Skip to main content

Bacterial Responses to Soil Stimuli

  • Chapter
Starvation in Bacteria

Abstract

Bacteria in the environment are subjected to many different stress factors such as nutrient, oxygen, or water limitations, temperature and pH extremes, UV irradiation, etc., which affect their physiological states. In particular, nutrient limitation and fluctuating nutrient availability are major stress factors in an environment such as soil. Hence, bacterial cells in soil may experience long periods of nongrowth next to sparse periods of growth. In fact, nongrowth may be the rule rather than the exception for cells in soil (Matin et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1972, Introduction to Soil Microbiology, 2nd ed., Wiley, New York.

    Google Scholar 

  • Atkinson, D., 1990, Influence of root system morphology and development on the need for fertilizers and the efficiency of use, in: Crops as Enhancers of Nutrient Use (V. C. Balizer and R. R. Durean, eds.), Academic Press, New York, pp. 411–451.

    Chapter  Google Scholar 

  • Bae, H. C., Cota-Robles, E. H., and Casida, L. E., Jr., 1972, Microflora of soil as viewed by transmission electron microscopy, Appl. Microbiol. 23: 637–648.

    PubMed  CAS  Google Scholar 

  • Bakken, L. R., and Olsen, R. A., 1989, DNA content of soil bacteria of different cell size, Soil Biol. Biochem. 21: 789–793.

    Article  Google Scholar 

  • Bashan, Y., and Levanovy, H., 1989, Effect of the root environment on proton efflux in wheat roots. Plant Soil 119: 191–197.

    Article  CAS  Google Scholar 

  • Bauer, W. D., and Caetano-Anollés, G., 1991, Chemotaxis, induced gene expression and competitiveness in the rhizosphere, in: The Rhizosphere and Plant Growth (D. L. Keister and P B. Cregan, eds.), Kluwer, The Netherlands, pp. 155–162.

    Chapter  Google Scholar 

  • Beck, S. M., and Gilmour, C. M., 1983, Role of wheat root exudates in associative nitrogen fixation, Soil Biol. Biochem. 15: 33–38.

    Article  Google Scholar 

  • Bhagwat, A. A., and Keister, D. L., 1992, Identification and cloning of Bradyrhizobium japonicum genes expressed strain selectively in soil and rhizosphere, Appl. Environ. Microbiol. 58: 1490–1495.

    PubMed  CAS  Google Scholar 

  • Boylen, C. W., and Ensign, J. C., 1970, Intracellular substrates for endogenous metabolism during long-term survival of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103: 578–587.

    PubMed  CAS  Google Scholar 

  • Boylen, C. W., and Mulks, M. H., 1978, The survival of coryneform bacteria during periods of prolonged nutrient starvation, J. Gen. Microbiol. 105: 323–334.

    Article  CAS  Google Scholar 

  • Chan, E. C. S., Katznelson, H., and Rouatt, J. W., 1962, The influence of soil and root extracts on the associative growth of selected soil bacteria, Can. J. Microbiol. 9: 187–197.

    Article  Google Scholar 

  • Chang, M., Hadero, A., and Crawford, I. P., 1989, Sequence of the Pseudomonas aeruginosa trpI activator gene and relatedness of trpl to other prokaryotic regulatory genes, J. Bacteriol. 171: 172–183.

    PubMed  CAS  Google Scholar 

  • Chet, I., Zilberstein, Y., and Henis, Y., 1973, Chemotaxis of Pseudomonas lachrymans to plant extracts and to water droplets collected from the leaf surfaces of resistant and susceptible plants, Physiol. Plant Pathol. 3: 473–479.

    Article  CAS  Google Scholar 

  • Cho, B. C., and Azam, F., 1988, Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332: 441–443.

    Article  CAS  Google Scholar 

  • Colwell, R. R., Brayton, P. R., Grimes, D. J., Roszak, D. B., Huq, S. A., and Palmer, L. ML, 1985, Viable but non-culturable Vibrio cholerae and related pathogens in the environment: Implications for release of genetically engineered microorganisms, Bio/Technology 3: 817–820.

    Article  Google Scholar 

  • Compeau, G., Jadoun Al-Achi, B., Platsouka, E., and Levy, S. B., 1988, Survival of rifampinresistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems, Appl. Environ. Microbiol. 54: 2432–2438.

    PubMed  CAS  Google Scholar 

  • Contreras, A., Molin, S., and Ramos, J., 1991, Conditional-suicide containment system for bacteria which mineralize aromatics, Appl. Environ. Microbiol. 57: 1504–1508.

    PubMed  CAS  Google Scholar 

  • Curl, A. E., and Truelove, B., 1986, The Rhizosphere, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • De Weger, L. A., van der Vlugt, C. I. M., Wijfjes, A. H. M., Bakker, P. A. H. M., Schippers, B., and Lugtenberg, B., 1987, Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots, J. Bacteriol. 169: 2769–2773.

    PubMed  Google Scholar 

  • Dharmatilake, A. J., and Bauer, W. D., 1992, Chemotaxis of Rhizobium meliloti towards nodulation gene-inducing compounds from Alfalfa roots, Appl. Environ. Microbiol. 58: 1153–1158.

    PubMed  CAS  Google Scholar 

  • Dingwall, A., Zhuang, W. Y, Quon, K., and Shapiro, L., 1992, Expression of an early gene in the flagellar regulatory hierarchy is sensitive to an interruption in DNA replication, J. Bacteriol. 174: 1760–1768.

    PubMed  CAS  Google Scholar 

  • Dorman, C. J., 1991, DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria, Infect. Immun. 59: 745–749.

    PubMed  CAS  Google Scholar 

  • Dupler, M., and Baker, R., 1984, Survival of Pseudomonas putida, a biological control agent, in soil. Phytopathol. 74: 195–200.

    Article  Google Scholar 

  • Foster, R. C., 1988, Microenvironments of soil microorganisms. Biol. Fertil. Soils 6: 189–203.

    Article  Google Scholar 

  • Gottschal, J. C., 1992, Substrate capturing and growth in various ecosystems, J. Appl. Bacteriol. Symp. Suppl. 73:39S–48S.

    Article  Google Scholar 

  • Gray, T. R. G., and Williams, S. T, 1971, Microbial productivity in soil, Symp. Soc. Gen. Microbiol. 21: 255–286.

    Google Scholar 

  • Gregory, P. J., and Atwell, B. J., 1991, The fate of carbon in pulse-labelled crops of barley and wheat, Plant Soil 136: 205–213.

    Article  CAS  Google Scholar 

  • Griffiths, B. S., 1990, A comparison of microbial-feeding nematodes and protozoa in the rhizosphere of different plants, Biol. Fertil. Soils 9: 83–88.

    Article  Google Scholar 

  • Groat, R. G., and Matin, A., 1986, Synthesis of unique proteins at the onset of carbon starvation in Escherichia coli, J. Ind. Microbiol. 1: 69–73.

    Article  CAS  Google Scholar 

  • Habte, M., and Alexander, M., 1975, Protozoa as agents responsible for the decline ofXanthomonas campestris in soil, Appl. Microbiol. 29: 159–164.

    PubMed  CAS  Google Scholar 

  • Hartwig, U. A., Joseph, C. M., and Phillips, D. A., 1991, Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti, Plant Physiol. 95: 797–803.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, T., and Hattori, R., 1976, The physical environment in soil microbiology: An attempt to extend principles of microbiology to soil microorganisms, CRC Crit. Rev. Microbiol. 4: 423–461.

    Article  PubMed  CAS  Google Scholar 

  • Heijnen, C. E., Hok-A-Hin, C. H., and van Elsas, J. D., 1993, Root colonization by Pseudomonas fluorescens introduced into soil amended with bentonite. Soil Biol. Biochem. 25: 239–246.

    Article  Google Scholar 

  • Heijnen, C. E., van Elsas, J. D., Kuikman, P. J., and van Veen, J. A., 1988, Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa, Soil Biol. Biochem. 20: 483–488.

    Article  Google Scholar 

  • Helman, J. D., 1991, Alternative sigma factors and the regulation of flagellar gene expression, Mol. Microbiol. 5: 2875–2882.

    Article  Google Scholar 

  • Helman, J. D., and Chamberlin, M. J., 1987, DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative σ factor, Proc. Natl. Acad. Sci. USA 84: 6422–6424.

    Article  Google Scholar 

  • Hissett, R., and Gray, T. R. G., 1976, Microsites and time changes in soil microbe ecology, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. MacFadyen, eds.), Oxford University Press, London, pp. 23–39.

    Google Scholar 

  • Ishida, Y., and Kadota, H., 1981, Growth patterns and substrate requirements of naturally occurring obligate oligotrophs, Microb. Ecol. 7: 123–130.

    Article  CAS  Google Scholar 

  • Keith, H., Oades, J. M., and Martin, J. K., 1986, Input of carbon to soil from wheat plants, Soil Biol. Biochem. 18: 445–449.

    Article  CAS  Google Scholar 

  • Kilbertus, G., 1980, Etude des microhabitats contenus dans les agregats du sol; leur reaction avec la biomasse bacterienne et la taille des procaryotes presents, Rev. Ecol. Biol. Sol 17: 543–557.

    Google Scholar 

  • Kraffczyck, L, Trolldenier, G., and Beringer, H., 1984, Soluble root exudates of maize: Influence of potassium supply and rhizosphere microorganisms, Soil Biol. Biochem. 16: 315–322.

    Article  Google Scholar 

  • Lam, S. T., Ellis, D. M., and Ligon, J. M., 1991, Genetic approaches for studying rhizosphere colonization, in: The Rhizosphere and Plant Growth (D. L. Kleister and P. B. Cregan, eds.), Kluwer, The Netherlands, pp. 43–50.

    Chapter  Google Scholar 

  • Lange, R., and Hengge-Aronis, R., 1991a, Identification of a central regulator of stationary-phase gene expression in Escherichia coli, Molec. Microbiol. 5: 49–59.

    Article  CAS  Google Scholar 

  • Leong, J., 1986, Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Ann. Rev. Phytopathol. 24: 187–209.

    Article  CAS  Google Scholar 

  • Liang, L. N., Sinclair, J. L., Mallory, L. M., and Alexander, M., 1982, Fate in model ecosystems of microbial species of potential use in genetic engineering, Appl. Environ. Microbiol. 44: 708–714.

    PubMed  CAS  Google Scholar 

  • Little, C., Fraley, C., McCann, M., and Matin, A., 1991, Use of bacterial stress promoters to induce biodegradation under conditions of environmental stress, in: Proceedings of In Situ and Onsite Bioreclamation, Battelle Symposium, San Diego (R. E. Hichee, ed.), Butterworths, London, pp. 493–498.

    Google Scholar 

  • Lynch, J. M., and Whipps, J. M., 1990, Substrate flow in the rhizosphere, Plant Soil 129: 1–10.

    Article  CAS  Google Scholar 

  • McCann, M. P., Kidwell, J. P, and Matin, A., 1991, The putative σ factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli, J. Bacterial. 173: 4188–4194.

    CAS  Google Scholar 

  • Martin, J. K., 1977, Effect of soil moisture on the release of organic carbon from wheat roots, Soil Biol. Biochem. 9: 303–304.

    Article  CAS  Google Scholar 

  • Matin, A., 1992, Physiology, molecular biology and applications of the bacterial starvation response, J. Appl. Bacteriol. Symp. Suppl. 73:49S–57S.

    Article  Google Scholar 

  • Matin, A., Auger, E. A., Blum, P. H., and Schultz, J. E., 1989, Genetic basis of starvation survival in nondifferentiating bacteria, Annu. Rev. Microbiol. 43: 293–316.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. H., 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mizuno, T., and Mizushima, S., 1990, Signal transduction and gene regulation through the phosphorylation of two regulatory components: The molecular basis for the osmotic regulation of the porin genes, Mol. Microbiol. 4: 1077–1082.

    Article  PubMed  CAS  Google Scholar 

  • Morita, R. Y., 1988, Bioavailability of energy and its relationship to growth and starvation survival in nature, Can J. Microbiol. 34: 436–441.

    Article  CAS  Google Scholar 

  • Mulligan, J. T., and Long, S. R., 1985, Induction of Rhizobium nodC expression by plant exudate requires nodD, Proc. Natl. Acad. Sci. USA 82: 6609–6613.

    Article  PubMed  CAS  Google Scholar 

  • Munro, P. M., Gauthier, M. J., Breittmayer, V. A., and Bongiovanni, J., 1989, Influence of osmoregulation processes on starvation survival of Escherichia coli in seawater, Appl. Environ. Microbiol. 55: 2017–2024.

    PubMed  CAS  Google Scholar 

  • Narberhaus, F., Giebeler, K., and Bahl, H., 1992, Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE,dnaJ, and a new heat shock gene, J. Bacteriol. 174: 3290–3299.

    PubMed  CAS  Google Scholar 

  • Nelson, L. M., and Parkinson, D., 1978, Effect of starvation on survival of three bacterial isolates from an arctic soil, Can. J. Microbiol. 24: 1460–1467.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E. I., 1985, The rhizosphere: Carbon sources and microbial populations, in: Ecological Interactions in Soil (A. H. Fitter, ed.), Blackwell, Oxford, pp. 107–121.

    Google Scholar 

  • Nijhuis, E. H., Maat, M. J., Zeegers, I., Waalwijk, C., and van Veen, J. A., 1992, Selection of bacteria suitable for introduction into the rhizosphere of grass, Soil Biol. Biochem., in press.

    Google Scholar 

  • Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine Vibrio, Appl. Environ. Microbiol. 32: 616–622.

    Google Scholar 

  • Östling, J., Goodman, A., and Kjelleberg, S., 1991, Behaviour of IncP-1 plasmids and a miniMu transposon in a marine Vibrio sp.: Isolation of starvation inducible lac operon fusions, FEMS Microbiol. Ecol. 86: 83–94.

    Article  Google Scholar 

  • Paul, E. A., and Clark, E E., 1989, Soil Biology and Biochemistry, Academic Press, New York.

    Google Scholar 

  • Poindexter, J. S., 1981, Oligotrophy, Adv. Microb. Ecol. 5: 63–89.

    Article  CAS  Google Scholar 

  • Postma, J., and van Veen, J. A., 1990, Habitable pore space and survival of Rhizobium leguminosarum biovar trifolii introduced into soil. Microb. Ecol. 19: 149–161.

    Article  Google Scholar 

  • Postma, J., van Elsas, J. D., Govaert, J. M., and van Veen, J. A., 1988, The dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil as determined by imrnunofluorescence and selective plating techniques, FEMS Microbiol. Ecol. 53: 251–260.

    Google Scholar 

  • Rahme, L. G., Mindrinos, M. N., and Panopoulos, N. J., 1992, Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv phaseolicola, J. Bacteriol. 174: 3499–3507.

    PubMed  CAS  Google Scholar 

  • Robertson, J. G., and Batt, R. D., 1973, Survival of Nocardia corallina and degradation of constituents during starvation, J. Gen. Microbiol. 78: 109–117.

    Article  CAS  Google Scholar 

  • Roche, P, Debellé, F., Maillet, F., Lerouge, P., Faucher, C., Trachet, G., Dénarié, J., and Promé, J., 1991, Molecular basis of symbiotic host specificity in Rhizobiwn meliloti: nodR and nodPQ genes encode the sulfation of lipo-oligosaccharides signals, Cell 67: 1131–1143.

    Article  PubMed  CAS  Google Scholar 

  • Roszak, D. B., and Colwell, R. R., 1987, Survival strategies of bacteria in the natural environment, Microbiol. Rev. 51: 365–379.

    PubMed  CAS  Google Scholar 

  • Shields, J. A., Paul, E. A., Lowe, W. E., and Parkinson, D., 1973, Turnover of microbial tissue in soil under field conditions, Soil Biol. Biochem. 5: 753–764.

    Article  Google Scholar 

  • Simon, R., Quandt, J., and Klipp, W., 1989, New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gramnegative bacteria, Gene 80: 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Smiles, D. E., 1988, Aspects of the physical environment of soil organisms, Biol. Fertil. Soils 6: 204–215.

    Article  Google Scholar 

  • Starnbach, M. N., and Lory, S., 1992, The fliA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis, Mol. Microbiol. 6: 459–469.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, I. P., Young, C. S., Cook, K. A., Lethbridge, G., and Burns, R. G., 1990, Survival of two ecologically distinct bacteria (Flavobacterium and Arthrobacter) in implanted and rhizosphere soils, Soil Biol. Biochem. 22: 1029–1037.

    Article  Google Scholar 

  • Torrella, F., and Morita, R. Y., 1981, Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol. 41: 518–527.

    PubMed  CAS  Google Scholar 

  • Tormo, A., Almiró, M., and Kolter, R., 1990, surA, an Escherichia coli gene essential for survival in stationary phase, J. Bacterial. 172: 4339–4347.

    CAS  Google Scholar 

  • Trofymow, J. A., Coleman, D. C., and Cambardella, C., 1987, Rates of rhizodeposition and ammonium depletion in the rhizosphere of axenic oat roots, Plant Soil 97: 333–344.

    Article  CAS  Google Scholar 

  • Van Elsas, J. D., and Trevors, J. T., 1990, Plasmid transfer to indigenous bacteria in soil and rhizosphere: Problems and perspectives, in: Bacterial Genetics in Natural Environments (J. C. Fry and M. J. Day, eds.), Chapman & Hall, London, pp. 188–199.

    Chapter  Google Scholar 

  • Van Elsas, J. D., Dijkstra, A. F., Govaert, J. M., and van Veen, J. A., 1986, Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots, FEMS Microbiol. Ecol. 38: 151–160.

    Article  Google Scholar 

  • Van Elsas, J. D., Trevors, J. T., and van Overbeek, L. S., 1991a, Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms, Biol. Fertil. Soils 10: 249–255.

    Article  Google Scholar 

  • Van Elsas, J. D., van Overbeek, L. S., Feldman, A. M., Dullemans, A. M., and de Leeuw, O., 1991b, Survival of a genetically engineered Pseudomonas fluorescens in soil in competition with the parent strain, FEMS Microbiol. Ecol. 85: 53–64.

    Article  Google Scholar 

  • Van Elsas, J. D., Heijnen, C. E., and van Veen, J. A., 1991c, The fate of introduced genetically engineered microorganisms (GEMs) in soil, in microcosms and the field: Impact of soil textural aspects, in: Biological Monitoring of Genetically Engineered Plants and Microbes (D. R. MacKenzie and S. C. Henry, eds.), Agricultural Research Institute, Bethesda, pp. 67–79.

    Google Scholar 

  • Van Overbeek, L. S., van Elsas, J. D., Trevors, J. T., and Starodub, M. E., 1990, Long-term survival of and plasmid stability in Pseudomonas fluorescens and Klebsiella species and appearance of nonculturable cells in agricultural drainage water, Microb. Ecol. 19: 239–249.

    Article  Google Scholar 

  • Van Rhijn, P, Vanstockem, M., van der Leyden, J., and de Mot, R., 1990, Isolation of behavioral mutants of Azospirillum brasilense by using Tn5 lacZ, Appl. Environ. Microbiol. 56: 990–996.

    PubMed  Google Scholar 

  • Van Veen, J. A., and van Elsas, J. D., 1986, Impact of soil structure and texture on activity and dynamics of the soil microbial population, in: Perspectives in Microbial Ecology (E Megusar and M. Gantar, eds.), Slovena Society for Microbiology, Ljubljana, pp. 481–488.

    Google Scholar 

  • Waalwijk, C., Dullemans, A., and Maat, C., 1991, Construction of a bioinsecticidal rhizosphere isolate of Pseudomonas fluorescens, FEMS Microbiol. Lett. 77: 257–264.

    Article  CAS  Google Scholar 

  • Wessendorf, J., and Lingens, F., 1989, Effect of culture and soil conditions on survival of Pseudomonas fluorescens R1 in soil, Appl. Microbiol. Biotechnol. 31: 97–102.

    Article  CAS  Google Scholar 

  • Wigs, J., Gilman, M., and Chamberlin, M. J., 1981, Heterogeneity of RNA polymerase in Bacillus subtilis: Evidence for an additional sigma factor in vegetative cells, Proc. Natl. Acad. Sci. USA 78: 2762–2766.

    Article  Google Scholar 

  • Williams, S. T., 1985, Oligotrophy in soil: Fact or fiction? in: Bacteria in the Natural Environment: The Effect of Nutrient Conditions (M. Fletcher and G. Floodgate, eds.), Academic Press, New York, pp. 81–110.

    Google Scholar 

  • Winans, S. C., 1990, Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth medium, J. Bacteriol. 172: 2433–2438.

    PubMed  CAS  Google Scholar 

  • Zechman, J. M., and Casida, L. E., Jr., 1982, Death of Pseudomonas aeruginosa in soil, Can. J. Microbiol. 28: 788–794.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Elsas, J.D., van Overbeek, L.S. (1993). Bacterial Responses to Soil Stimuli. In: Kjelleberg, S. (eds) Starvation in Bacteria. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2439-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2439-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44430-2

  • Online ISBN: 978-1-4899-2439-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics