Skip to main content
Log in

The growth of dendrites in the mammalian brain

  • Published:
Zeitschrift für Anatomie und Entwicklungsgeschichte Aims and scope Submit manuscript

Summary

The histological features of developing dendrites are analyzed in age-graded series of cats, rats, rabbits, and opossums with the Golgi techniques. Growth cones and filopodia are consistent features of growing dendrites in the sensory nuclei, motor cranial nerve nuclei, brain stem reticular formation, cerebellar cortex, midbrain tectum, thalamus, hypothalamus, striatum, olfactory bulb, hippocampus, pyriform lobe, and neopallium. Terminal dendritic growth cones occur at the tips of dendrites; preterminal growth buds occur on the dendritic shafts. Filopodia are conspicuous on the growth cones and buds, but they occur on the dendritic shafts, also. Terminal growth cones, preterminal growth buds, and filopodia associate with incipient dendritic branches. Growth cones and filopodia generally disappear when the neurons are completely differentiated. But some dendritic growth cones persist after the rest of the brain is mature and consequently may be involved in learning and other plastic changes in neural function. The analysis illustrates the following general trends in neural ontogeny, none of which are expressed without modifications and qualifications. The dendrites of the specific types of neurons differentiate in typically circumscribed periods, which occur in a fixed sequence. Within, a specific neuronal population there may be regional gradients in the degree of dendritic differentiation. Within the same region the dendrites of large cell bodies tend to differentiate before those of small cell, bodies. The dendrites of Golgi Type II neurons differentiate later than neurons with long axons from the same thalamic nucleus. In the afferent sensory systems the neurons nearer the peripheral receptors usually begin their differentiation before those nearer the cerebral cortex. The dendrites of phylogenetically older neuronal groups tend to differentiate earlier than those of more advanced or more highly specialized groups. The dendrites and the other post-synaptic surfaces of the neurons differentiate in conjunction with the particular afferent axonal end-branches that are destined to synapse with the dendrites. Dendritic differentiation may be instigated by the afferent axons, controlled by local physico-chemical conditions, and guided by contact with the afferent axonal end-branches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angevine, J. B., Jr.: Time of neuron origin in the hippocampal region. An autoradiographic study in the mouse. Exp. Neurol., Suppl. 2, 1–70 (1965).

    Google Scholar 

  • Ariëns Kappers, C. U.: On structural laws in the nervous system: the principles of neurobiotaxis. Brain 44, 125–149 (1921).

    Google Scholar 

  • Barron, D. H.: The early development of the motor cells and columns in the spinal cord of the sheep. J. comp. Neurol. 78, 1–27 (1943).

    Google Scholar 

  • —: The early development of the sensory and internuncial cells in the spinal cord of the sheep. J. comp. Neurol. 81, 193–225 (1944).

    Google Scholar 

  • —: Observations on the early differentiation of the motor neuroblasts in the spinal cord of the chick. J. comp. Neurol. 85, 149–169 (1946).

    Google Scholar 

  • Bernhard, C. G., and J. P. Schadé (eds.): Progress in brain research, Vol. 26, Developmental neurology. Amsterdam: Elsevier 1967.

    Google Scholar 

  • Bodian, D.: Development of fine structure of spinal cord in monkey fetuses. I. The motoneuron neuropil at the time of onset of reflex activity. Bull. Johns Hopk. Hosp. 119, 129–149 (1966).

    Google Scholar 

  • Bok, S. T.: Die Entwicklung der Hirnnerven und ihrer zentralen Bahnen. Die stimulogene Fibrillation. Folia neuro-biol. (Lpz.) 9, 475–565 (1915).

    Google Scholar 

  • Brodal, A.: Anatomical organization and fiber connections of the vestibular nuclei. In: Neurological aspects of auditory and vestibular disorders (ed. W. S. Fields and B. R. Alford), chap. 7, p. 107–145. Springfield: Ch. C. Thomas 1964.

    Google Scholar 

  • Cammermeyer, J.: The post-mortem origin and mechanism of neuronal hyperchromatosis and nuclear pyknosis. Exp. Neurol. 2, 379–405 (1960).

    Google Scholar 

  • Coghill, G. E.: Correlated anatomical and physiological studies of the growth of the nervous system in Amphibia. III. The floor plate of Amblystoma. J. comp. Neurol. 37, 37–69 (1924).

    Google Scholar 

  • Conel, J. L.: The postnatal development of the human cerebral cortex, vols. I–VIII. Cambridge: Harvard University Press 1939–1967.

    Google Scholar 

  • Del Cerro, M. P., and R. S. Snider: Studies on the developing cerebellum. Ultrastructure of the growth cones. J. comp. Neurol. 133, 341–362 (1968).

    Google Scholar 

  • Eayrs, J. T., and B. Goodhead: Postnatal development of the cerebral cortex in the rat. J. Anat. (Lond.) 93, 385–402 (1959).

    Google Scholar 

  • Gehuchten, A. van: A propos de l'état Moniliforme des neurones. Névraxe 1, 139–150 (1900).

    Google Scholar 

  • Godina, G., e A. Barasa: Morfogenesi ed istogenesi della formazione ammonica. Z. Zell-forsch. 63, 327–355 (1964).

    Google Scholar 

  • Harrison, R. G.: The outgrowth of the nerve fiber as a mode of protoplasmic movement. J. exp. Zool. 9, 787–848 (1910).

    Google Scholar 

  • Hassler, R., and H. Stephan (eds.): Evolution of the forebrain. New York: Plenum Press 1967.

    Google Scholar 

  • Hauglie-Hanssen, E.: Intrinsic neuronal organization of the vestibular nuclear complex in the cat. A Golgi study. Ergebn. Anat. Entwickl-Gesch. 40, H. 5, 1–105 (1968).

    Google Scholar 

  • Held, H.: Die Entwicklung des Nervengewebes bei den Wirbeltieren. Leipzig: Johann Ambrosius Barth 1909.

    Google Scholar 

  • Himwich, W. A., and H. E. Himwich (eds.): Progress in brain research, Vol. 9, The developing brain. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Lafora, G. R.: Neoformaciones dendriticas en las neuronas y alteraciones de la neuroglia en el perro senil. Trab. Inst. Cajal Invest. biol. 12, 39–53 (1914).

    Google Scholar 

  • Lorente de Nó, R.: Anatomy of the eighth nerve. III. — General plan, of structure of the primary cochlear nuclei. Laryngoscope 43, 327–350 (1933).

    Google Scholar 

  • Mannen, H.: Arborisations dendritiques. Étude topographique et quantitative dans le noyau vestibulaire du chat. Arch. ital. Biol. 103, 197–219 (1965).

    Google Scholar 

  • Minkowski, A. (ed.): Regional development of the brain in early life. Oxford: Blackwell 1967.

    Google Scholar 

  • Morest, D. K.: The neuronal architecture of the medial geniculate body of the cat. J. Anat. (Lond.) 98, 611–630 (1964a).

    Google Scholar 

  • —: The laminar structure of the inferior colliculus of the cat. Anat. Rec. 148, 314 (1964b).

    Google Scholar 

  • —: Identification of homologous neurons in the posterolateral thalamus of cat and Virginia opossum. Anat. Rec. 151, 390 (1965).

    Google Scholar 

  • —: The cortical structure of the inferior quadrigeminal lamina of the cat. Anat. Rec. 154, 389–390 (1966).

    Google Scholar 

  • —: Growth of cerebral dendrites and synapses. Anat. Rec. 160, 516 (1968a).

    Google Scholar 

  • —: The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res. 9, 288–311 (1968b).

    Google Scholar 

  • —: The growth of synaptic endings in the mammalian brain: a study of the calyces of the trapezoid body. Z. Anat. Entwickl.-Gesch. 127, 201–220 (1968c).

    Google Scholar 

  • —: The differentiation of cerebral dendrites: a study of the post-migratory neuroblast in the medial nucleus of the trapezoid body. Z. Anat. Entwickl.-Gesch. 128, 271–289 (1969).

    Google Scholar 

  • —, and R. R. Morest: Perfusion-fixation of the brain with chrome-osmium solutions for the rapid Golgi method. Amer. J. Anat. 118, 811–832 (1966).

    Google Scholar 

  • Pierce, E. T.: Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. An autoradiographic study. J. comp. Neurol. 131, 27–53 (1967).

    Google Scholar 

  • Poliakov, G. I.: Some results of research into the development of the neuronal structure of the cortical ends of the analyzers in man. J. comp Neurol. 117, 197–212 (1961).

    Google Scholar 

  • Polyak, S.: The vertebrate visual system (ed. H. Klüver). Chicago: The University of Chicago Press 1957.

    Google Scholar 

  • Purpura, D. P., and J. P. Schadé (eds.): Progress in brain research, Vol. 4, Growth and maturation of the brain. Amsterdam: Elsevier 1964.

    Google Scholar 

  • Ramón y Cajal, S.: Histologie du système nerveux de l'homme et des vertébrés, vol I (1952 reprint). Madrid: Instituto Ramón y Cajal 1909.

    Google Scholar 

  • —: Histologie du système nerveux de l'homme et des vertébrés, vol. II (1955 reprint). Madrid: Instituto Ramón y Cajal 1911.

    Google Scholar 

  • —: Degeneration and regeneration of the nervous system (ed., transl. R. M. May), vols. I, II (1959 reprint). New York: Hafner 1928.

    Google Scholar 

  • —: Significación probable de las celulas nerviosas de cilindro-eje corto. Trab. Inst. Cajal Invest. biol. 44, 1–8 (1952).

    Google Scholar 

  • —: Studies on vertebrate neurogenesis (transl. L. Guth). Springfield: Ch. C. Thomas 1960.

    Google Scholar 

  • Ramón-Moliner, E.: An attempt at classifying nerve cells on the basis of their dendritic patterns. J. comp. Neurol. 119, 211–227 (1962).

    Google Scholar 

  • —: A source of error in the study of Golgi-stained material. Arch. ital Biol. 105, 139–148 (1967a).

    Google Scholar 

  • —: La différentiation morphologique des neurones. Arch. ital. Biol. 105, 149–188 (1967b).

    Google Scholar 

  • Ramón-Moliner, E.: The morphology of dendrites. In: The structure and function of nervous tissue (ed. G. H. Bourne), vol. I, Structure I, p. 205–264. New York: Academic Press 1968.

    Google Scholar 

  • —, and W. J. H. Nauta: The isodendritic core of the brain stem. J. comp. Neurol. 126, 311–336 (1966).

    Google Scholar 

  • Rasmussen, G. L.: Efferent fibers of the cochlear nerve and cochlear nucleus. In: Neural mechanisms of the auditory and vestibular systems (ed. G. L. Rasmusen and W. F. Windle), p. 105–115. Springfield: Ch. C. Thomas 1960.

    Google Scholar 

  • Romeis, B.: Mikroskopische Technik, 15. Aufl. München: Leibniz 1948.

    Google Scholar 

  • Sotelo, C., and S. L. Palay: The fine structure, of the lateral vestibular nucleus in the rat. I. Neurons and neuroglial cells. J. Cell Biol. 36, 151–179 (1968).

    Google Scholar 

  • Speidel, C. C.: In vivo studies of myelinated nerve fibers. Int. Rev. Cytol. 16, 173–231 (1964).

    Google Scholar 

  • Terrazas, R.: Notas sobre la neuroglía del cerebelo y el crecimiento de los elementos nerviosos. Rev. trim. micrográf. 2, 49–65 (1897).

    Google Scholar 

  • Warr, W. B.: Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exp. Neurol. 14, 453–474 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by U. S. Public Health Service Research Grant NB 06115.

With the technical aid of Mrs. R.R. Morest and of Miss P.E. Palmer. The author gratefully acknowledges the encouragement of Prof. S. L. Palay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morest, D.K. The growth of dendrites in the mammalian brain. Z. Anat. Entwickl. Gesch. 128, 290–317 (1969). https://doi.org/10.1007/BF00522529

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00522529

Key Words

Navigation