Skip to main content

The Molecular Basis of Adaptation in Drosophila

The Role of Cytochrome P450s

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 30))

Abstract

In the field of population genetics, genetic variation is of primary importance because it serves as the basis for evolutionary adaptation. Adaptation, another primary concern in population genetics, and one where Bruce Wallace has made numerous scientific contributions, refers to the integration of the phenotype into its environment (Hartl and Clark, 1989). With the advent of the techniques of molecular genetics, we are now able to look at genetic variation at the DNA level. Although this higher resolution provides a wealth of information and, in some cases, can shed light on previously intractable questions, it is certainly one step more removed from the phenotype. It also can quickly become overwhelming: regulatory variation versus variation in structural genes, and the complexity of mapping genotypes into phenotypes especially for quantitative traits, all in order to get at the genetic basis of an adaptation, seems impossibly intricate. The question then is, how can we best make progress in this scientific arena? One reasonable solution is to very carefully select an amiable system in which to work. Such a system should involve an organism that is genetically tractable and genes whose function in a natural environment can be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agosin, M., 1985, Role of microsomal oxidations in insecticide degradation, in: Comprehensive Insect Physiology, Biochemistry, and Pharmacology (G. A. Kerkut and L. I. Gilbert, eds.), Vol. 12, pp. 647–712, Pergamon Press, Oxford.

    Google Scholar 

  • Ahmad, S., 1983, Mixed-function oxidase activity in a generalist herbivore in relation to its biology, food plants, and feeding history, Ecology 64:235–243.

    Article  CAS  Google Scholar 

  • Ahmad, S., Brattsten, L. B., Mullins, C. A., and Yu, S. J., 1986, Enzymes involved in the metabolism of plant allelochemicals, in: Molecular Aspects of Insect-Plant Associations (L. B. Brattsten and S. Ahmad, eds.), pp. 73–151, Plenum Press, New York.

    Chapter  Google Scholar 

  • Ahmed, N. K., Felsted, R. L., and Bachur, N. R., 1979, Comparison and characterization of mammalian ketone reductases, J. Pharmacol. Exp. Ther. 209:12–19.

    PubMed  CAS  Google Scholar 

  • Andersen, J. F., Utermohlen, J. G., and Feyereisen, R., 1994, Expression of housefly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system. Biochemistry 33:2171–2177.

    Article  PubMed  CAS  Google Scholar 

  • Baars, A. J., Blijeven, W. G. H., Mohn, G. R., Natarajan, A. T., and Breimer, D. D., 1980, Preliminary studies on the ability of Drosophila microsomal preparations to activate mutagens and carcinogens, Mutat. Res. 72:257–264.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. S. F., and Starmer, W. T., 1982, Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System, Academic Press, Sydney, Australia.

    Google Scholar 

  • Barker, J. S. F., Starmer, W. T., and Maclntyre, R. J., 1990, Ecological and Evolutionary Genetics of Drosophila, Plenum Press, New York.

    Book  Google Scholar 

  • Berenbaum, M. R., and Zangerl, A. R., 1993. Furanocoumarin metabolism in Papilio polyxenes: Genetic variability, biochemistry, and ecological significance, Oecologia 95:370–375.

    Article  Google Scholar 

  • Berenbaum, M. R., Cohen, M. B., and Schuler, M. A., 1992, Cytochrome P450 monooxygenase genes in oligophagous lepidoptera, in: Molecular Basis of Insecticide Resistance: Diversity among Insects (C. J. Mullin and J. G. Scott, eds.), pp. 114–124, American Chemical Society Symposium Series 505, ACS, Washington, D.C.

    Chapter  Google Scholar 

  • Bowers, M. D., 1984, Iridoid glycosides and host-plant specificity in larvae of the buckeye butterfly Junonia coenia (Nymphalidae), J. Chem. Ecol. 10:1567–1577.

    Article  CAS  Google Scholar 

  • Bowers, M. D., and Puttick, G. M., 1986, Fate of ingested iridoid glycosides in lepidopteran herbivores, J. Chem. Ecol. 12:169–178.

    Article  CAS  Google Scholar 

  • Bradfield, J. Y., Lee, Y.-H., and Keeley, L. L., 1991, Cytochrome P450 family 4 in a cockroach: Molecular cloning and regulation by hypertrehalosemic hormone, Proc. Natl. Acad. Sci. USA 88:4558–4562.

    Article  PubMed  CAS  Google Scholar 

  • Brattsten, L. B., 1979, Ecological significance of mixed-function oxidations. Drug Metab. Rev. 10:35–58.

    Article  PubMed  CAS  Google Scholar 

  • Brattsten, L. B., 1988, Enzymatic adaptations in leaf-feeding insects to host-plant allelochemicals, J. Chem. Ecol. 14:1919–1939.

    Article  CAS  Google Scholar 

  • Brower, L. P., and Glazier, S. C., 1975, Localization of heart poisons in the monarch buterfly, Science 188:19–25.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S. D., Hodgkins, J. E., Massingill, J. L., and Reinecke, M. G., 1972, The isolation, structure, synthesis, and absolute configuration of the cactus alkaloid gigantine, J. Org. Chem. 37:1825–1828.

    Article  Google Scholar 

  • Burbach, K. M., Poland, A., and Bradfield, C. A., 1992, Cloning of the Ah receptor cDNA reveals a novel ligand-activated transcription factor, Proc. Natl. Acad. Sci. USA 89:8185 – 8189.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, C. E., and Kircher, H. W., 1980, Senita cactus: A plant with interrupted sterol biosynthetic pathways, Phytochemistry 19:2777–2779.

    Article  CAS  Google Scholar 

  • Campbell, B. C., McLean, D. L., Kinsey, M. G., Jones, K. C., and Dreyer, D. L., 1982, Probing behavior of the greenbug (Schizaphis graminum, Biotype C) on resistant and susceptible varieties of sorghum, Ent. Exp. Appl. 31:140–146.

    Article  Google Scholar 

  • Carino, F., Koener, H. F., Plapp, F. W., Jr., and Feyereisen, R., 1992, Expression of the cytochrome P450 gene CYP6A1 in the house fly, Musca domestica, in: Molecular Basis of Insecticide Resistance: Diversity among insects (C. J. Mullin and J. G. Scott, eds.), pp. 31 – 40, American Chemical Society Symposium Series 505, ACS, Washington, D.C.

    Chapter  Google Scholar 

  • Carroll, C. R., and Hoffman, C. A., 1980, Chemical feeding deterrent mobilized in response to insect herbivory and counter adaptation by Epilachna tredecimnotata, Science 209:414–416.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A. G., 1989, The comparative enzymology of the glutathione S-transferases from nonvertebrate organisms, Comp. Biochem. Physiol. 92B:419–446.

    CAS  Google Scholar 

  • Cohen, M. B., and Feyereisen, R., 1995, A cluster of cytochrome P450 genes of the CYP6 family in the housefly, DNA Cell Biol. 14:73–82.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. B., Schüler, M. A., and Berenbaum, M. R., 1992, A host-inducible cytochrome P450 from a host specific caterpillar: molecular cloning and evolution, Proc. Natl. Acad. Sci. USA 89:10920–10924.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. B., Berenbaum, M. R., and Schuler, M. A., 1989, Induction of cytochrome P450-mediated metabolism of xanthotoxin in the black swallowtail, J. Chem. Ecol. 15:2347–2355.

    Article  CAS  Google Scholar 

  • Conney, A. H., 1967, Pharmacological implications of microsomal enzyme induction, Pharmacol. Rev. 19:317–366.

    PubMed  CAS  Google Scholar 

  • Conney, A. H., 1982, Induction of microsomal enzymes by foreign compounds and carcinogenesis by polycyclic aromatic hydrocarbons. Cancer Res. 42:4875–4917.

    PubMed  CAS  Google Scholar 

  • Danielson, P. B., 1996, Diversity and Transcriptional Regulation of Cytochrome P450s in Drosophila, Ph.D. Dissertation, University of Denver.

    Google Scholar 

  • Danielson, P. B., Frank, M. R., and Fogleman, J. C., 1994, Comparison of larval and adult P450 activity levels for alkaloid metabolism in desert Drosophila, J. Chem. Ecol. 20:1893–1906.

    Article  CAS  Google Scholar 

  • Danielson, P. B., Letman, J. A., and Fogleman, J. C., 1995, Alkaloid metabolism by cytochrome P450 enzymes in Drosophila melanogaster. Comp. Biochem. Physiol. 110:683–688.

    Article  CAS  Google Scholar 

  • Danielson, P. B., Gloor, S. L., Roush, R. T., and Fogleman, J. C., 1996, Cytochrome P450-mediated resistance to isoquinoline alkaloids and susceptibility to synthetic insecticides in Drosophila, Pest. Biochem. Physiol. 55:172–179.

    Article  CAS  Google Scholar 

  • Dawson, J. H., and Sono, M., 1987, Cytochrome P-450 and chloroperoxidase-thiolate-ligated heme enzymes: Spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation, Chem. Rev. 87:1255–1276.

    Article  CAS  Google Scholar 

  • Delpuech, J.-M., Aquadro, C. F., and Roush, R. T., 1993, Noninvolvement of the long terminal repeat of transposable element 17.6 in insecticide resistance in Drosophila, Proc. Natl. Acad. Sci. USA 90:5643–5647.

    Article  CAS  Google Scholar 

  • Djerassi, C., Frick, N., and Geller, L. E., 1953, Alkaloid studies. I. The isolation of pilocereine from the cactus Lophocereus schottii, J. Am. Chem. Soc. 75:3632–3635.

    Article  CAS  Google Scholar 

  • Djerassi, C., Geller, L. E., and Lemin A. J., 1954, Terpenoids VIII. The structures of the cactus triterpenes gummosogenin and longispinogenin, J. Am. Chem. Soc. 76:4089–4091.

    Article  CAS  Google Scholar 

  • Djerassi, C., Nakano, T., and Bobbitt, J. M., 1958, Alkaloid studies. XX. Isolation and structure of two new cactus alkaloids piloceredine and lophocereine, Tetrahedron 2:58–63

    Article  CAS  Google Scholar 

  • Djerassi, C., Brewer, H. W., Clarke, C., and Durham, L. J., 1962, Alkaloid studies. XXXVIII. Pilocereine—a trimeric cactus alkaloid, J. Am. Chem. Soc. 84:3210–3212.

    Article  CAS  Google Scholar 

  • Dover, G. A., 1987, DNA turnover and the molecular clock, J. Mol. Evol. 26:47–58.

    Article  PubMed  CAS  Google Scholar 

  • Dover, G. A., and Tautz, D., 1986, Conservation and divergence in multigene families: Alternatives to selection and drift, Phil. Trans. R. Soc. Lond. B 312:275–289.

    Article  CAS  Google Scholar 

  • Edges, W. J., and Heed, W. B., 1987, Sensitivity to larval density in populations of Drosophila mojavensis: Influences of host plant variation on components of fitness, Oecologia 71:375–381.

    Article  Google Scholar 

  • Elferink, C. J., and Whitlock, J. P., Jr., 1990, 2,3,7,8-Tetrachlorodibenso-p-dioxin inducible, Ah receptor-mediated bending of enhancer DNA, J. Biol. Chem. 265:5718–5721.

    PubMed  CAS  Google Scholar 

  • Eliasson, E., Johansson, I., and Ingleman-Sundberg, M., 1988, Ligand-dependent maintenance of ethanol-inducible cytochrome P-450 in primary rat hepatocyte cell cultures, Biochem. Biophys. Res. Commun. 150:436–443.

    Article  PubMed  CAS  Google Scholar 

  • Erna, M., Sugawa, K., Wanatabe, N., Chujoh, Y., Matsushita, N., Gotoh, O., Funae, Y., and Fuji-Kuriyama, Y., 1992, cDNA cloning and structure of mouse putative Ah receptor, Biochem. Biophys. Res. Commun. 184:246–253.

    Article  Google Scholar 

  • Elshourbagy, N. A., and Guzlian, P. S., 1980, Separation, purification, and characterization of a novel form of hepatic cytochrome P-450 from rats treated with pregnenolone-16a-carbonitrile, J. Biol. Chem. 255:1279–1285.

    PubMed  CAS  Google Scholar 

  • Feeney, P. P., 1970, Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars, Ecology 51:565–581.

    Article  Google Scholar 

  • Fellows, D. P., and Heed, W. B., 1972, Factors affecting host plant selection in desert-adapted Drosophila, Ecology 53:850–858.

    Article  Google Scholar 

  • Felsted, R. L., and Bachur, N. R., 1980, Ketone reductases, in: Enzymatic Basis of Detoxication (W. B. Jakoby, ed.), Vol. 1, pp. 281–293, Academic Press, New York.

    Google Scholar 

  • Feyereisen, R., Koener, J. F., Farnsworth, D. E., and Nebert, D. W., 1989, Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide-resistant strain of the housefly, Musca domestica. Proc. Natl. Acad. Sci. USA 86:1739–1743.

    Google Scholar 

  • ffrench-Constant, R. H., Steichen, J. C., and Rocheleau, T. A., 1993, A single-amino acid substitution on a gamma-aminobutyric acid subtype A receptor locus is associated with cyclodiene insecticide resistance in Drosophila populations, Proc. Natl. Acad. Sci. USA 90:1957–1961.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, C. W., and Mayer, R. T., 1984, Partial purification and characterization of phenobarbital-induced housefly cytochrome P450, Arch. Insect Biochem. Physiol. 1:127–138.

    Article  CAS  Google Scholar 

  • Fogleman, J. C., 1982, The role of volatiles in the ecology of cactophilic Drosophila, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker and W. T. Starmer, eds.), pp. 191–206, Academic Press, Sydney, Australia.

    Google Scholar 

  • Fogleman, J. C., 1984, The ability of cactophilic Drosophila to utilize soaked soil as larval substrates, Droso. Inf. Ser. 60:105–107.

    Google Scholar 

  • Fogleman, J. C. and Williams, J., 1987, Oviposition site preference of cactophilic Drosophila in the eremophila complex, Droso. Inf. Ser. 66:51–52.

    Google Scholar 

  • Fogleman, J. C., 1990, William B. Heed: A biography, in: Ecological and Evolutionary Genetics of Drosophila (J. S. F. Barker, R. J. Maclntyre, and W. T. Starmer, eds.), pp. 1–14, Plenum Press, New York.

    Google Scholar 

  • Fogleman, J. C., and Abril, J. R., 1990, Ecological and evolutionary importance of host plant chemistry, in: Ecological and Evolutionary Genetics of Drosophila (J. S. F. Barker, R. J. Maclntyre, and W. T. Starmer, eds.), pp. 121–143, Plenum Press, New York.

    Chapter  Google Scholar 

  • Fogleman, J. C., and Foster, J. L. M., 1989, Microbial colonization of injured cactus tissue (Stenocereus gummosus) and its relationship to the ecology of cactophilic Drosophila mojavensis, Appl Envir. Microbiol. 55:663–676.

    Google Scholar 

  • Fogleman, J. C., and Heed, W. B., 1989, Columnar cacti and desert Drosophila: The chemistry of host plant specificity, in: Special Biotic Relationships in the Arid Southwest (J. Schmidt, ed.), pp. 1–24, University of New Mexico Press, Albuquerque.

    Google Scholar 

  • Fogleman, J. C., Heed, W. B., and Kircher, H. W., 1982, Drosophila mettleri and senita cactus alkaloids: Fitness measurements and their ecological significance, Comp. Biochem. Physiol. 71A:413–417.

    Article  Google Scholar 

  • Fogleman, J. C., Duperret, S. M., and Kircher, H. W., 1986, The role of phytosterols in host plant utilization by cactophilic Drosophila, Lipids 21:92–96.

    Article  CAS  Google Scholar 

  • Foster, J. L. M., and Fogleman, J. C., 1993, Identification and ecology of the bacterial communities associated with the necroses of three species of cacti, Appl. Envir. Microbiol. 59:1–6.

    CAS  Google Scholar 

  • Foster, J. L. M., and Fogleman, J. C., 1994, Bacterial succession in necrotic tissue of agria cactus (Stenocereus gummosus), Appl. Envir. Microbiol. 60:619–625

    CAS  Google Scholar 

  • Frank, M. R., and Fogleman, J. C., 1992, Involvement of cytochrome P450 in host plant utilization by Sonoran Desert Drosophila, Proc. Natl. Acad. Sci. USA 89:11998–12002.

    Article  CAS  Google Scholar 

  • Friedman, J. M., Chung, E. Y., and Darnell, J. E., Jr., 1984, Gene expression during liver regeneration, J. Mol. Biol. 179:37–53.

    Article  PubMed  CAS  Google Scholar 

  • Frohman, M. A., Dush, M. K., and Martin, G. R., 1988, Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer, Proc. Natl. Acad. Sci. USA 85:8998–9002.

    Article  PubMed  CAS  Google Scholar 

  • Fulco, A. J., 1991, P450BM-3 and other inducible bacterial P-450 cytochromes: Biochemistry and regulation, Annu. Rev. Pharmacol. Toxicol. 31:177–203.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi, R., Varek, E., and Goldberg, M. L., 1992, Molecular analysis of a cytochrome P450 gene of family 4 on the Drosophila X chromosome, DNA Cell Biol. 11:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Ganter, P. F., 1988, The vectoring of cactophilic yeasts by Drosophila, Oecologia 75:400 – 404.

    Article  Google Scholar 

  • Ganter, P. F., Starmer, W. T., LaChance, M.-A., and Phaff, H. J., 1986, Yeast communities from host plants and associated Drosophila in southern Arizona: New isolations and analysis of the relative importance of hosts and vectors on community composition, Oecologia 70:386–392.

    Article  Google Scholar 

  • Garfinkle, D., 1958, Studies on pig liver microsomes. Enzyme and pigment composition of different microsomal fractions, Arch. Biochem. Biophys. 77:493–509.

    Article  Google Scholar 

  • Gatehouse, A. M. R., Fenton, K. A., and Anstee, J. H., 1985, Carbohydrase and esterase activity in the gut of larval Callosobruchus maculatus, Experientia 41:1202–1205.

    Article  CAS  Google Scholar 

  • Gelboin, H. V., 1980, Benzo(a)pyrene metabolism, activation, and carcinogenesis: Role and regulation of mixed-function oxidases and related enzymes, Physiol. Rev. 60:1107–1166.

    PubMed  CAS  Google Scholar 

  • Gelboin, H. V., and Blackburn, N., 1963, The stimulation effect of 3-methylcholanthrene (MC) on microsomal amino acid incorporation and benzopyrene (BP) hydroxylase activity and its inhibition by actinomycin D, Biochim. Biophys. Acta 72:657–660.

    Article  PubMed  CAS  Google Scholar 

  • Giachelli, C. M., and Omiecinski, C. J., 1987, Developmental regulation of cytochrome P-450 genes in rat, Mol. Pharmacol. 31:477–484.

    PubMed  CAS  Google Scholar 

  • Gibson, A. C., 1982, Phylogenetic relationships of Pachycereeae, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker and W. T. Starmer, eds.), pp. 3–16, Academic Press, Sydney, Australia.

    Google Scholar 

  • Gibson, A. C., and Horak, K. E., 1978, Systematic anatomy and phylogeny of mexican columnar cacti, Ann. Missouri Bot. Gard. 65:999–1057.

    Article  Google Scholar 

  • Gibson, A. C., and Nobel, P. S., 1986, The Cactus Primer, Harvard University Press, Cambridge.

    Google Scholar 

  • Goldman, P., 1982, Role of the intestinal microflora, in: Metabolic Basis of Detoxication (W. B. Jacoby, J. R. Bend, and J. Caldwell, eds.), pp. 323–338, Academic Press, New York.

    Chapter  Google Scholar 

  • Gonzales, F. J., 1989, The molecular biology of cytochrome P450s, Pharmcol. Rev. 40:243–288.

    Google Scholar 

  • Gonzalez, F. J., and Nebert, D. W. 1990, Evolution of the P450 gene superfamily: Animalplant “warfare,” molecular drive and human genetic differences in drug oxidation, Trends Genet. 6:182–186.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, F. J., Song, B. J., and Hardwick, J. P., 1986, Pregnenolone 16a-carbonitrile-inducible P-450 gene family: Gene conversion and differential regulation, Mol. Cell. Biol. 6:2969 – 2976.

    PubMed  CAS  Google Scholar 

  • Gotoh, O., Tagashira, Y., lizuka, T., and Fujii-Kuriyama, Y., 1983, Structural characteristics of cytochrome P-450: possible location of the heme-binding cysteine in determined aminoacid sequences, J. Biochem. 93:807–817.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, B. W., 1991, Peroxidases in Chemistry and Biology, Vol. II (J. Everse, K. E. Everse, and M. B. Grisham, eds.), pp. 85–137, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Gu, L., Gonzalez, F. J., Kalow, W., and Tang, B. K., 1992, Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E1, Pharmacogenetics 2:73–77.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F. P., 1992, Metabolic activation of carcinogens, Pharmacol. Ther. 54:17–61.

    Article  PubMed  CAS  Google Scholar 

  • Guengerich, F. P., 1995, Human cytochrome P450 enzymes, in: Cytochrome P450 Structure, Mechanism, and Biochemistry (P. R. Ortiz de Montellano, ed.), 2nd ed., pp. 473–535, Plenum Press, New York.

    Chapter  Google Scholar 

  • Guengerich, F. P., and MacDonald, T. L., 1990, Mechanisms of P-450 catalysis, FASEB J. 4:2453–2459.

    PubMed  CAS  Google Scholar 

  • Guo, Z., Gillliam, E. M. J., Ohmori, S., Turkey, R. H., and Guengerich, F. P., 1995, Expression of modified human cytochrome P450 1 Al in Escherichia coli. Effects of 5’ substitution, purification, spectral characterization, reconstitution conditions and catalytic properties, Arch. Biochem. Biophys. 317:374–384.

    Article  PubMed  Google Scholar 

  • Hahn, C. N., Hansen, A. J., and May, B. K., 1991, Transcriptional regulation of the chicken CYP2H1 gene: Localization of a phenobarbital-responsive enhancer domain, J. Biol. Chem. 266:17031–17039.

    PubMed  CAS  Google Scholar 

  • Hällström, I., 1985, Genetic regulation of the cytochrome P-450 system in Drosophila melanogaster. II. Localization of some genes regulating cytochrome P-450 activity, Chem.-Biol. Interact. 56:173–184.

    Article  PubMed  Google Scholar 

  • Hällström, I., and Grafström, R., 1981, The metabolism of drugs and carcinogens in isolated subcellular fractions of Drososphila melanogaster. II. Enzyme induction and metabolism of benzo[a]pyrene, Chem.-Biol. Interact. 34:145–159.

    Article  PubMed  Google Scholar 

  • Hällström, I., Sundvall, A., Runnug, U., Grafström, R., and Ramel, C., 1981, The metabolism of drugs and carcinogens in isolated subcellular fractions of Drosophila melanogaster. I. Activation of vinyl chloride, 2-aminoanthracene and benzo[a]pyrene as measured by mutagenic effects in Salmonella typhimurium, Chem.-Biol. Interact. 34:129–143.

    Article  Google Scholar 

  • Hällström, I., Magnusson, J., and Ramel, C., 1982, Relation between the somatic toxicity of dimethylnitrosamine and a genetically determined variation in the level and induction of cytochrome P450 in Drosophila melanogaster, Mutat. Res. 92:161–168.

    Article  Google Scholar 

  • Hällström, I., Blanck, A., and Atuma, S., 1984, Genetic variation in cytochrome P-450 and xenobiotic metabolism in Drosophila melanogaster, Biochem. Pharmacol. 33:13–20.

    Article  Google Scholar 

  • Hama, H., 1983, Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, in: Pest Resistance to Pesticides (G. P. Georghiou and T. Saito, eds.), pp. 299–332, Plenum Press, New York.

    Chapter  Google Scholar 

  • Haniu, M., Armes, L. G., Tanaka, M., Yasunobu, K. T., Shastry, B. S., Wagner, G. C., and Gunsalus, I. C., 1982, The primary structure of the monooxygenase cytochrome P- 450cam, Biochem. Biophys. Res. Commun. 105:889–894.

    Article  PubMed  CAS  Google Scholar 

  • Hargrove, W. W., and Crossley, D. A., Jr., 1985, Within-leaf feeding site selection by black locust herbivores: Implications for plant defense, Bull. Ecol. Soc. Am. 66:187.

    Google Scholar 

  • Hasemann, C. A., Ravichandran, K. G., Boddupalli, S. S., Peterson, J. A., and Deisenhofer, J., 1995, Structure and function of cytochromes P450: A comparative analysis of the threedimensional structures of P450terp, P450cam, and the hemoprotein domain of P450BM-3, Structure 3:41–62.

    Article  PubMed  CAS  Google Scholar 

  • Haunerland, N. H., and Bowers, W. S., 1985, Comparative studies on pharmacokinetics and metabolism of anti-juvenile hormone precocene II, Arch. Insect Biochem. Physiol. 2:55–63.

    Article  CAS  Google Scholar 

  • Hartl, D. L., and Clark, A. G., 1989, Principles of Population Genetics, 2nd ed., Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • He, J., and Fulco, A. J., 1991, A barbiturate-regulated protein binding to a common sequence in the cytochrome P450 genes of rodents and bacteria, J. Biol. Chem. 266:7864–7869.

    PubMed  CAS  Google Scholar 

  • Heed, W. B., 1977, A new cactus-feeding but soil-breeding species of Drosophila (Diptera:Drosophilidae), Proc. Entomol. Soc. Wash. 79:649–654.

    Google Scholar 

  • Heed, W. B., 1978, Ecology and Genetics of Sonoran Desert Drosophila, in: Ecological Genetics: The Interface (P. F. Brussard, ed.), pp. 109–126, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Heed, W. B., 1982, The origin of Drosophila in the Sonoran Desert, in: Ecological Genetics and Evolution: The Cactus-Veflsf-Drosophila Model System (J. S. F. Barker and W. T. Starmer, eds.), pp. 65–80, Academic Press, Sydney, Australia.

    Google Scholar 

  • Heed, W. B., 1989, Origin of Drosophila of the Sonoran Desert II. In search for a founder event, in: Genetics, Speciation, and the Founder Principle (L. V. Giddings, K. Y. Kaneshiro, and W. W. Anderson, eds.), pp. 253–278, Oxford University Press, New York.

    Google Scholar 

  • Heed, W. B., and Kircher, H. W., 1965, A unique sterol in the ecology and nutrition of Drosophila pachea. Science 149:758–761.

    CAS  Google Scholar 

  • Hodgson, E., and Rose, R., 1991, Insect cytochrome P450, in: Molecular Aspects of Monooxygenases and Bioactivation of Toxic Compounds (E. Arinc, ed.), pp. 75–91, NATO Advanced Science Institutes Series, Series A, Life Sciences, Plenum Press, New York.

    Chapter  Google Scholar 

  • Honda, S., Morohashi, K., Nomura, M., Takeya, M., Kitajimi, M., and Omura, T., 1993, Ad4BP regulating steroidogenic P450 genes is a member of the steroid hormone receptor superfamily, J. Biol. Chem. 268:7479–7502.

    Google Scholar 

  • Hung, C-F., Prapaipong, H., Bernbaum, M. R., and Schuler, M. A., 1995, Differential induction of cytochrome P450 transcripts in Papilio polyxenes by linear and angular furanocoumarins, Insect Biochem. Mol. Biol. 25:89–99.

    Article  CAS  Google Scholar 

  • Ikeda, Y., Shen, W. H., Ingraham, H. A., and Parker, K. L., 1994, Developmental expression of mouse steroidogenic factor-1, an essential regulator of the steroid hydroxylases. Mol. Endocrinol. 8:654–662.

    Article  PubMed  CAS  Google Scholar 

  • Issemann, I., and Green, S., 1990, Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators, Nature 347:645–650.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, W. R., 1980, Chromosomal Polymorphism in the Desert-Adapted species Drosophila mojavensis, Ph.D. Dissertation, University of Arizona, Tucson.

    Google Scholar 

  • Kato, R., Yamazoe, Y., Shimada, M., Murayama, N., and Kamataki, T., 1986, Effect of growth hormone and ectopic transplantation of pituitary gland on sex-specific forms of cytochrome P450 and testosterone and drug oxidations in rat liver, J. Biochem. 100:895–902.

    PubMed  CAS  Google Scholar 

  • Khani, S. C., Zaphiropoulos, P. G., Fujita, V. S., Porter, T. D., Koop, D. R., and Coon, M. J., 1987, cDNA and derived amino acid sequence of ethanol-inducible rabbit liver cytochrome P-450 isozyme 3a (P450ale), Proc. Natl. Acad. Sci. USA 84:638–642.

    Article  PubMed  CAS  Google Scholar 

  • Kim, I. C., and Deal, W. C., 1976, Isolation and properties of a new, soluble hemoprotein (P450) from pig liver, Biochemistry 15:4925–4930.

    Article  PubMed  CAS  Google Scholar 

  • Kircher, H. W., 1969, The distribution of sterols, alkaloids, and fatty acids in senita cactus, Lophocereus schottii, over its range in Sonora, Mexico, Phytochemistry 8:1481–1488.

    Article  CAS  Google Scholar 

  • Kircher, H. W., 1977, Triterpene glycosides and queretaroic acid in organ pipe cactus, Phytochemistry 16:1078–1080.

    Article  CAS  Google Scholar 

  • Kircher, H. W., 1982, Chemical composition of cacti and its relationship to Sonoran Desert Drosophila, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F Barker and W. T. Starmer eds.), pp. 143–158, Academic Press, Sydney, Australia.

    Google Scholar 

  • Kircher, H. W., Heed, W. B., Russell, J. S., and Grove, J., 1967, Senita cactus alkaloids: Their significance to Sonoran Desert Drosophila ecology, J. Insect Physiol. 13:1869–1874.

    Article  CAS  Google Scholar 

  • Klingenberg, M., 1958, Pigments of rat liver microsomes, Arch. Biochem. Biophys. 75:376–386.

    Article  PubMed  CAS  Google Scholar 

  • Krieger, R. I., Feeny, P. P., and Wilkinson, C. F., 1971, Detoxification enzymes in the guts of caterpillars: An evolutionary answer to plant defenses, Science 172:579–581.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. S. T., and Scott, J. G., 1989, Microsomal cytochrome P-450 monooxygenases in the house fly (Musca domestica L.): Biochemical changes associated with pyrethroid resistance and phenobarbital induction, Pestic. Biochem. Physiol. 35:1–10.

    Article  CAS  Google Scholar 

  • Levin, D. A., 1976, The chemical defences of plants to pathogens and herbivores, Anna. Rev. Ecol. Syst. 7:121–159.

    Article  CAS  Google Scholar 

  • Levinson, H. Z., 1976, The defensive role of alkaloids in insects and plants, Experientia 32: 408–411.

    Article  CAS  Google Scholar 

  • Lock, E. A., Mitchell, A. M., and Elcombe, C. R., 1989, Biochemical mechanisms of induction of hepatic peroxisome proliferation, Annu. Rev. Pharmacol. Toxicol. 29:145–163.

    Article  PubMed  CAS  Google Scholar 

  • Loomis, W. F., 1988, Four Billion Years: An Essay on the Evolution of Genes and Organisms, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Lund, J., Faucher, D. J., Ford, S. P., Porter, J. C., Waterman, M. R., and Mason, J. I., 1988, Developmental expression of bovine adrenocortical steroid hydroxylases: Regulation of P45017a expression leads to episodic fetal Cortisol production, J. Biol. Chem. 263:16195 – 16201.

    PubMed  CAS  Google Scholar 

  • Lund, J., Ahlgren, R., Wu, D., Kagimoto, M., Simpson, E. R., and Waterman, M. R., 1990, Transcriptional regulation of the bovine CYP17 (P45017a) gene, J. Biol. Chem. 265: 3304–3312.

    PubMed  CAS  Google Scholar 

  • Ma, R., Cohen, M. B., Berenbaum, M. R., and Schuler, M. A., 1994, Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450s that selectively metabolize linear furanocoumarins, Arch. Biochem. Biophys. 310:332–340.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, N., and Smithies, O., 1986, The evolution of multigene families: Human haptoglobin genes, Annu. Rev. Genet. 20:81–108.

    Article  PubMed  CAS  Google Scholar 

  • Mangan, R. L., 1982, Adaptations to competition in cactus breeding Drosophila, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila. Model System (J. S. F Barker and W. T. Starmer, eds.), pp. 257–272, Academic Press, Sydney, Australia.

    Google Scholar 

  • Martin, F. H., and Castro, M. M., 1985, Base pairing involving deoxyinosine: Implications for probe design, Nucleic Acids Res. 13:8927–8938.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, F., Tanaka, K., and Ozoe, Y., 1987, GABA-related systems as targets for insecticides, in: Sites and Action of Neurotoxic Pesticides, ACS Symposium Series356 (R. M. Hollingworth and M. B. Green, eds.), pp. 44–70, American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  • Matsunaga, E., Ueno, M., and Gonzalez, F. J., 1990, The rat CYP2D locus: Complete sequences of four tandemly arranged genes and evidence that gene conversions maintained sequence conservation at the heme-binding region of the cytochrome P450 active site, J. Mol. Evol. 30:155–169.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, J. M. and Fogleman, J. C., 1987, Significance of saguaro cactus alkaloids in the ecology of Drosophila mettled, a soil-breeding, cactophilic drosophilid, J. Chem. Ecol. 13:2069–2081.

    Article  CAS  Google Scholar 

  • Miller, W. L., 1987, Structure of genes encoding steroidogenic enzymes, J. Steroid Biochem. 27:759–766.

    Article  PubMed  CAS  Google Scholar 

  • Mode, A., and Norstedt, G., 1982, Effects of gonadal steroid hormones on the hypothalmo-pitutuitary-liver axis in the control of sex differences in hepatic steroid metabolism in the rat, J. Endocrinol 95:181–187.

    Article  PubMed  CAS  Google Scholar 

  • Moldenke, A. F., Berry, R. E., Farnsworth, D. E., and Terriere, L. C., 1984, Cytochrome P-450 in insects 4. Reconstitution of cytochrome P-450 dependent monooxygenase activity in the housefly, Pest. Physiol. Biochem. 21:358–368.

    Article  CAS  Google Scholar 

  • Morton, R. A., and Holwerda, B. C., 1985, The oxidative metabolism of malathion and malaoxon in resistant and susceptible strains of Drosophila melanogaster, Pest. Biochem. Physiol. 24:19–31.

    Article  CAS  Google Scholar 

  • Mouches, C., Pauplin, Y., Agarwal, M., Lemieux, L., Herzog, M., Abadon, M., Beyssat-Arnaouty, V., Hyrien, O., Robert de Saint Vincent, B., Georghiou, G. P., and Pasteur, N., 1990, Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex, Proc. Natl. Acad. Sci. USA 87:2574–2578.

    Article  CAS  Google Scholar 

  • Mullin, C. A., and Croft, B. A., 1984, Trans-epoxide hydrolase: A key indicator enzyme for herbivory in arthropods, Experientia 40:176–178.

    Article  CAS  Google Scholar 

  • Mullin, C. A., and Scott, J. G., 1992, Biomolecular basis for insecticide resistance classification and comparisons. Molecular Basis of Insecticide Resistance: Diversity among Insects (C. J. Mullin and J. G. Scott, eds.), pp. 1–13, American Chemical Society Symposium Series 505, ACS, Washington, D.C.

    Chapter  Google Scholar 

  • Nebert, D. W., and Gelboin, H. V., 1970, The role of ribonucleic acid and protein synthesis in microsomal aryl hydrocarbon hydroxylase induction in cell culture. The independence of transcription and translation, J. Biol. Chem. 245:160–168.

    PubMed  CAS  Google Scholar 

  • Nebert, D. W., and Gonzalez, F. J., 1985, Cytochrome P450 gene expression and regulation, Trends Pharmacol. Sci. 6:160–164.

    Article  Google Scholar 

  • Nebert, D. W., and Gonzalez, F. J., 1987, P450 genes, structure, evolution and regulation, Annu. Rev. Biochem. 56:945–993.

    Article  PubMed  CAS  Google Scholar 

  • Nebert, D. W., and Nelson, D. R., 1991, P450 gene nomenclature based on evolution, in: Methods in Enzymlogy, Vol. 206, Cytochrome P450. (M. R. Waterman and E. F. Johnson, eds.), pp. 3–11, Academic Press, New York.

    Chapter  Google Scholar 

  • Nebert, D. W., Nelson, D. R., Coon, M. J., Estabrook, R. W., Feyereisen, R., Fujii-Kuriyama, Y., Gonzalez, F. J., Guengerich, F. P., Gunsalus, I. C., Johnson, E. F., Loper, J. C., Sato, R., Waterman, M. R., and Waxman, D. J., 1991, The P450 superfamily: Update on new sequences, gene mapping, and recommended nomenclature, DNA Cell Biol. 10:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. R., and Strobel, H. W., 1987, Evolution of cytochrome P450 proteins, Mol. Biol. Evol. 4:572–593.

    PubMed  CAS  Google Scholar 

  • Nelson, D. R., and Strobel, H. W., 1989, Secondary structure prediction of 52 membrane-bound cytochromes P450 shows strong structural similarity to P450cam, Biochemistry 28:656–660.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K., and Nebert, D. W., 1993, The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature, DNA Cell Biol. 12:1–51.

    Article  PubMed  CAS  Google Scholar 

  • Okey, A. B., 1990, Enzyme induction in the cytochrome P450 system, Pharmacol. Ther. 45:241–298.

    Article  PubMed  CAS  Google Scholar 

  • Omura, T., and Sato, R., 1961, A new cytochrome in liver microsomes, J. Biol. Chem. 237:1375–1376.

    Google Scholar 

  • Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem. 239:2370–2378.

    PubMed  CAS  Google Scholar 

  • Oppenoorth, F. J., 1985, Biochemistry and genetics of insecticide resistance, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology (G. A. Kerkut and L. I. Gilbert, eds.), Vol. 12, pp. 731–744, Pergamon Press, Oxford.

    Google Scholar 

  • Pan, J., Hong, J. Y., and Yang, C. S., 1992, Post-transcriptional regulation of mouse renal cytochrome P450 2E1 by testosterone, Arch. Biochem. Biophys. 299:110–115.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, J. T., and Crow, J. F., 1940, Hybridization in the mulleri group of Drosophila, Univ. Tex. Publ. 4032:251–256.

    Google Scholar 

  • Patterson, J. T., and Stone, W. S. 1952, Evolution in the Genus Drosophila, Macmillan, New York.

    Google Scholar 

  • Patterson, J. T., and Wheeler, M. R., 1942, Description of a new species of the subgenera Hirtodrosophila and Drosophila, Univ. Tex. Publ. 4213:62–109.

    Google Scholar 

  • Plapp, F. W., Jr., 1986, Pesticide Resistance: Strategies and Tactics for Management, pp. 74–86, NRC/NAS, Washington, D.C.

    Google Scholar 

  • Plapp, F. W., Jr., and Wang, J. Y., 1983, Genetic origins of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou and T. Saito, eds.), pp. 47–70, Plenum Press, New York.

    Chapter  Google Scholar 

  • Poland, A., Glover, E., Ebetino, F. H., and Kende, A. S., 1986, Photoaffinity labeling of the Ah receptor, J. Biol. Chem. 261:6352–6365.

    PubMed  CAS  Google Scholar 

  • Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High resolution crystal structure of P450cam, J. Mol. Biol. 195:687–700.

    Article  PubMed  CAS  Google Scholar 

  • Prapaipong, H., Berenbaum, M. R., and Schuler, M. A., 1994, Transcriptional regulation of the Papilio polyxenes CYP6B1 gene. Nucleic Acids Res. 22:3210–3217.

    Article  PubMed  CAS  Google Scholar 

  • Ram, P. A., and Waxman, D. J., 1990, Pretranslational control by thyroid hormone of rat liver steroid 5a-reductase and comparison to the thyroid dependence of two growth hormoneregulated CYP2C mRNAs,y. Biol. Chem. 265:19223–19229.

    CAS  Google Scholar 

  • Renwick, J. A. A., Hughes, P. R., and Krull, I. S., 1976, Selective production of cis- and transverbenol from (-)- and (+)-a-pinene by a bark beetle, Science 191:199–201.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, D. F., 1979, Evolution of plant chemical defense against herbivores, in: Herbivores. Their Interaction with Secondary Plant Metabolites (G. A. Rosenthal and D. H. Janzen, eds.), pp. 3–54, Academic Press, New York.

    Google Scholar 

  • Rhoades, D. F., 1983, Herbivore population dynamics and plant chemistry, in: Variable Plants and Herbivores in Natural and Managed Systems (R. G. Denno and M. S. McClure, eds.), pp. 155–220, Academic Press, New York.

    Google Scholar 

  • Rhoades, D. F., 1985, Offensive-defensive interactions between herbivores and plants: Their relevance in herbivore population dynamics and ecological theory, Am. Nat. 125:205–238.

    Article  Google Scholar 

  • Roberts-Thomson, S. J., McManus, M. E., Turkey, R. H., Gonzalez, F. J., and Holder, G. M., 1993, The catalytic activity of four expressed human cytochrome P450s towards benzo(a)pyrene and the isomers of its proximate carcinogen, Biochem. Biophys. Res. Commun. 192:1373–1379.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers, R. J., Waterman, M. R., and Simpson, E. R., 1987, Levels of messenger ribonucleic acid encoding cholesterol side chain cleavage cytochrome P450, 17a-hydroxylase cytochrome P450, adrenodoxin, and low density lipoprotein receptor in bovine follicles and corpora lutea throughout the ovarian cycle, Mol. Endocrinol. 1:274–279.

    Article  PubMed  CAS  Google Scholar 

  • Ronis, M. J. J., and Hodgson, E., 1989, Cytochrome P-450 Monooxygenases in insects, Xenobiotica 19:1077–1092.

    Article  PubMed  CAS  Google Scholar 

  • Ronis, M. J. J., Dauterman, W. C., and Hodgson, E., 1988, Characterization of multiple forms of cytochrome P-450 from an insecticide resistant strain of housefly, Musca domestica. Pest. Physiol. Biochem. 32:74–90.

    Article  CAS  Google Scholar 

  • Rowland, I. R., 1986, Reduction by the gut microflora of animals and man, Biochem. Pharmacol. 35:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz, A., Heed, W. B., and Wasserman, M., 1990, Evolution of the mojavensis cluster of cactophilic Drosophila with descriptions of two new species. J. Hered. 81:30–42.

    PubMed  CAS  Google Scholar 

  • Ryan, C. A., 1983, Insect-induced chemical signals regulating natural plant protection responses, in: Variable Plants and Herbivores in Natural and Managed Systems (R. G. Denno and M. S. McClure, eds.), pp. 43–60, Academic Press, New York.

    Google Scholar 

  • Sakaguchi, M., Katsuyoshi, M., and Sato, R., 1984, Signal recognition particle is required for co-translational insertion of cytochrome P-450 into microsomal membranes, Proc. Natl. Acad. Sci. USA 81:3361–3364.

    Article  PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA 74:5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, T., and Baker, J. T., 1979, Analysis of ribosomal proteins from adult Drosophila melanogaster in relation to age, Mech. Ageing Dev. 11:105–112.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, J. C., 1983, Impact of variable plant defensive chemistry on susceptibility of insects to natural enemies, in: Plant Resistance to Insects (P. A. Hedin, ed.), pp. 37–54, American Chemical Society Symposium Series No. 208, ACS, Washington, D.C.

    Chapter  Google Scholar 

  • Segarra, C., and Aguade, M., 1993, Nucleotide divergence of the rp49 gene region between Drosophila melanogaster and two species of the obscura group of Drosophila, J. Mol. Evol. 36:243–248.

    Article  CAS  Google Scholar 

  • Self L. S., Guthrie, F. E., and Hodgson, E., 1964, Adaptations of tobacco hornworms to the ingestion of nicotine, J. Insect Physiol. 10:907–914.

    Article  CAS  Google Scholar 

  • Selye, H., 1971, Hormones and resistance, J. Pharmacol. Sci. 60:1–28.

    Article  CAS  Google Scholar 

  • Shaw, G., and Fulco, A. J., 1993, Inhibition by barbiturates of the binding of Bm3Rl repressor to its operator site on the barbiturate-inducible cytochrome P450BM-3 gene of Bacillus megaterium, J. Biol. Chem. 268:2997–3004.

    CAS  Google Scholar 

  • Shepard, H. H., 1951, The Chemistry and Action of Insecticides, McGraw-Hill, New York.

    Google Scholar 

  • Shuetz, E. G., and Guzelian, P. S., 1984, Induction of cytochrome P-450 by glucocoticoids in rat liver. II. Evidence that glucocorticoids regulate induction of cytochrome P-450 by a non-classical receptor mechanism, J. Biol. Chem. 259:2007–2012.

    Google Scholar 

  • Silver, G., and Krauter, K. S., 1988, Expression of cytochrome P450c and P450d mRNAs in cultured rat hepatocytes: 3-Methylcholanthrene induction is regulated primarily at the posttranscriptional level, J. Biol. Chem. 263:11802–11807.

    PubMed  CAS  Google Scholar 

  • Simmons, D. L., McQuiddy, P., and Kasper, C. B., 1987, Induction of the hepatic mixed-function oxidase system by synthetic glucocorticoids: transcriptional and posttranscriptional regulation, J. Biol. Chem. 262:325–332.

    Google Scholar 

  • Song, B. J., Veech, R. L., Park, S. S., Gelboin, H. V., and Gonzalez, F. J., 1989, Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization, J. Biol. Chem. 264:3568–3572.

    PubMed  CAS  Google Scholar 

  • Starmer, W. T., 1982, Analysis of the community structure of yeasts associated with the decaying stems of cactus. I. Stenocereus gummosus, Microb. Ecol. 8:71–81.

    Article  Google Scholar 

  • Starmer, W. T., and Fogleman, J. C., 1986, Coadaptation of Drosophila and yeasts in their natural habitat, J. Chem. Ecol. 12:1037–1055.

    Article  Google Scholar 

  • Starmer, W. T., Kircher, H. W., and Phaff, H. J., 1980, Evolution of host plant specific yeasts, Evolution 34:137–146.

    Article  Google Scholar 

  • Starmer, W. T., Barker, J. S. F., Phaff, H. J., and Fogleman, J. C., 1986, The adaptations of Drosophila and yeasts: their interactions with the volatile 2-propanol in the cactus-microorganism-Drasophila model system, Aust. J. Biol. Sci. 39:69–77.

    PubMed  CAS  Google Scholar 

  • Starmer, W. T., LaChance, M.-A., Phaff, H. J., and Heed, W. B., 1990, The biogeography of yeasts associated with decaying cactus tissue in North America, the Caribbean, and northern Venezuela, Evol Biol. 24:253–296.

    Google Scholar 

  • Stuehr, D. J., and Saito, M. I., 1992, Spectral characterization of brain and macrophage nitric oxide synthases, J. Biol. Chem. 267:20547–20550.

    PubMed  CAS  Google Scholar 

  • Sundseth, S. S., Kennel, S. J., and Waters, L. C., 1989, Monoclonal antibodies to resistancerelated forms of cytochrome P450 in Drosophila melanogaster, Biochem. J. 265:213–217.

    Google Scholar 

  • Swanson, H. I., Tulis, K., and Denison, M. S., 1993, Binding and transformed Ah receptor complex to a dioxin responsive transcriptional enhancer: Evidence for two distinct heteromeric DNA-binding forms, Biochemistry 32:12841–12849.

    Article  PubMed  CAS  Google Scholar 

  • Tallamy, D. W., 1986, Behavioral adaptations in insects to plant allelochemicals, in: Molecular Aspects of Insect-Plant Associations (L. B. Brattsten and S. Ahmad, eds.), pp. 273–300, Plenum Press, New York.

    Chapter  Google Scholar 

  • Throckmorton, L. H., 1982, Pathways of evolution in the genus Drosophila and the founding of the repleta group, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker and W. T. Starmer, eds.), pp. 33–47, Academic Press, Australia.

    Google Scholar 

  • Tieney, B., and Bresnick, E., 1981, Differences in the binding of 3-methylcholanthrene and phenobarbitone to rat liver nuclear protein fractions, Arch. Biochem. Biophys. 210:729–739.

    Article  Google Scholar 

  • Tomita, T., and Scott, J. G., 1995, cDNA and deduced protein sequence of CYP6D1: the putative gene for a cytochrome P450 responsible for pyrethroid resistance in house fly, Insect Biochem. Mol. Biol. 25:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto, M., 1983, Methods of genetic analysis of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou and T. Saito, eds.), pp. 71–98, Plenum Press, New York.

    Chapter  Google Scholar 

  • Turner, R. M., and Brown, D. E., 1982, Sonoran desertscrub, Desert Plants 4:181–221.

    Google Scholar 

  • von Wachenfeldt C., and Johnson E. F., 1995, Structures of eukaryotic cytochrome P450 enzymes. In: Cytochrome P450 Structure, Mechanism, and Biochemistry Second Edition (P. R. Ortiz de Montellano ed.) pp. 183–223, Plenum Press, New York.

    Chapter  Google Scholar 

  • Wallace, B., and Srb, A. M., 1964, Adaptation, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Wasserman, M., 1962, Cytological studies of the repleta group of the genus Drosophila, V. The mulleri subgroup, Univ. Tex. Publ. 6205:85–118.

    Google Scholar 

  • Wasserman, M., 1982, Cytological evolution in the Drosophila repleta species group, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker and W. T. Starmer, eds.), pp. 49–64, Academic Press, Sydney, Australia.

    Google Scholar 

  • Wasserman, M., 1992, Cytological evolution of the Drosophila repleta species group, in: Drosophila Inversion Polymorphism (C. B. Krimbas and J. R. Powell, eds.), pp 455–552, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Waters, L. C., and Nix, C. E., 1988, Regulation of insecticide resistance-related cytochrome P-450 expression in Drosophila melanogaster, Pest. Biochem. Physiol. 30:214–227.

    Article  CAS  Google Scholar 

  • Waters, L. C., Zelhof, A. C., Shaw, B. J., and Ch’ang, L.-Y., 1992, Possible involvement of the long terminal repeat of transposable element 17.6 in regulating expression of an insecticide resistance-associated P450 gene in Drosophila, Proc. Natl. Acad. Sci. USA 89:4855–4859.

    Article  CAS  Google Scholar 

  • Waxman, D. J., 1992, Regulation of liver-specific steroid-metabolizing cytochromes P450: Cholesterol 7a-hydroxylase, bile acid 6a-hydroxylase, and growth hormone-responsive steroid hormone hydroxylases, J. Steroid Biochem. Mol. Biol. 43:1055–1072.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, D. J., and Azaroff, L., 1992, Phenobarbital induction of cytochrome P-450 gene expression, J. Biol. Chem. 261:577–592.

    Google Scholar 

  • Waxman, D. J., Morrissey, J. J., and LeBlanc, G. A., 1989, Hypophysectomy differentially alters P-450 protein levels and enzyme activities in rat liver: Pituitary control of hepatic NADPH cytochrome P-450 reductase, Mol. Pharmacol. 35:519–525.

    PubMed  CAS  Google Scholar 

  • Waxman, D. J., Pampori, N. A., Ram, P. A., Agrawal, A. K., and Shapiro, B. H., 1991, Interpulse interval in circulating growth hormone patterns regulates sexually dimorphic expression of hepatic cytochrome P450, Proc. Natl. Acad. Sci. USA 88:6868–6872.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock, J. P., Jr., 1986, The regulation of cytochrome P450 gene expression, Annu. Rev. Pharmacol. Toxicol. 26:333–369.

    Article  PubMed  Google Scholar 

  • Wilkie, T. M., and Simon, M. I., 1991, Cloning multigene families with degenerate PCR primers, Methods Compan. Methods Enzymol. 2:32–41.

    Article  CAS  Google Scholar 

  • Williams, R. T., 1974, Interspecies variation in the metabolism of xenobiotics, Biochem. Soc. Trans. 2:359–377.

    CAS  Google Scholar 

  • Williams, R. T., and Millburn, P., 1975, Detoxification mechanisms, the biochemistry of foreign compounds, in: Physiological and Pharmacological Biochemistry (H. K. F. Blaschko, ed.), Ser. 1, Vol. 12, pp. 211–226, University Park Press, Baltimore.

    Google Scholar 

  • Williamson, M. S., Denholm, I., Bell, C. A., and Devonshire, A. L., 1993, Knockdown resistance (kdr) to DDT and pyrethroid insecticides maps to a sodium channel locus in the house fly (Musca domesticd), Mol. Gen. Genet. 240:17–22.

    PubMed  CAS  Google Scholar 

  • Yu, S. J., Berry, R. E., and Terriere, L. C., 1979, Host plant stimulation of detoxifying enzymes in a phytophagous insect, Pestic. Biochem. Physiol. 12:280–284.

    Article  CAS  Google Scholar 

  • Zhao, Z. Y., and Joho, R. H., 1990, Isolation of distantly related members in a multigene family using the polymerase chain reaction technique, Biochem. Biophys. Res. Commun. 167:174–182.

    Article  PubMed  CAS  Google Scholar 

  • Zijlstra, J. A., Vogel, E. W., and Breimer D. D., 1984, Strain differences and inducibility of microsomal oxidative enzymes in Drosophila melanogaster flies, Chem.-Biol. Interact. 48:317–338.

    Article  PubMed  CAS  Google Scholar 

  • Zimniak, P., and Waxman, D. J. 1993, P450 metabolism of endogenous steroid hormone, bile acid and fatty acid substrates, in: Handbook of Experimental Pharmacology, Cytochrome P450 (J. B. Schenkman and H. Greim, eds.), pp. 123–144, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fogleman, J.C., Danielson, P.B., Macintyre, R.J. (1998). The Molecular Basis of Adaptation in Drosophila . In: Hecht, M.K., Macintyre, R.J., Clegg, M.T. (eds) Evolutionary Biology. Evolutionary Biology, vol 30. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1751-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1751-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1753-9

  • Online ISBN: 978-1-4899-1751-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics