Skip to main content

Fibers to Organs: How Collagen Fiber Properties Modulate the Closing Behavior of the Mitral Valve

  • Chapter
Structure-Based Mechanics of Tissues and Organs

Abstract

We developed a micro- and macro anatomically accurate MV finite element model by incorporating actual fiber microstructural architecture and a realistic structure-based constitutive model. Comparative and parametric studies were conducted to identify essential model fidelity and information for achieving desirable accuracy. More importantly, for the first time, the interrelationship between the local fiber ensemble behavior and the organ-level MV closing behavior was investigated using a computational simulation. These novel results indicated not only the appropriate parameter ranges, but also the importance of the microstructural tuning (i.e., straightening and reorientation) of the collagen/elastin fiber networks at the microscopic tissue level for facilitating the proper coaptation and natural functioning of the MV apparatus under physiological loading at the organ level. The proposed computational model would serve as a logical first step toward our long-term modeling goal—facilitating simulation-guided design of optimal surgical repair strategies for treating diseased MVs with significantly enhanced durability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A convective curvilinear cylindrical coordinate was adopted to describe the contiguous MV leaflet entity, and fiber directions were assumed to be all uniformly aligned with the circumferential direction in this coordinate system for the case study associated with uniformly curvilinear fiber directions.

References

  • Adams DH, Rosenhek R, Falk V. Degenerative mitral valve regurgitation: best practice revolution. Eur Heart J. 2010;31(16):1958–66. doi:10.1093/eurheartj/ehq222. pii: ehq222. PubMed PMID: 20624767; PubMed Central PMCID: PMC2921508. Epub 2010/07/14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braunberger E, Deloche A, Berrebi A, Abdallah F, Celestin JA, Meimoun P, et al. Very long-term results (more than 20 years) of valve repair with carpentier’s techniques in nonrheumatic mitral valve insufficiency. Circulation. 2001;104(12 Suppl 1):I8–11. PubMed PMID: 11568021.

    PubMed  CAS  Google Scholar 

  • Carpentier A. Cardiac valve surgery--the “French correction∞”. J Thorac Cardiovasc Surg. 1983;86(3):323–37. PubMed PMID: 6887954.

    Google Scholar 

  • Carpentier A, Chauvaud S, Fabiani JN, Deloche A, Relland J, Lessana A, et al. Reconstructive surgery of mitral valve incompetence: ten-year appraisal. J Thorac Cardiovasc Surg. 1980;79(3):338–48. PubMed PMID: 7354634.

    PubMed  CAS  Google Scholar 

  • Choi A, Rim Y, Mun JS, Kim H. A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Bio-Med Mater Eng. 2014;24(1):341–7.

    Google Scholar 

  • Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S, et al. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation. 2009;120(4):334–42. doi:10.1161/CIRCULATIONAHA.108.846782. Epub 2009/07/15. PubMed PMID: 19597052; PubMed Central PMCID: PMC2752046.

    Article  PubMed  PubMed Central  Google Scholar 

  • David TE. The Toronto SPV bioprosthesis: clinical and hemodynamic results at 6 years. Ann Thorac Surg. 1999;68(3 Suppl):S9–13.

    Article  PubMed  CAS  Google Scholar 

  • David TE, Ivanov J, Armstrong S, Christie D, Rakowski H. A comparison of outcomes of mitral valve repair for degenerative disease with posterior, anterior, and bileaflet prolapse. J Thorac Cardiovasc Surg. 2005;130(5):1242–9.

    Article  PubMed  Google Scholar 

  • Fan R, Sacks MS. Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech. 2014;47:2043–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Flameng W, Herijgers P, Bogaerts K. Recurrence of mitral valve regurgitation after mitral valve repair in degenerative valve disease. Circulation. 2003;107(12):1609–13. PubMed PMID: 12668494.

    Article  PubMed  Google Scholar 

  • Flameng W, Meuris B, Herijgers P, Herregods M-C. Durability of mitral valve repair in Barlow disease versus fibroelastic deficiency. J Thorac Cardiovas Surg. 2008;135(2):274–82.

    Article  Google Scholar 

  • Frater R, Vetter H, Zussa C, Dahm M. Chordal replacement in mitral valve repair. Circulation. 1990;82(5 Suppl):IV125–30.

    PubMed  CAS  Google Scholar 

  • Fung YC. Biomechanics: mechanical properties of living tissues. 2nd ed. New York: Springer; 1993. p. 568.

    Book  Google Scholar 

  • Gillinov AM, Blackstone EH, Nowicki ER, Slisatkorn W, Al-Dossari G, Johnston DR, et al. Valve repair versus valve replacement for degenerative mitral valve disease. J Thorac Cardiovas Surg. 2008;135(4):885–93.e2.

    Article  Google Scholar 

  • Gorman III JH, Gorman RC. Mitral valve surgery for heart failure: a failed innovation? Semin Thorac Cardiovasc Surg. 2006;18(2):135–8. doi:10.1053/j.semtcvs.2006.07.003. Epub 2006/12/13.

    Article  PubMed  Google Scholar 

  • Grande-Allen KJ, Borowski AG, Troughton RW, Houghtaling PL, Dipaola NR, Moravec CS, et al. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: an extracellular matrix and echocardiographic study. J Am Coll Cardiol. 2005;45(1):54–61. PubMed PMID: 15629373.

    Article  PubMed  CAS  Google Scholar 

  • Grashow JS, Yoganathan AP, Sacks MS. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann Biomed Eng. 2006;34(2):315–25. PubMed PMID: 16450193.

    Article  PubMed  Google Scholar 

  • Jassar AS, Minakawa M, Shuto T, Robb JD, Koomalsingh KJ, Levack MM, et al. Posterior leaflet augmentation in ischemic mitral regurgitation increases leaflet coaptation and mobility. Ann Thorac Surg. 2012;94(5):1438–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen MO, Jensen H, Levine RA, Yoganathan AP, Andersen NT, Nygaard H, et al. Saddle-shaped mitral valve annuloplasty rings improve leaflet coaptation geometry. J Thorac Cardiovasc Surg. 2011;142(3):697–703. doi:10.1016/j.jtcvs.2011.01.022. Epub 2011/02/19. PubMed PMID: 21329946; PubMed Central PMCID: PMC3224846.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kincaid EH, Riley RD, Hines MH, Hammon JW, Kon ND. Anterior leaflet augmentation for ischemic mitral regurgitation. Ann Thorac Surg. 2004;78(2):564–8. doi:10.1016/j.athoracsur.2004.02.040; discussion 8. Epub 2004/07/28. PubMed PMID: 15276520.

    Article  PubMed  Google Scholar 

  • Komeda M, Glasson JR, Bolger AF, Daughters II G, MacIsaac A, Oesterle S, et al. Geometric determinants of ischemic mitral regurgitation. Circulation. 1997;96(9 Suppl):II-128–33.

    Google Scholar 

  • Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech. 1983;16:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Lee CH, Carruthers CA, Ayoub S, Gorman RC, Gorman 3rd JH, Sacks MS. J Theor Biol. 2015;373:26–9. doi:10.1016/j.jtbi.2015.03.004.

    Article  PubMed  Google Scholar 

  • Lee CH, Amini R, Yusuke S, Carruthers CA, Ankush A, Gorman RC, et al. Mitral valves: a computational framework. In: Suvranu D, Kuhl E, Hwang W, editors. Multiscale modeling in biomechanics and mechanobiology. London: Springer; 2015.

    Google Scholar 

  • Mahmood F, Gorman III JH, Subramaniam B, Gorman RC, Panzica PJ, Hagberg RC, et al. Changes in mitral valve annular geometry after repair: saddle-shaped versus flat annuloplasty rings. Ann Thorac Surg. 2010;90(4):1212–20. doi:10.1016/j.athoracsur.2010.03.119. Epub 2010/09/28. pii: S0003-4975(10)00938-0. PubMed.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mansi T, Voigt I, Georgescu B, Zheng X, Mengue EA, Hackl M, et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med Image Anal. 2012;16(7):1330–46.

    Article  PubMed  Google Scholar 

  • Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004;13(5):841–7. PubMed PMID: 15473488.

    PubMed  Google Scholar 

  • Ritchie J, Jimenez J, He Z, Sacks MS, Yoganathan AP. The material properties of the native porcine mitral valve chordae tendineae: An in vitro investigation. J Biomech. 2006;39(6):1129–35. PubMed PMID: 16549101.

    Article  PubMed  Google Scholar 

  • Robb JD, Minakawa M, Koomalsingh KJ, Shuto T, Jassar AS, Ratcliffe SJ, et al. Posterior leaflet augmentation improves leaflet tethering in repair of ischemic mitral regurgitation. Eur J Cardiothorac Surg. 2011;40(6):1501–7. doi:10.1016/j.ejcts.2011.02.079. PubMed PMID: 21546260: Epub 2011/05/07.

    PubMed  PubMed Central  Google Scholar 

  • Sacks MS. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng. 2003;125(2):280–7. PubMed PMID: 12751291.

    Article  PubMed  Google Scholar 

  • Sacks MS, Smith DB, Hiester ED. A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng. 1997;25(4):678–89.

    Article  PubMed  CAS  Google Scholar 

  • Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005;79(3):1072–80. PubMed PMID: 15734452.

    Article  PubMed  Google Scholar 

  • Shuhaiber J, Anderson RJ. Meta-analysis of clinical outcomes following surgical mitral valve repair or replacement. Eur J Cardiothorac Surg. 2007;31(2):267–75.

    Article  PubMed  Google Scholar 

  • Stevanella M, Maffessanti F, Conti CA, Votta E, Arnoldi A, Lombardi M, et al. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovas Eng Tech. 2011;2(2):66–76.

    Article  Google Scholar 

  • Vassileva CM, Boley T, Markwell S, Hazelrigg S. Meta-analysis of short-term and long-term survival following repair versus replacement for ischemic mitral regurgitation. Eur J Cardiothorac Surg. 2011;39(3):295–303.

    Article  PubMed  Google Scholar 

  • Votta E, Caiani E, Veronesi F, Soncini M, Montevecchi FM, Redaelli A. Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios. Philos Transact A Math Phys Eng Sci. 2008;366(1879): 3411–34. doi:10.1098/rsta.2008.0095. Epub 2008/07/08. PubMed PMID: 18603525.

    Article  Google Scholar 

  • Wang Q, Sun W. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann Biomed Eng. 2013;41(1):142–53. doi:10.1007/s10439-012-0620-6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Support from the National Institutes of Health (NIH) grants R01 HL119297 is greatly acknowledged. Dr. Chung-Hao Lee was supported in part by the American Heart Association (AHA) Postdoctoral Fellowship (14POST18160013) and a UT Austin ICES Postdoctoral Fellowship.

Conflict of Interest: None of the authors have a conflict of interest with the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lee, CH., Sacks, M.S. (2016). Fibers to Organs: How Collagen Fiber Properties Modulate the Closing Behavior of the Mitral Valve. In: Kassab, G., Sacks, M. (eds) Structure-Based Mechanics of Tissues and Organs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7630-7_18

Download citation

Publish with us

Policies and ethics