Skip to main content

Superior Biocatalysts by Directed Evolution

  • Chapter
  • First Online:
Biocatalysis - From Discovery to Application

Part of the book series: Topics in Current Chemistry ((4143,volume 200))

Abstract

Useful biocatalysts for organic chemistry can be created by directed evolution.Mutations are introduced into genes encoding biocatalyst proteins of interest by error-prone PCR or other random mutagenesis methods. The mutated genes can be rearranged by recombinative processes like DNA shuffling, thereby significantly enhancing the efficiency with which genes can be evolved. These genes are expressed in suitable microbial hosts leading to the production of functional biocatalysts. Selection or screening procedures serve to identify in a large library of potential candidates the biocatalyst which possesses the desired properties. Examples of applications include subtilisin E with greatly improved catalytic activity and stability in organic solvent, an esterase with 50-fold higher activity in organic solvent, and a β-lactamase conferring a 32,000-fold increased antibiotic resistance. Furthermore, directed evolution of a bacterial lipase resulted in a significant increase in enantioselectivity,thereby demonstrating the enormous potential of this process for organic chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallei EF, Neumann H-P (1994) Chem-Ing Tech 66:924

    Article  CAS  Google Scholar 

  2. Cornils B, Herrmann WA (1996) Applied homogeneous catalysis with organometallic compounds, vols 1 and 2. VCH, Weinheim

    Google Scholar 

  3. Parshall GW, Ittel SD (1992) Homogeneous catalysis. Wiley, New York

    Google Scholar 

  4. Thomas JM, Thomas WJ (1997) Principles and practice of heterogeneous catalysis. VCH, Weinheim

    Google Scholar 

  5. Davies HG, Green RH, Kelly DR, Roberts SM (1989) Biotransformations in preparative organic chemistry: the use of isolated enzymes and whole cell systems in synthesis. Academic Press, London

    Google Scholar 

  6. Wong CH, Whitesides GM (1994) Enzymes in synthetic organic chemistry. Pergamon, Oxford

    Google Scholar 

  7. Drauz K, Waldmann H (eds) (1995) Enzyme catalysis in organic synthesis. VCH, Weinheim

    Google Scholar 

  8. Faber K (1997) Biotransformations in organic chemistry, 3rd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Johnson CR, Wells GW (1998) Curr Opin Chem Biol 2:70

    Article  CAS  Google Scholar 

  10. Fessner WD (1998) Curr Opin Chem Biol 2:85

    Article  CAS  Google Scholar 

  11. Jacobsen EN, Finney NS (1994) Chem Biol 1:85

    Article  CAS  Google Scholar 

  12. Brandt S, Rossi RF, Dodds DR, Lopez JL (1990) WO-A9004643 A1 (Chem Abstr 113:76620)

    Google Scholar 

  13. Schmid RD, Verger R (1998) Angew Chem Int Ed Engl 37:1608

    Article  Google Scholar 

  14. Fersht AR (1987) Biochemistry 26:8031

    Article  CAS  Google Scholar 

  15. Bryan PN (1987) Biotechnol Adv 5:221

    Article  CAS  Google Scholar 

  16. Gerlt GA (1987) Chem Rev 87:1079

    Article  CAS  Google Scholar 

  17. Knowles JR (1987) Science 236:1252

    Article  CAS  Google Scholar 

  18. Benkovic SJ, Fierke CA, Naylor AM (1988) Science 239:1105

    Article  CAS  Google Scholar 

  19. Wells JA, Estell DA (1988) Trends Biochem Sci 291

    Google Scholar 

  20. Pantoliano MW, Whitlow M, Wood JF, Finzel BC, Gilliland GL, Poulos TL, Rollence ML, Bryan PN (1988) Biochemistry 27:8311

    Article  CAS  Google Scholar 

  21. Russell AJ, Fersht AR (1987) Nature (London) 328:496

    Article  CAS  Google Scholar 

  22. Holmquist M, Clausen IG, Patkar S, Svendsen A, Hult K (1995) J Protein Chem 14:217

    Article  CAS  Google Scholar 

  23. Beer HD, Wohlfahrt G, McCarthy JEG, Schomburg D, Schmid RD (1996) Protein Eng 9:507

    Article  CAS  Google Scholar 

  24. Hirose Y, Kariya K, Nakanishi Y, Kurono Y, Achiwa K (1995) Tetrahedron Lett 36:1063

    Article  CAS  Google Scholar 

  25. Haas MJ, Joerger RD, King G, Klein RR (1996) Ann N Y Acad Sci 799:115

    Article  CAS  Google Scholar 

  26. Leung DW, Chen E, Goeddel DV (1989) Technique (Philadelphia) 1:11

    Google Scholar 

  27. Eckert KA, Kunkel TA (1991) PCR Methods Appl 1:17

    CAS  Google Scholar 

  28. Cadwell RC, Joyce GF (1994) PCR Methods Appl 3:136

    Google Scholar 

  29. Stemmer WPC (1994) Nature (London) 370:389

    Article  CAS  Google Scholar 

  30. For example see: (a) Lewin B (1997) Genes VI. Oxford University Press and Cell Press, Oxford

    Google Scholar 

  31. Stryer L (1995) Biochemistry. WH Freeman, New York

    Google Scholar 

  32. Chen K, Arnold FH (1991) Biotechnol 9:1073

    Article  CAS  Google Scholar 

  33. Rubingh DN (1997) Curr Opin Biotechnol 8:417

    Article  CAS  Google Scholar 

  34. Enzymes in “nature” can evolve much faster under certain conditions, e.g. in contaminated soils. An example is a phosphotriesterase, an enzyme discovered in a soil bacterium, which degrades certain pesticides. It is believed that this enzyme evolved during the last 50 years from a homologous sequence in the E. coli bacterium. Scanlan TS, Reid RC (1995) Chem Biol 2:71

    Article  CAS  Google Scholar 

  35. Reetz MT, Zonta A, Schimossek K, Liebeton K, Jaeger K-E (1997) Angew Chem Int Ed Engl 36:2830

    Article  CAS  Google Scholar 

  36. Arnold FH (1996) Chem Bioeng Sci 23:5091

    Article  Google Scholar 

  37. Heinz DW, Baase WA, Matthews BW (1992) Proc Natl Acad Sci USA 89:3751

    Article  CAS  Google Scholar 

  38. Poteete AR, Rennel D, Bouvier SE (1992) Proteins Struct Funct Genet 13:38

    Article  CAS  Google Scholar 

  39. Liebeton K (1998) PhD Thesis, Ruhr-Universität Bochum

    Google Scholar 

  40. Arnold FH (1998) Acc Chem Res 31:125

    Article  CAS  Google Scholar 

  41. Trower MK (ed) (1996) In vitro mutagenesis protocols. Humana Press, New Jersey

    Google Scholar 

  42. O’Donohue MJ, Kneale GG (1996) Mol Biotechnol 6:179

    Article  CAS  Google Scholar 

  43. Higuchi R, Krummel B, Saiki RK (1988) Nucleic Acids Res 16:7351

    Article  CAS  Google Scholar 

  44. Ho S, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Gene 77:51

    Article  CAS  Google Scholar 

  45. Urban A, Neukirchen S, Jaeger KE (1997) Nucleic Acids Res 25:2227

    Article  CAS  Google Scholar 

  46. Kegler-Ebo DM, Docktor CM, DiMaio D (1994) Nucleic Acids Res 22:1593

    Article  CAS  Google Scholar 

  47. Barettino D, Feigenbutz M, Valcárel R, Stunnenberg HG (1994) Nucleic Acids Res 22:541

    Article  CAS  Google Scholar 

  48. Barik S (1995) Mol Biotechnol 3:1

    Article  CAS  Google Scholar 

  49. Reidhaar-Olson JF, Sauer RT (1988) Science 241:53

    Article  CAS  Google Scholar 

  50. MacBeath G, Kast P, Hilvert D (1998) Science 279:1958

    Article  CAS  Google Scholar 

  51. MacBeath G, Kast P, Hilvert D (1998) Protein Sci 7:1757

    Article  CAS  Google Scholar 

  52. Kast P, Hilvert D (1997) Curr Opin Struct Biol 7:470

    Article  CAS  Google Scholar 

  53. Crameri A, Stemmer WPC (1995) BioTechniques 18:194

    CAS  Google Scholar 

  54. Eckert KA, Kunkel TA (1990) Nucleic Acids Res 18:3739

    Article  CAS  Google Scholar 

  55. Cadwell RC, Joyce GF (1995) Mutagenic PCR. In: Dieffenbach CW, Dveksler GS (eds) PCR Primer: a laboratory manual. CSHL Press, Cold Spring Harbor, p 583

    Google Scholar 

  56. Miller JH (1992) A short course in bacterial genetics. CSHL Press, Cold Spring Harbor

    Google Scholar 

  57. Greener A, Callahan M, Jerpseth B (1996) An efficient random mutagenesis technique using an E. colimutator strain. In: Trower MK (ed) In vitro mutagenesis protocols. Humana Press, New Jersey

    Google Scholar 

  58. Greener A, Callahan M (1994) Strategies 7:32

    Google Scholar 

  59. Stemmer WPC (1994) Proc Natl Acad Sci 91:10,747

    Article  Google Scholar 

  60. Zhao H, Arnold FH (1997) Nucleic Acids Res 25:1307

    Article  CAS  Google Scholar 

  61. Crameri A, Raillard SA, Bermudez E, Stemmer WPC (1998) Nature 391:288

    Article  CAS  Google Scholar 

  62. Patten PA, Howard RJ, Stemmer WPC (1997) Curr Opin Biotechnol 8:724

    Article  CAS  Google Scholar 

  63. Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Nature Biotechnol 16:258

    Article  CAS  Google Scholar 

  64. Shao Z, Zhao H, Giver L, Arnold FH (1998) Nucleic Acids Res 26:681

    Article  CAS  Google Scholar 

  65. Kuchner O, Arnold FH (1997) Trends Biotechnol 15:523

    Article  CAS  Google Scholar 

  66. Hannig G, Makrides SC (1998) Trends Biotechnol 16:54

    Article  CAS  Google Scholar 

  67. Reetz MT, Jaeger KE (1998) Chem Phys Lipids 93:3

    Article  CAS  Google Scholar 

  68. Sandkvist M, Bagdasarian M (1996) Curr Opin Biotchnol 7:505

    Article  CAS  Google Scholar 

  69. de Vos WM, Kleerebezem M, Kuipers OP (1997) Curr Opin Biotchnol 8:547

    Article  Google Scholar 

  70. Hollenberg CP, Gellissen G (1997) Curr Opin Biotchnol 8:554

    Article  CAS  Google Scholar 

  71. Zhao H, Arnold FH (1997) Curr Opin Struct Biol 7:480

    Article  CAS  Google Scholar 

  72. Fastrez J (1997) Mol Biotechnol 7:37

    Article  CAS  Google Scholar 

  73. O’Neil KT, Hoess RH (1995) Curr Opin Struct Biol 5:443

    Article  CAS  Google Scholar 

  74. Smith GP, Petrenko VA (1997) Chem Rev 97:391

    Article  CAS  Google Scholar 

  75. Reetz MT, Becker M, Kühling K, Holzwarth A, Angew Chem (in press)

    Google Scholar 

  76. For example see: (a) Mosbach K (ed) (1987/88) Methods in enzymology: immobilized enzymes and cells, parts B-D, vols 135–137. Academic Press, San Diego

    Google Scholar 

  77. Tanaka A, Tosa T, Kobayashi (eds) (1993) Industrial application of immobilized biocatalysts, vol 16. Marcel Decker, New York

    Google Scholar 

  78. Kennedy JF, Melo EHM, Jumel K (1990) Chem Eng Prog 7:81

    Google Scholar 

  79. Okahata Y, Mori T (1997) Trends Biotechnol 15:50

    Article  CAS  Google Scholar 

  80. Parthasarathy RV, Martin CR (1994) Nature 369:298

    Article  CAS  Google Scholar 

  81. Reetz MT (1997) Adv Mater 9:943

    Article  CAS  Google Scholar 

  82. Reetz MT, Zonta A, Simpelkamp J (1995) Angew Chem Int Ed Engl 34:301

    Article  CAS  Google Scholar 

  83. Khalaf N, Govardhan CP, Lalonde JJ, Persichetti RA, Wang Y-F, Margolin AL (1996) J Am Chem Soc 118:5494

    Article  CAS  Google Scholar 

  84. Reiter Y, Brinkmann U, Jung S-H, Pastan I, Byungkook L (1995) Protein Eng 8:1323

    Article  CAS  Google Scholar 

  85. Noda Y, Fukada Y, Segawa S (1997) Biopolymers 41:131

    Article  CAS  Google Scholar 

  86. Fairman R, Chao H-G, Lavoie TB, Villafranc JJ, Matsueda GR, Novotny J (1996) Biochemistry 35:2824

    Article  CAS  Google Scholar 

  87. Wong C-H, Chen S-T, Hennen WJ, Bibbs JA, Wang Y-F, Liu JL-C, Pantoliano MW, Whitlow M, Bryan PN (1990) J Am Chem Soc 112:945

    Article  CAS  Google Scholar 

  88. Shao Z, Arnold FH (1996) Curr Opin Struct Biol 6:513

    Article  CAS  Google Scholar 

  89. Matsumura M, Aiba S (1985) J Biol Chem 260:15,298

    Google Scholar 

  90. Bryan PN, Rollence ML, Pantoliano MW, Wood J, Finzel BC, Gilliland GL, Howard AJ, Poulos TL (1986) Proteins Struct Funct Genet 1:326

    Article  CAS  Google Scholar 

  91. Wells JA (1990) Biochemistry 29:8509

    Article  CAS  Google Scholar 

  92. Joyet P, Declerck N, Gaillardin C (1992) Biotechnol 10:1579

    Article  CAS  Google Scholar 

  93. Haruki M, Noguchi E, Akasako A, Oobatake M, Itaya M, Kanaya S (1994) J Biol Chem 269:26,904

    Google Scholar 

  94. Rellos P, Scopes RK (1994) Protein Expres Purif 5:270

    Article  CAS  Google Scholar 

  95. Pjura P, Matsumura M, Baase WA, Matthews BW (1993) Protein Sci 2:2217

    CAS  Google Scholar 

  96. Kotsuka T, Akanuma S, Tomuro M, Yamagishi A, Oshima T (1996) J Bacteriol 178:723

    CAS  Google Scholar 

  97. Okada Y (1995) Biosci Biotechnol Biochem 59:1152

    CAS  Google Scholar 

  98. Liao H, McKenzie T, Hageman R (1986) Proc Natl Acad Sci USA 83:576

    Article  CAS  Google Scholar 

  99. Zhao H, Arnold FH (1997) Curr Opin Struct Biol 7:480

    Article  CAS  Google Scholar 

  100. Janes LE, Kazlauskas RJ (1997) J Org Chem 62:4560

    Article  CAS  Google Scholar 

  101. Chen K, Arnold FH (1993) Proc Natl Acad Sci USA 90:5618

    Article  CAS  Google Scholar 

  102. You L, Arnold FH (1996) Protein Eng 9:77

    Article  CAS  Google Scholar 

  103. Moore JC, Arnold FH (1996) Nature Biotechnol 14:458

    Article  CAS  Google Scholar 

  104. Brannon DR, Mabe JA, Fukuda DS (1976) J Antibiotics 29:121

    CAS  Google Scholar 

  105. US Patent (1975) 3,725,359

    Google Scholar 

  106. Zock J, Cantwell C, Swartling J, Hodges R, Pohl T, Sutton K, Rosteck P Jr, McGilvray D, Queener S (1994) Gene 151:37

    Article  CAS  Google Scholar 

  107. Devlin JP (1997) High throughput screening. Marcel Decker, New York

    Google Scholar 

  108. Czarnik AW, DeWitt SH (1997) A practical guide to combinatorial chemistry. ACS, Washington, DC

    Google Scholar 

  109. Zhao H, Arnold FH (1997) Proc Natl Acad Sci USA 94:7997

    Article  CAS  Google Scholar 

  110. Moore JC, Jin H-M, Kuchner O, Arnold FH (1997) J Mol Biol 272:336

    Article  CAS  Google Scholar 

  111. Minshull J (1995) Chem Biol 2:775

    Article  CAS  Google Scholar 

  112. Crameri A, Dawes G, Rodriguez E Jr, Silver S, Stemmer WPC (1997) Nat Biotechnol 15:436

    Article  CAS  Google Scholar 

  113. Wackett LP (1997) Nat Biotechnol 15:415

    Article  CAS  Google Scholar 

  114. Ellis LBM,W ackett LP The University of Minnesota Biocatalysis/Biodegradation Database on the WWW: http://dragon.labmed.umn.edu/~lynda/index.html

  115. Stemmer WPC (1995) Bio/Technology 13:549

    Article  CAS  Google Scholar 

  116. Zhang J, Dawes G, Stemmer WPC (1997) Proc Natl Acad Sci USA 94:4504

    Article  CAS  Google Scholar 

  117. Crameri A, Whitehorn E, Tate E, Stemmer WPC (1996) Nat Biotech 14:315

    Article  CAS  Google Scholar 

  118. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien TY (1995) Trends Biochem Sci 20:448

    Article  CAS  Google Scholar 

  119. Coxon A, Bestor TH (1995) Chem Biol 2:119

    Article  CAS  Google Scholar 

  120. Delagrave S, Hawtin RE, Silvia CM, Yang MM, Youvan DC (1995) Bio/Technology 13:151

    Article  CAS  Google Scholar 

  121. Heim R, Tsien RY (1996) Curr Biol 6:178

    Article  CAS  Google Scholar 

  122. Ehrig T, O’kane DJ, Prendergast FG (1995) FEBS Lett 367:163

    Article  CAS  Google Scholar 

  123. Gulick AM, Fahl WE (1995) Proc Natl Acad Sci USA 92:8140

    Article  CAS  Google Scholar 

  124. Shinkai A, Hirano A, Aisaka K (1996) J Biochem 120:915

    CAS  Google Scholar 

  125. Strausberg SL, Alexander PA, Gallagher DT, Gilliland GL, Barnett BL, Bryan PN (1995) Biotechnol 13:669

    Article  CAS  Google Scholar 

  126. Black ME, Newcomb TG, Wilson HMP, Loeb LA (1996) Proc Natl Acad Sci USA 93:3525

    Article  CAS  Google Scholar 

  127. Tamakoshi M, Yamagishi A, Oshima T (1995) Mol Microbiol 16:1031

    Article  CAS  Google Scholar 

  128. Kano H, Taguchi S, Momose H (1997) Appl Microbiol Biotechnol 47:46

    Article  CAS  Google Scholar 

  129. Beuve A, Danchin A (1992) J Mol Biol 225:933

    Article  CAS  Google Scholar 

  130. Hawrani AS, Sessions RB, Moreton KM, Holbrook JJ (1996) J Mol Biol 264:97

    Article  Google Scholar 

  131. Sidhu SS, Borgford TJ (1996) J Mol Biol 257:233

    Article  CAS  Google Scholar 

  132. Ohnuma S-I, Nakazawa T, Hemmi H, Hallberg A-M, Koyama T, Ogura K, Nishino T (1996) J Biol Chem 271:10,087

    Google Scholar 

  133. Sousa R, Padilla R (1995) EMBO J 14:4609

    CAS  Google Scholar 

  134. Widersten M, Mannervik B (1995) J Mol Biol 250:115

    Article  CAS  Google Scholar 

  135. Gaskin DJH, Bovagnet AH, Turner NA, Vulfson EN (1997) Biochem Soc Trans 25:15S

    CAS  Google Scholar 

  136. Oliphant AR, Nussbaum AL, Struhl K (1986) Gene 44:177

    Article  CAS  Google Scholar 

  137. Derbyshire KM, Salvo JJ, Grindley NDF (1986) Gene 46:145

    Article  CAS  Google Scholar 

  138. Berrisford DJ, Bolm C, Sharpless KB (1995) Angew Chem Int Ed Engl 34:1059

    Article  CAS  Google Scholar 

  139. Schimossek K (1998) PhD Thesis, Ruhr-Universität Bochum

    Google Scholar 

  140. Jaeger K-E, Schneidinger B, Liebeton K, Haas D, Reetz MT, Philippou S, Gerritse G, Ransac S, Dijkstra BW (1996) In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of Pseudomonads. ASM Press, Washington, p 319

    Google Scholar 

  141. Jaeger K-E, Liebeton K, Zonta A, Schimossek K, Reetz MT (1996) Appl Microbiol Biotechnol 46:99

    Article  CAS  Google Scholar 

  142. Jaeger K-E, Reetz MT (1998) Trends Biotechnol 16:396

    Article  CAS  Google Scholar 

  143. Reetz MT, Zonta A, Schimossek K, Liebeton K, Jaeger K-E: patent application DEA19731990.4

    Google Scholar 

  144. Jaeger K-E, Liebeton K, Zonta A, Schimossek K, Reetz MT (submitted)

    Google Scholar 

  145. Bornscheuer UT, Altenbuchner J, Meyer HH (1998) Biotech Bioeng 58:554

    Article  CAS  Google Scholar 

  146. Zhu X, Lewis CM,H aley MC, Bhatia MB, Pannuri S, Kamat S,W u W, Bowen ARSTG (1997) IBC’s 2nd Annual Symposium on Exploiting Enzyme Technology for Industrial Applications, Feb 20-21 1997, San Diego USA

    Google Scholar 

  147. Matcham GW, Bowen ARSTG (1996) CHIM OGGI 14:20

    CAS  Google Scholar 

  148. Kazlauskas RJ, Weber HK (1998) Curr Opin Chem Biol 2:121

    Article  CAS  Google Scholar 

  149. Arnold FH (1998) Nat Biotechnol 16:617

    Article  CAS  Google Scholar 

  150. Tawfik DS, Griffith AD (1998) Nature Biotechnol 16:652

    Article  CAS  Google Scholar 

  151. Buchholz F, Angrand P-O, Stewart, AF (1998) Nature Biotechnol 16:657

    Article  CAS  Google Scholar 

  152. Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K (1998) Nat Biotechnol 16:663

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reetz, M.T., Jaeger, KE. (1999). Superior Biocatalysts by Directed Evolution. In: Fessner, WD., et al. Biocatalysis - From Discovery to Application. Topics in Current Chemistry, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68116-7_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-68116-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64942-7

  • Online ISBN: 978-3-540-68116-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics