

    Article  CAS  Google Scholar 

  62. Lagarde D, Nguyen H-K, Ravot G, Wahler D, Reymond J-L et al (2002) High-throughput screening of thermostable esterases for industrial bioconversions. Org Process Res Dev 6:441–445

    Article  CAS  Google Scholar 

  63. Patel RN (2003) Microbial/enzymatic synthesis of chiral pharmaceutical intermediates. Curr Opin Drug Discov Dev 6:902–920

    CAS  Google Scholar 

  64. Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  PubMed  Google Scholar 

  65. Rotticci D, Rotticci-Mulder JC, Denman S, Norin T, Hult K (2001) Improved enantioselectivity of a lipase by rational protein engineering. Chembiochem 2:766–770

    Article  CAS  PubMed  Google Scholar 

  66. Prasad S, Bocola M, Reetz MT (2011) Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis. Chemphyschem 12:1550–1557

    Article  CAS  PubMed  Google Scholar 

  67. Bornscheuer UT (2002) Methods to increase enantioselectivity of lipases and esterases. Curr Opin Biotechnol 13:543–547

    Article  CAS  PubMed  Google Scholar 

  68. Reetz M, Jaeger K-E (1999) Superior biocatalysts by directed evolution. In: Fessner W-D, Archelas A, Demirjian DC, Furstoss R, Griengl H et al (eds) Biocatalysis—from discovery to application. Springer, Berlin, pp 31–57

    Chapter  Google Scholar 

  69. Reetz MT, Jaeger KE (2000) Enantioselective enzymes for organic synthesis created by directed evolution. Chemistry 6:407–412

    Article  CAS  PubMed  Google Scholar 

  70. Jaeger KE, Reetz MT (2000) Directed evolution of enantioselective enzymes for organic chemistry. Curr Opin Chem Biol 4:68–73

    Article  CAS  PubMed  Google Scholar 

  71. Reetz MT, Wilensek S, Zha D, Jaeger KE (2001) Directed evolution of an enantioselective enzyme through combinatorial multiple-cassette mutagenesis. Angew Chem 40:3589–3591

    Article  CAS  Google Scholar 

  72. Liebeton K, Zonta A, Schimossek K, Nardini M, Lang D et al (2000) Directed evolution of an enantioselective lipase. Chem Biol 7:709–718

    Article  CAS  PubMed  Google Scholar 

  73. Reetz MT, Puls M, Carballeira JD, Vogel A, Jaeger KE et al (2007) Learning from directed evolution: further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. Chembiochem 8:106–112

    Article  CAS  PubMed  Google Scholar 

  74. Bocola M, Otte N, Jaeger KE, Reetz MT, Thiel W (2004) Learning from directed evolution: theoretical investigations into cooperative mutations in lipase enantioselectivity. Chembiochem 5:214–223

    Article  CAS  PubMed  Google Scholar 

  75. Kazlauskas RJ (2006) Quantitative assay of hydrolases for activity and selectivity using color changes. In: Reymond JL (ed) Enzyme assays. Wiley-VCH Verlag GmbH & Co. KGaA, Weinhem, pp 15–39

    Chapter  Google Scholar 

  76. Fersht A (1985) Enzyme structure and mechanism. CRC Press Inc, Boca Raton, FL

    Google Scholar 

  77. Reetz MT, Zonta A, Schimossek K, Jaeger K-E, Liebeton K (1997) Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew Chem Int Ed Engl 36:2830–2832

    Article  CAS  Google Scholar 

  78. Janes LE, Kazlauskas RJ, Quick E (1997) A fast spectrophotometric method to measure the enantioselectivity of hydrolases. J Org Chem 62:4560–4561

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Erich Jaeger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jaeger, KE., Kovacic, F. (2014). Determination of Lipolytic Enzyme Activities. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics