Skip to main content

“Classical” Yeast Biotechnology

  • Chapter
Saccharomyces

Part of the book series: Biotechnology Handbooks ((BTHA,volume 4))

Abstract

Yeast was probably the first microorganism to be exploited by humans, and the brewing of alcoholic beverages and the leavening of bread using yeast represent the oldest, and still the largest, biotechnologies. The earliest records of the use of yeast date to before 6000 B.C. when the Sumerians and Babylonians exploited the organism, albeit unconsciously, in the production of beer (Corran, 1975). The use of yeast to leaven bread by the production of carbon dioxide was developed at a much later date, in Egypt at ca. 4000 b.c. The ancient Egyptians extended their bread-making technology to the production of an acidic beer called boza or boozah from a lightly baked “loaf” of germinated grain. The production of distilled liquor probably originated in either China or the Middle East and was common throughout the known world by the 14th century a.d

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera, A., del Castillo, L., and Benitez, T., 1982, Alcohol and sucrose tolerant wine yeast strains, Cien. Biol. (Portugal) 7: 89–94.

    CAS  Google Scholar 

  • Aiba, S., Shoda, M., and Nagatani, M., 1968, Kinetics of product inhibition in alcohol fermentation, Biotechnol. Bioeng. 10: 845–864.

    Article  CAS  Google Scholar 

  • Andreasen, A. A., and Stier, T. J. B., 1953, Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in defined medium, J. Cell. Comp. Physiol. 41: 23–27.

    Article  CAS  Google Scholar 

  • Andreasen, A. A., and Stier, T. J. B., 1954, Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in defined medium, J. Cell. Comp. Physiol. 43: 271–277.

    Article  CAS  Google Scholar 

  • Arsdell, J. N., Kivok, S., Schweickart, V. L., Ladner, M. B., Gelfand, D. H., and Innis, M. A., 1987, Cloning, characterization and expression in Saccharomyces cerevisiae of endoglucanase I from Trichoderma reesei, BiolTechnology 5: 60–64.

    Article  Google Scholar 

  • Astolfi Filho, S., Galembeck, E. V., Faria, J. B., and Schenberg Frascino, A. C., 1986, Stable yeast transformants that secrete functional a-amylase encoded by cloned mouse pancreatic cDNA, Bio/Technology 4: 311–315.

    Article  CAS  Google Scholar 

  • Ault, R. G., Hampton, A. N., Newton, R., and Roberts, R. H., 1966. Biological and biochemical aspects of tower fermentation, J. Inst. Brew 75: 260–277.

    Article  Google Scholar 

  • Beavan, M. J., Belk, D. M., Stewart, G. G., and Rose, A. H., 1979, Changes in electrophoretic mobility and lytic enzyme activity associated with development of flocculating in Saccharomyces cerevisiae, Can. J. Microbiol. 23: 68–74.

    Google Scholar 

  • Boel, E., Hjort, I., Svensson, B., Norris, F., Norris, K. E., and Fiil, N. P., 1984, Glucoamylases El and E2 from Aspergillus niger are synthesised from two different but closely related mRNAs, EMBO J. 3: 1097–1102.

    PubMed  CAS  Google Scholar 

  • Brown, S. W., 1983, Ethanol tolerance in the yeast Saccharomyces. Ph.D. thesis, University of Kent at Canterbury.

    Google Scholar 

  • Brown, S. W., and Oliver, S. G., 1982a, The effect of temperature on the ethanol tolerance of the yeast Saccharomyces uvarum, Biotechnol. Lett. 4: 269–274.

    Article  CAS  Google Scholar 

  • Brown, S. W., and Oliver, S. G., 1982b, Isolation of ethanol tolerant mutants of yeast by continuous selection, Eur. J. Appl. Microbiol. Biotechnol. 16: 119–122.

    Article  Google Scholar 

  • Brown, S. W., Oliver, S. G., Harrison, D. E. F., and Righelato, R. C., 1981, Ethanol inhibition of yeast growth and fermentation: Differences in the magnitude and complexity of the effect, Eur. J. Appl. Microbiol. Biotechnol. 11 :151–155.

    Google Scholar 

  • Brown, S. W., Sugden, D. A., and Oliver, S. G., 1984, Ethanol production and tolerance in grade and petite yeast, J. Chem. Technol. Biotechnol. 34 (13): 116–120.

    Google Scholar 

  • Burrows, S., 1979, Bakers’ yeast, Econ. Microbiol. 4: 31–64.

    Google Scholar 

  • Cantwell, B. A., Brazil, G., Murphy, N., and McConnell, 1986, Comparison of expression of the endo-ß-1,3–1,4-glucanase gene from Bracillus subtilis in Sacchromyces cerevisiae from the CYC1 and ADH1 promoters, Curr. Genet. 11: 65–70.

    Article  PubMed  CAS  Google Scholar 

  • Carioca, J. O. B., 1984, Potential da biomassa, in: Biomassa, Fundamentos and Aplicacoes technologias ( J. O. B. Carioca and H. L. Arora, eds.), Universidade Federal do Ceara e Ministerio do Interior, Fortazela, Brazil, pp. 65–77.

    Google Scholar 

  • Colonna, W. J., and Magee, P. T., 1978, Glycogenolytic enzymes in sporulating yeast, J. Bacteriol. 134: 844–853.

    PubMed  CAS  Google Scholar 

  • Corran, H. S., 1975, A History of Brewing, David and Charles, London.

    Google Scholar 

  • Courts, M. W., 1961, British patent 872, 391–872, 400.

    Google Scholar 

  • Coutts, M. W., 1966, The many facets of continuous fermentation, Proc. Australian Section Inst. Brew. (Ninth Convention), pp. 1–8, Institute of Brewing, Sydney.

    Google Scholar 

  • Cysewski, G. R., and Wilke, C. R., 1976, Utilization of cellulosic materials through enzymatic hydrolysis. I. Fermentation of hydrolysate to ethanol and single-cell protein, Biotechnol. Bioeng. 18: 1297–1313.

    Article  PubMed  CAS  Google Scholar 

  • Dykhuizen, D. E., and Hard, D. L., 1983, Selection in chemostats, Microbiol. Rev. 47: 150168.

    Google Scholar 

  • Echeverrigaray, S. L., 1983, Estabilidade Genética e Heterose em Hybridos Interspecificos de Leveduras. M.Sc. thesis, Universidade de Sao Paulo, Piracicaba, Brazil.

    Google Scholar 

  • Erratt, J. A., and Stewart, G. G., 1978, Genetic and biochemical studies of yeast strains able to utilise dextrins, J. Am. Soc. Brew Chem. 36: 151–161.

    CAS  Google Scholar 

  • Errede, B., Cardillo, T. S., Weyer, G., and Sherman, F., 1980, ROAM mutations causing increased expression of yeast genes: Their activation by signals directed toward conjugation functions and their formation by insertion of Tyl repetitive elements, Cell 45: 593–602.

    Google Scholar 

  • Ferenczy, L., and Kucsera, J., 1985, Gene transfer via chemically inactivated protoplasts of yeasts, Proc. 10th International Specialized Symposium on Yeasts (Varna), p. 103, Institute of Molecular Biology, Sofia.

    Google Scholar 

  • Fogarty, W. M., and Kelly, C. T., 1980, Amylases, amyloglucosidases and related glucanases, in: Microbial Enzymes and Bioconversions ( A. H. Rose, ed.), Academic Press, New York, pp. 115–165.

    Google Scholar 

  • Fogel, S., and Welch, J. W., 1982, Tandem gene amplification mediates copper resistance in yeast, Proc. Natl. Acad. Sci. USA. 79: 5342–5346.

    Article  PubMed  CAS  Google Scholar 

  • Galembeck, E. V., Fernandes, B. L., Costa, S. O. P., and Schenberg Frascino, A. C., 1982, Fusion of protoplasts of different yeast genera: Saccharomyces and Lipomyces, Microb. Genet. Bull. p. 524.

    Google Scholar 

  • Goodey, A. R., and Tubb, R. S.., 1982, Genetic and biochemical analysis of the ability of Saccharomyces cerevisiae to decarboxylate cinnamic acids, J. Gen. Microbiol. 128: 2615 2620.

    Google Scholar 

  • Gray, W. D., 1941, Studies on alcohol tolerance of yeasts, J. Bacteriol. 42: 561–574.

    PubMed  CAS  Google Scholar 

  • Gunge, N., and Nakatomi, Y., 1972, Genetic mechanisms of rare matings of the yeast Saccharomyces cerevisiae heterozygous for mating type, Genetics 70: 41–58.

    PubMed  CAS  Google Scholar 

  • Hall, J. F., 1970, The use of Difco WLN agar for demonstration of the instability of strains of Sacch. carlsbergensis, J. Inst. Brew. 76: 522–523.

    Google Scholar 

  • Harder, W., Kuenen, J. G., and Matin, A. A., 1977, Microbial selection in continuous culture, J. Appl. Bacteriol. 43: 1–24.

    Article  PubMed  CAS  Google Scholar 

  • Hayashida, S., Der Fong, D., and Hongo, M., 1975, Mechanism of formation of high concentration alcohol in sake brewing. X. Physiological properties of yeast cells grown in proteolipid-supplemented medium, Agr. Biol. Chem. 39: 1025–1031.

    Article  CAS  Google Scholar 

  • Henderson, R. C. A., Cox, B. S., and Tubb, R. S., 1985, Transformation of brewing yeasts with a plasmid containing the gene for copper resistance, Curr. Genet. 9: 133138.

    Google Scholar 

  • Hinchliffe, E., and Box, W. G., 1984, Expression of the cloned endo-1,3–1,4-B-glucanase gene of Bacillus subtilis in Saccharomyces cerevisiae, Curr. Genet. 8: 471–475.

    Article  CAS  Google Scholar 

  • Hockney, R. C., and Freeman, R. F., 1980, Construction of polysaccharide-degrading brewing yeast by protoplast fusion, in: Advances in Protoplast Research ( L. Ferenczy and G. Farkas, eds.), Pergamon Press, Oxford, pp. 139–144.

    Google Scholar 

  • Hodgson, J. A., Berry, D. R., and Johnston, J. R., 1985, Discrimination by heat and proteinase treatments between flocculent phenotypes conferred on Saccharomyces cerevisiae by the gene FLOT and FLO5, J. Gen. Microbiol. 131: 3219–3227.

    PubMed  CAS  Google Scholar 

  • Holmberg, S., 1978, Isolation and characterisation of a polypeptide absent from non- flocculent mutants of Saccharomyces cerevisiae, Carlsberg Res. Commun. 43: 401–413.

    Article  CAS  Google Scholar 

  • Holmberg, S., and Kielland-Brandt, M. C., 1978, A mutant of Saccharomyces cerevisiae temperature sensitive for flocculation: Influence of oxygen and respiratory deficiency on flocculence, Carlsberg Res. Commun. 43: 401–413.

    Article  CAS  Google Scholar 

  • Holzberg, I., Finn, R. K., and Steinkraus, K. H., 1967, A kinetic study of the alcohol fermentation of grape juice, Biotechnol. Bioeng. 9: 413–427.

    Article  CAS  Google Scholar 

  • Hough, J. S., 1985, The Biotechnology of Malting and Brewing, Cambridge University Press, Cambridge.

    Google Scholar 

  • Innis, M. A., Holland, M. J., McCabe, P. C., Cole, G. E., Wittmann, V. P., Tal, R., Watt, K. W. K., Gelfand, D. H., Holland, J. P., and Meade, J. H., 1985, Expression, glycosylation and secretion of an Aspergillus glucoamylase by Saccharomyces cerevisiae, Science 228: 21–26.

    Article  PubMed  CAS  Google Scholar 

  • Ismail, A. A., and Ali, A. M. M., 197la, Selection of high ethanol-yielding Saccharomyces. I. Ethanol tolerance and the effect of training in Saccharomyces cerevisiae Hansen, Folia Microbiol. 16: 350–354.

    Google Scholar 

  • Ismail, A. A., and Ali, A. M. M., 1971b, selection of high ethanol-yielding Saccharomyces. II. Genetics of ethanol tolerance, Folia Microbioll 16: 350–354.

    Google Scholar 

  • Jackson, E. A., Ballance, G. M., and Thomsen, K. K., 1986, Construction of a yeast vector directing the synthesis and release of barley (1–3,1–4)-13-glucanase, Carlsberg Res. Commun. 51: 445–458.

    Article  CAS  Google Scholar 

  • Jayatissa, P. M., and Rose, A. H., 1976, Role of wall phosphomannan in flocculation of Saccharomyces cerevvssiae, J. Gen. Microbial. 35: 61–68.

    Google Scholar 

  • Jimenez, A., and Davies, J., 1980, Expression of a transposable antibiotic resistance element in Saccharomyces, Nature 287: 869–871.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, J. R., and Reader, H. P., 1983, Genetic control of flocculation, in: Yeast Genetics: Fundamental and Applied Aspects ( J. F. T. Spencer, D. M. Spencer, and H. R. W. Smith, eds.), Springer Verlag, New York, pp. 205–224.

    Chapter  Google Scholar 

  • Kielland-Brandt, M. C., Nilsson-Tillgren, N., Petersen, J. G. L., Holmberg, S., and Gjermansen, C., 1983, Approaches to the genetic analysis and breeding of brewer’s yeast, in: Yeast Genetics. Fundamental and Applied Aspects U. F. T. Spencer, D. M. Spencer, and A. R. W. Smith, eds.), Academic Press, New York, pp. 421–455.

    Google Scholar 

  • Knowles, J., Lehtinen, U., Nikkola, M., Pentilla, M., Suihko, M-L., Home, S., Vilpola, A., and Enari, T-M., 1986, Glucanolytic brewer’s yeast, Proc. 21 st Eur. Brew Cony. (Madrid), p. 37, Institute of Brewing, Madrid.

    Google Scholar 

  • Kodama, K., and Yoshikawa, K., 1977, Saké, Econ. Microbiol. 1:423–475. Lafon-Lafourcade, S., 1983, Wine and brandy, Biotechnology 5: 81–163.

    Google Scholar 

  • Lovgren, T., and Hautera, P., 1977, Maltose fermentation and leavening ability of bakers’ yeast, Eur. J. Appi. Microbiol. 4: 37–43.

    Article  CAS  Google Scholar 

  • Lyons, T. P., and Hough, J. S., 1970, Flocculation of brewer’s yeast, J. Inst. Brew 76: 564–571.

    Article  CAS  Google Scholar 

  • Lyons, T. P., and Hough, J. S., 1971, Further evidence for the cross-bridging hypothesis for flocculation of brewer’s yeast, J. Inst. Brew, 77: 300–305.

    Article  CAS  Google Scholar 

  • Maule, A. P., and Thomas, P. D., 1973, Strains of yeast lethal to brewery yeasts, J. Inst. Brew. 79: 137–141.

    Article  Google Scholar 

  • Meaden, P., Ogden, K., Bussey, H., and Tubb, R. S., 1985, ADEX gene conferring production of extracellular amyloglucosidase in yeast, Gene 34: 325–334.

    Article  PubMed  CAS  Google Scholar 

  • Miki, B. L. A., Poon, N. H., James, A. P., and Seligy, V. L., 1982, Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae, J. Bacteriol. 150: 878–889.

    PubMed  CAS  Google Scholar 

  • Mikola, J., Pietila, K., and Enari, T-M., 1972, Inactivation of malt peptidases during masking, J. Inst. Brew. 78: 384–388.

    Article  CAS  Google Scholar 

  • Mill, P. J., 1964, The nature of interactions between flocculent cells in the flocculation of Saccharomycés cerevisiae, J. Gen. Microbiol. 96: 165–174.

    Google Scholar 

  • Murakami, H., Sagama, H., and Takase, S., 1968, Non-productivity of aflatoxin by Japanese industrial strains of Aspergillus. III. Common characteristics of aflatoxin-producing strains, J. Gen. Appi. Microbiol. (Tokyo) 14: 251–262.

    Article  CAS  Google Scholar 

  • Murray, A. W., and Szostak, J. W., 1983, Construction of artificial chromosomes in yeast, Nature 305: 189–193.

    Article  PubMed  CAS  Google Scholar 

  • Niederberger, P., Aebi, M., Furter, R., Prantl, F., and Hutter, R., 1984, Expression of an artificial yeast TRP-gene cluster in yeast and Escherichia coli, Mol. Gen. Genet. 195: 48 1486.

    Google Scholar 

  • Nishihara, H., Toraya, T., and Fukui, S., 1977, Effect of chemical modification of cell surface components of a brewer’s yeast on the floc-forming ability, Arch. Microbiol. 150: 890–899.

    Google Scholar 

  • Nishihara, H., Toraya, T., and Fukui, S., 1982, Flocculation of all walls of brewer’s yeast and effects of metal ions, protein denaturants and enzyme treatments, Arch. Microbiol. 131: 112–115.

    Article  CAS  Google Scholar 

  • Oliver, S. G., 1984, Biological limits to ethanol production, Chem. Indust. 14:425–427. Oura, E., Soumalainen, H., and Viskari, R., 1979, Breadmaking, Econ. Microbial. 4: 88–146.

    Google Scholar 

  • Palamund, S. R., and Hardwick, W. A., 1969, Studies on the relative flavour importance of some beer constituents, Tech. Q. Master Brew. Assoc. Amer. 6: 117–128.

    Google Scholar 

  • Pentilla, M. E., Andre, L., Saloheimo, M., Lehtovaara, P., and Knowles, J. K. C., 1987, Expression of Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae, Yeast 3: 175–187.

    Article  Google Scholar 

  • Prasad, R., Niederberger, P., and Hutter, R., 1987, Tryptophan accumulation in Saccharomyces cerevisiae under the influence of an artificial yeast TRP gene cluster, Yeast 3: 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Preece, I. A., 1954, The Biochemistry of Brewing, Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Preece, I. A., and Hoggan, J., 1957, Carbohydrate modification during malting, Proceedings of the European Brewery Convention Congress, Elsevier, London, pp. 72–83.

    Google Scholar 

  • Righelato, R. C., 1980, Anaerobic fermentation: Alcohol production, Phil. Trans. Roy. Soc. B 295: 491–500.

    Article  CAS  Google Scholar 

  • Rose, A. H., 1984, Physiology of cell aggregation; flocculation by Saccharomyces cerevisiae as a model system, in: Microbial Adhesion and Aggregation ( K. C. Marshall, ed.), Spring-Verlag, Berlin, pp. 323–335.

    Chapter  Google Scholar 

  • Rothstein, S. J., Lazurus, C. M., Smith, W. E., Baulcombe, D. C., and Gatenby, A. A., 1984, Secretion of a wheat a-amylase expressed in yeast, Nature 308: 662–665.

    Article  CAS  Google Scholar 

  • Rubner, M., 1912, The physiology and nutrition of yeast during alcoholic fermentation, Arch. Physiol. 1: 1–392.

    Google Scholar 

  • Russell, I., Stewart, G. G., Reader, H. P., Johnston, J. R., and Martin, P. A., 1980, Revised nomenclature of genes that control yeast flocculation, J. Inst. Brew. 86: 120–121.

    Article  Google Scholar 

  • Sacco, M., Millet, J., and Aubert, J. P., 1984, Cloning and expression in Saccharomyces cerevisiae of a cellulase gene from Clostridium thermocellum, Ann. Microbiol. Inst. Pasteur 135: 485–488.

    Article  Google Scholar 

  • Schenberg Frascino, A. C., and Da Costa, S. O. P., 1987, Molecular approaches to Alcohol Biotechnology in Brazil, in: Critical Reviews in Biotechnology, Vol. 6 ( G. G. Stewart and I. Russell, eds.), CRC Press, Boca Raton, FL, pp. 323–355.

    Google Scholar 

  • Skipper, N., Sutherland, M., Davies, R. W., Kilburn, D., Miller, R. C., Jr., Warren, A., and Wong, R., 1985, Secretion of a bacterial cellulase from yeast, Science 230: 958–960.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, J. F. T., and Spencer, D. M., 1977, Hybridisation of non-sporulating strains of brewer’s and distiller’s yeasts, J. Inst. Brew. 83: 287–289.

    Article  Google Scholar 

  • Spencer, J. F. T., Land, P., and Spencer, D. M., 1981, The use of mitochondrial mutants in the isolation of hybrids obtained by protoplast fusion, Mol. Gen. Genet. 178: 65 1654.

    Google Scholar 

  • Stewart, G. G., 1981, The genetic manipulation of industrial yeast strains, Can. J. Microbial. 27: 973–990.

    Article  CAS  Google Scholar 

  • Stewart, G. G., Russell, I., and Garrison, I. F., 1975, Some considerations on the flocculation characteristics of ale and lager yeast strains, J. Int. Brew. 81: 248–257.

    Article  CAS  Google Scholar 

  • Stratford, M., and Keenan, M. H. J., 1987, Yeast flocculation: Kinetics and collision theory, Yeast 3: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Sugden, D. A., and Oliver, S. G., 1983, Reduced ethanol tolerance: One of the pleiotropic effects of the pep4.3 mutation in Saccharomyces cerevisiae, Biotechnol. Lett. 5: 419–422.

    Article  CAS  Google Scholar 

  • Tamaki, H., 1978, Genetic studies of ability to ferment starch in Saccharomyces gene polymorphism, Mol. Gen. Genet. 164: 205–209.

    Article  Google Scholar 

  • Taylor, N. W, and Orton, W. L., 1978, Aromatic compounds and sugars in flocculation of Saccharomyces cerevisiae, J. Inst. Brew. 84: 113–114.

    Article  CAS  Google Scholar 

  • Thomas, D. S., Hossack, J. A., and Rose, A. H., 1978, Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae, Arch. Microbiol. 117: 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen, K. K., 1983, Mouse a-amylase synthesised by Saccharomyces cerevisiae is released into the culture medium, Carlsberg Lab. Res. Commun. 48: 545–555.

    Article  CAS  Google Scholar 

  • Thorne, R. S. W., 1970, Yeast mutation during continuous culture, J. Inst. Brew. 76: 555–563.

    Article  CAS  Google Scholar 

  • Troyer, J. R., 1953, A relation between cell multiplication and alcohol tolerance in yeasts, Mycologia 45: 20–39.

    Google Scholar 

  • Tubb, R. S., 1986, Amylolytic yeasts for commercial applications, Trends Biotechnol. 4: 96–104.

    Article  Google Scholar 

  • Tubb, R. S., Brown, A. J. P., Searle, B. A., and Goodey, A. R., 1981, Development of new techniques for the genetic manipulation of brewing yeasts, in: Current Developments in Yeast Research ( G. G. Stewart and I. Russell, eds.), Pergamon Press, Oxford, pp. 775–779.

    Google Scholar 

  • Van Brunt, J., 1986, Fungi: The perfect host? Bio/Technology 4: 1057–1062.

    Article  Google Scholar 

  • Vogt, E., Jakob, L., Lemperle, E., and Weiss, E., 1974, Wein, Eugen Ulmer Verlag, Stuttgart.

    Google Scholar 

  • Watari, J., Takata, Y., Nishikawa, N., and Kamada, K., 1987, Cloning of a gene controlling yeast flocculence, Proceedings of the 21st European Brewing Convention (Madrid), pp. 537–544, Institute of Brewing, Madrid.

    Google Scholar 

  • Wilkie, D., and Mudd, R. C., 1981, Aspects of mitochondrial control of cell surface characteristics in Saccharomyces cerevisiae, in: Advances in Biotechnology: Current Developments in Yeast Research ( G. G. Stewart and I. Russell, eds.), Pergamon Press, Toronto, pp. 345–349.

    Google Scholar 

  • Wilson, J. J., Khachatourian, G. G., and Ingledew, W. M., 1982, Protoplast fusion in the yeast, Saccharomyces alluvius, Mol. Gen. Genet. 186: 95–100.

    Article  CAS  Google Scholar 

  • Yamashita, I., and Fukui, S., 1983a, Molecular cloning of a glucoamylase gene in the yeast Saccharomyces, Agric. Biol. Chem. 47: 2689–2692.

    Article  CAS  Google Scholar 

  • Yamashita, S., and Fukui, S., 1983b, Mating signals control expression of both starch fermentation genes and a novel flocculation gene FLOG in the yeast Saccharomyces, Agric. Biol. Chem. 47: 2889–2896.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oliver, S.G. (1991). “Classical” Yeast Biotechnology. In: Tuite, M.F., Oliver, S.G. (eds) Saccharomyces. Biotechnology Handbooks, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2641-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2641-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2643-2

  • Online ISBN: 978-1-4899-2641-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics