Skip to main content

Abstract

The diversification of the neuronal stem cells into thousands of anatomically and functionally different types of neurons is termed differentiation. Neural differentiation is initiated by the process of determination or specification which programmes the cells for their future course of development. Because the key to understanding the morphological differentiation of nerve cells is to be found in the early events occurring during neural development, the latter deserve to receive a considerable amount of our attention in this chapter. By contrast, I shall give less attention to the overt structural changes in differentiating young neurons which many authors have vested with great developmental significance. These fine structural changes in the developing nerve cells are interesting, but they are merely expressions of earlier steps in cell differentiation and cannot be understood without first considering the developmental programmes which precede visible changes in cellular pheno-types. The large number of different neurophenotypes are the terminal branches of a developmental tree which stems from the genotype and is shaped by epigenetic factors such as hormones and cellular interactions which modify the development of embryonic nerve cells. We should also try to see how these neurophenotypes represent evolutionary solutions to environmental challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobson, M. (1970), Developmental Neurobiology, Holt, Rinehart and Winston: New York.

    Google Scholar 

  2. Saxen, L. and Toivonen, S. (1962), Primary Embryonic Induction, Logos: London.

    Google Scholar 

  3. Roach, F. C. (1945), ‘Differentiation of the central nervous system after axial reversals of the medullary plate of Amblystoma?’, Journal of Experimental Zoology, 99, 53–77.

    Article  Google Scholar 

  4. Jacobson, C. O. (1959), ‘The localization of the presumptive cerebral regions in the neural plate of the axolotl larva’, Journal of Embryology and Experimental Morphology, 7, 1–21.

    PubMed  CAS  Google Scholar 

  5. Stefanelli, A. (1951), ‘The Mauthnerian apparatus in the Ichthyopsida; its nature and function and correlated problems of histogenesis’, Quarterly Review of Biology, 26, 17–34.

    Article  PubMed  CAS  Google Scholar 

  6. Jacobson, C.-O. (1964), ‘Motor nuclei, cranial nerve roots, and fibre pattern in the medulla oblongata after reversal experiments on the neural slate of Axolotl larvae. I. Bilateral operations’, Zoologisk Bidrag. Uppsala, 36, 73–160.

    Google Scholar 

  7. Kallen, B. (1958), ‘Studies on the differentiation capacity of neural epithelium cells in chick embryos’, Zeitschrift für Zellforschung und mikroskopische Anatomie. Abteilung Histochemie, 47, 469–480.

    Article  CAS  Google Scholar 

  8. Corner, M. A. (1964), ‘Localization of capacities for functional development in the neural plate of Xenopus laevis’. Journal of Comparative Neurology, 123, 243–256.

    Article  PubMed  CAS  Google Scholar 

  9. Loewenstein, W. R. (1968), ‘Communication through cell junctions. Implications in growth control and differentiation’, Developmental Biology, Supplement, 2, 151–183.

    Google Scholar 

  10. Jacobson, M. (1968), ‘Cessation of DNA synthesis in retinal ganglion cells correlated with the time of specification of their central connections’, Developmental Biology, 17, 219–232.

    Article  PubMed  CAS  Google Scholar 

  11. Jacobson, M. (1969), ‘Development of specific neuronal connections’, Science 163, 543–547.

    Article  PubMed  CAS  Google Scholar 

  12. Jacobson, M. and Hunt, R. K. (1973), ‘The origins of nerve cell specificity’, Scientific American, 228, 26–35.

    Article  PubMed  CAS  Google Scholar 

  13. Jacobson, M. (1968), ‘Development of neuronal specificity in retinal ganglion cells of Xenopus’, Developmental Biology, 17, 202–218.

    Article  PubMed  CAS  Google Scholar 

  14. Hunt, R. K. and Jacobson, M. (1973), ‘Specification of positional information in retinal ganglion cells of Xenopus: Assays for analysis of the unspecified state’, Proceedings of the National Academy of Sciences, U.S.A., 70, 507–511.

    Article  CAS  Google Scholar 

  15. Dixon, J. S. and Cronly-Dillon, J. R. (1973), ‘The fine structure of the developing retina in Xenopus laevis’, Journal of Embryology and Experimental Morphology, 28, 659–666.

    Google Scholar 

  16. Jacobson, M. (1970), ‘Development, specification and diversification of neuronal connections’. In The Neurosciences: Second Study Program. Ed. Schmitt, F. O., 116–129, Rockefeller University Press: New York.

    Google Scholar 

  17. Jacobson, M. (1973), ‘A plenitude of neurons’. In Studies on the Development of Behavior and the Nervous System. Ed. Gottlieb, G., Vol. 2, pp. 151–166, Academic Press: New York.

    Google Scholar 

  18. Lasek, R. J. (1970), ‘Protein transport in neurons’, International Review of Neurobiology, 13, 289–324.

    Article  CAS  Google Scholar 

  19. Ochs, S. (1972), ‘Fast transport of materials in mammalian nerve fibers’, Science, 176, 252–260.

    Article  PubMed  CAS  Google Scholar 

  20. Holtzman, E. and Peterson, E. R. (1969), ‘Uptake of protein by mammalian neurons’, Journal of Cell Biology, 40, 863–869.

    Article  PubMed  CAS  Google Scholar 

  21. Holtzman, E. and Peterson, E. R. (1969), ‘Uptake of protein by mammalian neurons’, Journal of Cell Biology, 40, 863–869.

    Article  PubMed  CAS  Google Scholar 

  22. Kristensson, K. and Olsson, Y. (1971), ‘Retrograde axonal transport of protein’, Brain Research, 29, 363–365.

    Article  PubMed  CAS  Google Scholar 

  23. Yamada, K. M., Spooner, B. S. and Wessells, N. K. (1971), ‘Ultra-structure and function of growth cones and axons of cultured nerve cells’, Journal of Cell Biology, 49, 614–635.

    Article  PubMed  CAS  Google Scholar 

  24. Schmitt, F. O. (1968), ‘Fibrous proteins — neuronal organelles’, Proceedings of the National Academy of Sciences, U.S.A., 60, 1092–1101.

    Article  CAS  Google Scholar 

  25. Sperry, R. W. (1963), ‘Chemoaffinity in the orderly growth of nerve fiber patterns and connections’, Proceedings of the National Academy of Sciences, U.S.A., 50, 703–710.

    Article  CAS  Google Scholar 

  26. Morest, D. K. (1969), ‘The growth of dendrites in the mammalian brain’ Zeitschrift für Anatomie und Entwicklungsgeschichte, 128, 290–317.

    Article  PubMed  CAS  Google Scholar 

  27. Hinds, J. W. and Hinds, P. L. (1972), ‘Reconstruction of dendritic growth cones in neonatal mouse olfactory bulb’, Journal of Neurocytology, 1, 169–187.

    Article  PubMed  CAS  Google Scholar 

  28. Bunge, R. P. (1968), ‘Glial cells and the central myelin sheath’, Physiological Reviews, 48, 197–251.

    PubMed  CAS  Google Scholar 

  29. Friede, R. L. (1972), ‘Control of myelin formation by axon caliber (with a model of the control mechanism)’, Journal of Comparative Neurology, 144, 233–252.

    Article  PubMed  CAS  Google Scholar 

  30. Sidman, R. L. (1968), ‘Development of interneuronal connections in brains of mutant mice’. In Physiological and Biochemical Aspects of Nervous Integration. Ed. Carlson, F. D., pp. 163–193, Prentice-Hall: New Jersey.

    Google Scholar 

  31. Rakic, P. (1972), ‘Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer’, Journal of Comparative Neurology, 146, 335–354.

    Article  PubMed  CAS  Google Scholar 

  32. Haltia, M. (1970), ‘Postnatal development of spinal anterior horn neurones in normal and undernourished rats’, Acta physiologica Scandinavica, Supplement, 352, 1–70.

    CAS  Google Scholar 

  33. Eayrs, J. T. and Goodhead, B. (1959), ‘Postnatal development of the cerebral cortex in the rat’, Journal of Anatomy, 93, 385–402.

    PubMed  CAS  Google Scholar 

  34. Aghajanian, G. K. and Bloom, F. E. (1967), ‘The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study’, Brain Research, 6, 716–727.

    Article  PubMed  CAS  Google Scholar 

  35. Cragg, B. G. (1968), ‘Are there structural alterations in synapses related to functioning?’ Proceedings of the Royal Society, London, B, 171, 319–323.

    Article  CAS  Google Scholar 

  36. Cragg, B. G. (1969), ‘Structural changes in naive retinal synapses detectable within minutes of first exposure to daylight’, Brain Research, 15, 79–96.

    Article  PubMed  CAS  Google Scholar 

  37. M. R. Lindner and Lindner, B. (1971), ‘Quantitative synaptic changes with differential experience in rat brain’, International Journal of Neuroscience, 2, 113–128.

    Article  PubMed  Google Scholar 

  38. Ruiz-Marcos, A. and Valverde, F. (1969), ‘The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark raised mice’, Experimental Brain Research, 8, 284–294.

    Article  CAS  Google Scholar 

  39. Hubel, D. H. and Wiesel, T. N. (1970), ‘The period of susceptibility to the physiological effects of unilateral eye closure in kittens’, Journal of Physiology, 206, 419–436.

    PubMed  CAS  Google Scholar 

  40. Hirsch, H. V. B. and Spinelli, D. N. (1971), ‘Modification of the distribution of receptive field orientation in cats by selective visual exposure during development’, Experimental Brain Research, 13, 509, 527.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jacobson, M. (1974). Differentiation and Growth of Nerve Cells. In: Goldspink, G. (eds) Differentiation and Growth of Cells in Vertebrate Tissues. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3304-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3304-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-412-11390-1

  • Online ISBN: 978-1-4899-3304-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics