Skip to main content

Human Cytochrome P450 Enzymes

  • Chapter
Cytochrome P450

Abstract

In the past decade there has been considerable progress in the characterization of individual human P450 enzymes. These advances were initiated by early work on the purification of individual enzymes from human liver and other sources. The early work in the area was guided by a focus on the most abundant and easily purified enzymes.1–4It is now apparent, in retrospect, that these proteins were in the 2C and 3A families. Efforts were shifted to attempts to purify individual P450s on the basis of catalytic activities with the evidence that in some cases a single P450 could be identified in this way; e.g., the P450 now known as P450 2D6 was found to be under monogenic control. 5 The approach is technically demanding because of the need to do separations in the presence of detergents and then remove them before analysis of catalytic activity. Nevertheless, human P450s 1A1,6 1A2,7 2A6,8 2C8,9 2C9,9,10 2D67,11,12 2E1 13,14 3A4,15 3A5,16 4A11,17 and lanosterol 14α-demethylase18 were isolated in this general manner. Another approach that has been used, sometimes in a mode complementary to catalytic specificity, is purification on the basis of immunochemical similarity to animal P450s. 7,11,19,20

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang, P., Mason, P. S., and Guengerich, F. P., 1980, Purification of human liver cytochrome P-450 and comparison to the enzyme isolated from rat liver, Arch. Biochem. Biophys. 199: 206–219.

    Article  PubMed  CAS  Google Scholar 

  2. Beaune, P., Dansette, P., Flinois, J. P., Columelli, S., Mansuy, D., and Leroux, J. P., 1979, Partial purification of human liver cytochrome P-450, Biochem. Biophys. Res. Commun. 88: 826–832.

    Article  PubMed  CAS  Google Scholar 

  3. Kitada, M., and Kamataki, T., 1979, Partial purification and properties of cytochrome P450 from homogenates of human fetal livers, Biochem. Pharmacol. 28: 793–797.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, P. P., Beaune, P., Kaminsky, L. S., Dannan, G. A., Kadlubar, F. F., Larrey, D., and Guengerich, F. P., 1983, Purification and characterization of six cytochrome P-450 isozymes from human liver microsomes, Biochemistry 22: 5375–5383.

    Article  PubMed  CAS  Google Scholar 

  5. Smith, R. L., Idle, J. R., Mahgoub, A. A., Sloan, T. P., and Lancaster, R.,1978, Genetically determined defects of oxidation at carbon centres of drugs, Lancet 1: 943–944.

    Google Scholar 

  6. Shimada, T., Yun, C.-H., Yamazaki, H., Gautier, J.-C., Beaune, P. H., and Guengerich, F. P., 1992, Characterization of human lung microsomal cytochrome P-450 1Al and its role in the oxidation of chemical carcinogens, Mol. Pharmacal. 41: 856–864.

    CAS  Google Scholar 

  7. Distlerath, L. M., Reilly, P. E. B., Martin, M. V., Davis, G. G., Wilkinson, G. R., and Guengerich, F. P., 1985, Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism, J. Biol. Chem. 260: 9057–9067.

    PubMed  CAS  Google Scholar 

  8. Yun, C.-H., Shimada, T., and Guengerich, F. P., 1991, Purification and characterization of human liver microsomal cytochrome P-450 2A6, Mol. Pharmacol. 40: 679–685.

    PubMed  CAS  Google Scholar 

  9. Ged, C., Umbenhauer, D. R., Bellew, T. M., Bork, R. W., Srivastava, P. K., Shinriki, N., Lloyd, R. S., and Guengerich, F. P., 1988, Characterization of cDNAs, mRNAs, and proteins related to human liver microsomal cytochrome P-450 (S)-mephenytoin 4’-hydroxylase, Biochemistry 27: 6929–6940.

    Article  PubMed  CAS  Google Scholar 

  10. Shimada, T., Misono, K. S., and Guengerich, F. P., 1986, Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism. Purification and characterization of two similar forms involved in the reaction, J. Biol. Chem. 261: 909–921.

    PubMed  CAS  Google Scholar 

  11. Gut, J., Catin, T., Dayer, P., Kronbach, T., Zanger, U., and Meyer, U.A., 1986, Debrisoquine/sparteine-type polymorphism of drug oxidation: Purification and characterization of two functionally different human liver cytochrome P-450 isozymes involved in impaired hydroxylation of the prototype substrate bufuralol, J. Biol. Chem. 261: 11734–11743.

    PubMed  CAS  Google Scholar 

  12. Birgersson, C., Morgan, E. T., Jömvall, H., and von Bahr, C., 1986, Purification of a desmethylimipramine and debrisoquine hydroxylating cytochrome P-450 from human liver, Biochem. Pharmacol. 35: 3165–3166.

    Article  PubMed  CAS  Google Scholar 

  13. Wrighton, S. A., Thomas, P. E., Ryan, D. E., and Levin, W., 1987, Purification and characterization of ethanol-inducible human hepatic cytochrome P-450HLj, Arch. Biochem. Biophys. 258: 292–297.

    Article  PubMed  CAS  Google Scholar 

  14. Guengerich, F. P., Kim, D.-H., and Iwasaki, M., 1991, Role of human cytochrome P-450 IIE1 in the oxidation of several low molecular weight cancer suspects, Chem. Res. Toxicol. 4: 168–179.

    Article  PubMed  CAS  Google Scholar 

  15. Guengerich, F. R, Martin, M. V., Beaune, P. H., Kremers, P., Wolff, T., and Waxman, D. J., 1986, Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism, J. Biol. Chem. 261: 5051–5060.

    PubMed  CAS  Google Scholar 

  16. Wrighton, S.A., and VandenBranden, M., 1989, Isolation and characterization of human fetal liver cytochrome P450HLp2: A third member of the P450III gene family, Arch. Biochem. Biophys. 268: 144–151.

    Article  PubMed  CAS  Google Scholar 

  17. Kawashima, H., Kusunose, E., Kubota, I., Maekawa, M., and Kusunose, M., 1992, Purification and NHs-terminal amino acid sequences of human and rat kidney fatty acid tu-hydroxylases, Biochim. Biophys. Acta 1123: 156–162.

    Article  PubMed  CAS  Google Scholar 

  18. Sonoda, Y., Endo, M., Ishida, K., Sato, Y., Fukusen, N., and Fukuhara, M., 1993, Purification of a human P-450 isozyme catalyzing lanosterol 14a-demethylation, Biochim. Biophys. Acta 1170: 92–97.

    Article  PubMed  CAS  Google Scholar 

  19. Watkins, P. B., Wrighton, S. A., Maurel, P., Schuetz, E. G., Mendez-Picon, G., Parker, G. A., and Guzelian, P. S., 1985, Identification of an inducible form of cytochrome P-450 in human liver, Proc. Natl. Acad. Sci. USA 82: 6310–6314.

    Article  PubMed  CAS  Google Scholar 

  20. Mimura, M., Baba, T., Yamazaki, Y., Ohmori, S., Inui, Y., Gonzalez, F. J., Guengerich, F. R, and Shimada, T., 1993, Characterization of cytochrome P450 2B6 in human liver microsomes, Drug Metab. Dispos 21: 1048–1056.

    PubMed  CAS  Google Scholar 

  21. Gonzalez, F. J., 1989, The molecular biology of cytochrome P450s, Pharmacol. Rev. 40: 243–288.

    Google Scholar 

  22. Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. R, Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K., and Nebert, D. W., 1993, The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature, DNA Cell Biol. 12: 1–51.

    Article  PubMed  CAS  Google Scholar 

  23. Tateishi, T., Krivoruk, Y., Wood, A. J. J., Guengerich, F. R, and Wood, M., 1994, Identification of human liver P450 3A4 as the enzyme responsible for sulfentanil N-dealkylation, in: Abstracts, 12th Int. Congr. Pharmacol. (July 24–29, Montreal).

    Google Scholar 

  24. Shimada, T., Yamazaki, H., Mimura, M., Inui, Y., and Guengerich, F. R, 1994, Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens, and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians, J. Pharmacol. Exp. Ther. 270: 414–423.

    PubMed  CAS  Google Scholar 

  25. Omura, T., and Sato, R., 1964, The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature, J. Biol. Chem. 239: 2370–2378.

    PubMed  CAS  Google Scholar 

  26. Nakamura, K., Goto, E, Ray, W. A., McAllister, C. B., Jacqz, E., Wilkinson, G. R., and Branch, R. A., 1985, Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations, Clin. Pharmacol. Thee. 38: 402–408.

    Article  CAS  Google Scholar 

  27. Relling, M. V., Cherrie, J., Schell, M. J., Petros, W. P., Meyer, W. H., and Evans, W. E., 1991, Lower prevalence of the debrisoquin oxidative poor metabolizer phenotype in American black versus white subjects, Clin. Pharmacol. Ther. 50: 308–313.

    Article  PubMed  CAS  Google Scholar 

  28. Keeney, D.S., and Waterman, M. R., 1993, Regulation of steroid hydroxylase gene expression: Importance to physiology and disease, Pharmacol. Ther. 58: 301–317.

    Article  PubMed  CAS  Google Scholar 

  29. Guengerich, F. P., and Shimada, T., 1991, Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes, Chem. Res. Toxicol. 4: 391–407.

    Article  PubMed  CAS  Google Scholar 

  30. Sesardic, D., Boobis, A., Murray, B., Murray, S., Segura, J., De La Torre, R., and Davies, D., 1990, Furafylline is a potent and selective inhibitor of cytochrome P450 lA2 in man, Br. J. Clin. Pharmacol. 29: 651–663.

    Article  PubMed  CAS  Google Scholar 

  31. Kunze, K. L., and Trager, W. F., 1993, Isoform-selective mechanism-based inhibition of human cytochrome-P450 1A2 by furafylline, Chem. Res. Toxicol. 6: 649–656.

    Article  PubMed  CAS  Google Scholar 

  32. Gallagher, E. P., Wienkers, L. C., Stapleton, P. L., Kunze, K. L., and Eaton, D. L., 1994, Role of human microsomal and human complementary DNA-expressed cytochrome-P4501A2 and cytochromeP4503A4 in the bioactivation of aflatoxin Bt, Cancer Res. 54: 101–108.

    PubMed  CAS  Google Scholar 

  33. Hammons, G. J., Milton, D., Guengerich, F. P., Tukey, R. H., and Kadlubar, E F., 1994, Human cytochrome P450 1A2-catalyzed N-hydroxylation of carcinogenic heterocyclic amines, FASEB J. 8: A1381.

    Google Scholar 

  34. Guengerich, E P., Wang, P., and Davidson, N. K., 1982, Estimation of isozymes of microsomal cytochrome P-450 in rats, rabbits, and humans using immunochemical staining coupled with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Biochemistry 21: 1698–1706.

    Article  PubMed  CAS  Google Scholar 

  35. Beaune, P., Kremers, P. G., Kaminsky, L. S., de Graeve, J., and Guengerich, E R, 1986, Comparison of monooxygenase activities and cytochrome P-450 isozyme concentrations in human liver microsomes, Drug Metab. Dispos. 14: 437–442.

    PubMed  CAS  Google Scholar 

  36. Shet, M. S., Fisher, C. W., Holmans, P. L., and Estabrook, R. W., 1993, Human cytochrome P450 3A4: Enzymatic properties of a purified recombinant fusion protein containing NADPH-P450 reductase, Proc. Natl. Acad. Sci. USA 90: 11748–11752.

    Article  PubMed  CAS  Google Scholar 

  37. Wang, R. W., Kari, P. H., Lu, A.Y.H., Thomas, P. E., Guengerich, F. R, and Vyas, K. R, 1991, Biotransformation of lovastatin. IV. Identification of cytochrome P-450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes, Arch. Biochem. Biophys. 290: 355–361.

    Article  PubMed  CAS  Google Scholar 

  38. Guengerich, F. R, 1990, Mechanism-based inactivation of human liver cytochrome P-450 IIIA4 by gestodene, Chem. Res. Toxicol. 3: 363–371.

    Article  PubMed  CAS  Google Scholar 

  39. Distlerath, L. M., and Guengerich, F. P., 1984, Characterization of a human liver cytochrome P-450 involved in the oxidation of debrisoquine and other drugs using antibodies raised to the analogous rat enzyme, Proc. Natl. Acad. Sci. USA 81: 7348–7352.

    Article  PubMed  CAS  Google Scholar 

  40. Guo, Z., Gillam, E.M.J., Ohmori, S., Tukey, R. H., and Guengerich, F. R, 1995, Expression of modified human cytochrome P450 1A1 in Escherichia coli. Effects of 5’ substitution, purification, spectral characterization, reconstitution conditions and catalytic properties, Arch. Biochem. Biophys. 317: 374384.

    Google Scholar 

  41. Edwards, R. J., Singleton, A. M., Sesardic, D., Boobis, A. R., and Davies, D. S., 1988, Antibodies to a synthetic peptide that react specifically with a common surface region on two hydrocarbon-inducible isoenzymes of cytochrome P-450 in the rat, Biochem. Pharmacol. 37: 3735–3741.

    Article  PubMed  CAS  Google Scholar 

  42. Fujino, T., Park, S. S., West, D., and Gelboin, H. V., 1982, Phenotyping of cytochromes P-450 in human tissues with monoclonal antibodies, Proc. Natl. Acad. Sci. USA 79: 3682–3686.

    Article  PubMed  CAS  Google Scholar 

  43. Reik, L. M., Levin, W., Ryan, D. E., Maines, S. L., and Thomas, R E., 1985, Monoclonal antibodies distinguish among isozymes of the cytochrome P-450b subfamily, Arch. Biochem. Biophys. 242:365-382.

    Google Scholar 

  44. Gelboin, H. V., and Friedman, F. K., 1985, Monoclonal antibodies for studies on xenobiotic and endobiotic metabolism, Biochem. Pharmacol. 34: 2225–2234.

    Article  PubMed  CAS  Google Scholar 

  45. Goldfarb, I., Korzekwa, K., Krausz, K. W., Gonzalez, F., and Gelboin, H. V., 1993, Cross-reactivity of thirteen monoclonal antibodies with ten vaccinia cDNA expressed rat, mouse and human cytochrome P450s, Biochem. Pharmacol. 46: 787–790.

    Article  PubMed  CAS  Google Scholar 

  46. Wrighton, S. A., VandenBranden, M., Becker, G. W., Black, S. D., and Thomas, P. E., 1992, Two monoclonal antibodies recognizing different epitomes on rat cytochrome P450 IIB1 react with human IIE!, Mol. Pharmacol. 41: 76–82.

    PubMed  CAS  Google Scholar 

  47. Wrighton, S. A., Stevens, J. C., Becker, G. W., and VandenBranden, M., 1993, Isolation and characterization of human liver cytochrome P450 2C19: Correlation between 2C19 and 5-mephenytoin 4’-hydroxylation, Arch. Biochem. Biophys. 306: 240–245.

    Article  PubMed  CAS  Google Scholar 

  48. Soucek, P., Guo, Z., Sandhu, P., Martin, M. V., and Guengerich, F. P., 1994, Immunochemical cross-reactivity of human cytochrome P450 enzymes analyzed with recombinant proteins, FASEB J. 8:Al248.

    Google Scholar 

  49. Wrighton, S. A., and Stevens, J. C., 1992, The human hepatic cytochromes P450 involved in drug metabolism, Crit. Rev. Toxicol. 22: 1–21.

    Article  PubMed  CAS  Google Scholar 

  50. Oeda, K., Sakaki, T., and Ohkawa, H., 1985, Expression of rat liver cytochrome P-450MC cDNA in Saccharomyces cerevisiae, DNA 4: 203–210.

    Article  PubMed  CAS  Google Scholar 

  51. Zuber, M. X., Simpson, E. R., and Waterman, M. R., 1986, Expression of bovine 17a-hydroxylase cytochrome P-450 cDNA in nonsteroidogenic (COS 1) cells, Science 234: 1258–1261.

    Article  PubMed  CAS  Google Scholar 

  52. Gonzalez, F. J., Kimura, S., Tamura, S., and Gelboin, H. V., 1991, Expression of mammalian cytochrome P450 using baculovirus, Methods Enzymol. 206: 93–99.

    Article  PubMed  CAS  Google Scholar 

  53. Guengerich, F. P., Brian, W. R., Sari, M.-A., and Ross, J.-T., 1991, Expression of mammalian cytochrome P450 enzymes using yeast-based vectors, Methods Enzymol. 206: 130–145.

    Article  PubMed  CAS  Google Scholar 

  54. Gonzalez, F. J., Aoyama, T., and Gelboin, H. V., 1991, Expression of mammalian cytochrome P450 using vaccinia virus, Methods Enzymol. 206: 85–92.

    Article  PubMed  CAS  Google Scholar 

  55. Clark, B. J., and Waterman, M. R., 1991, Heterologous expression of mammalian P450 in COS cells, Methods Enzymol. 206: 100–108.

    Article  PubMed  CAS  Google Scholar 

  56. Porter, T. D., and Larson, J. R., 1991, Expression of mammalian P450s in Escherichia coli, Methods Enzymol. 206: 108–116.

    Article  PubMed  CAS  Google Scholar 

  57. Doehmer, J., and Oesch, F., 1991, V79 Chinese hamster cells genetically engineered for stable expression of cytochromes P450, Methods Enzymol. 206: 117–123.

    Article  PubMed  CAS  Google Scholar 

  58. Crespi, C. L., 1991, Expression of cytochrome P450 cDNAs in human B lymphoblastoid cells: Applications to toxicology and metabolite analysis, Methods Enzymol. 206: 123–129.

    Article  PubMed  CAS  Google Scholar 

  59. Imai, Y., and Nakamura, M., 1989, Point mutations at threonine-301 modify substrate specificity of rabbit liver microsomal cytochromes P-450 (laurate (w-1)-hydroxylase and testosterone 16a-hydroxylase), Biochem. Biophys. Res. Commun. 158: 717–722.

    Article  PubMed  CAS  Google Scholar 

  60. Gill am, E. M. J., Baba, T., Kim, B.-R., Ohmori, S., and Guengerich, E R, 1993, Expression of modified human cytochrome P450 3A4 in Escherichia coli and purification and reconstitution of the enzyme, Arch. Biochem. Biophys. 305: 123–131.

    Article  PubMed  CAS  Google Scholar 

  61. Sandhu, R, Baba, T., and Guengerich, F. P., 1993, Expression of modified cytochrome P450 2C10 in Escherichia coli, purification, and reconstitution of catalytic activity, Arch. Biochem. Biophys. 306: 443–450.

    Article  PubMed  CAS  Google Scholar 

  62. Sandhu, P., Guo, Z., Baba, T., Martin, M. V., Tukey, R. H., and Guengerich, E R, 1994, Expression of modified human cytochrome P450 1A2 in Escherichia coli. Stabilization, purification, characterization, and catalytic activities of the enzyme, Arch. Biochem. Biophys. 309: 168–177.

    Article  PubMed  CAS  Google Scholar 

  63. Gillam, E.M.J., Guo, Z., and Guengerich, F R, 1994, Expression of modified human cytochrome P450 2E1 in Escherichia coli, purification, and spectral and catalytic properties, Arch. Biochem. Biophys. 312: 59–66.

    Article  PubMed  CAS  Google Scholar 

  64. Sakaki, T., Oeda, K., Yabusaki, Y., and Ohkawa, H., 1986, Monooxygenase activity of Saccharomyces cerevisiae cells transformed with expression plasmids carrying rat cytochrome P-450MC cDNA, J. Biochem. 99: 741–749.

    PubMed  CAS  Google Scholar 

  65. Dogra, S., Doehmer, J., Glatt, H., Molders, H., Siegert, P., Friedberg, T., Seidel, A., and Oesch, F., 1990, Stable expression of rat cytochrome P-450IA1 cDNA in V79 Chinese hamster cells and their use in mutagenicity testing, Mol. Pharmacol. 37: 608–613.

    PubMed  CAS  Google Scholar 

  66. Fisher, C. W., Shet, M. S., Caudle, D. L., Martin-Wixtrom, C.A., and Estabrook, R. W., 1992, High-level expression in Escherichia coli of enzymatically active fusion proteins containing the domains of mammalian cytochromes P450 and NADPH-P450 reductase flavoprotein, Proc. Natl. Acad. Sci. USA 89: 10817–10821.

    Article  PubMed  CAS  Google Scholar 

  67. Morel, F., Beaune, P. H., Ratanasavanh, D., Flinois, J.-P., Yang, C.-S., Guengerich, F. P., and Guillouzo, A., 1990, Expression of cytochrome P-450 enzymes in cultured human hepatocytes, Eur. J. Biochem. 191: 437–444.

    Article  PubMed  CAS  Google Scholar 

  68. Dahlin, D. C., Miwa, G. T., Lu, A.Y. H., and Nelson, S. D., 1984, N-Acetyl-p-benzoquinone imine: A cytochrome P-450-mediated oxidation product of acetaminophen, Proc. Natl. Acad. Sci. USA 81: 1327–1331.

    Article  PubMed  CAS  Google Scholar 

  69. Higashi, Y., Hiromasa, T., Tanae, A., Miki, T., Nakura, J., Kondo, T., Ohura, T., Ogawa, E., Nakayama, K., and Fujii-Kuriyama, Y., 1991, Effects of individual mutations in the P-450n (C21) pseudogene on the P-450 (C21) activity and their distribution in the patient genomes of congenital steroid 21-hydroxylase deficiency, J. Biochem. 109: 638–644.

    PubMed  CAS  Google Scholar 

  70. Miller, W.L., and Morel, Y., 1989, The molecular genetics of 21-hydroxylase deficiency, Annu. Rev. Genet. 23: 371–393.

    Article  PubMed  CAS  Google Scholar 

  71. White, P. C., Dupont, J., New, M. I., Leiberman, E., Hochberg, Z., and Rösler, A., 1991, A mutation in CYP11Ba (Arg 448-H is) associated with steroid 11(3-hydroxylase deficiency in Jews of Moroccan origin, J. Clin. Invest. 87: 1664–1667.

    Article  PubMed  CAS  Google Scholar 

  72. Distlerath, L. M., and Guengerich, E P., 1987, Enzymology of human liver cytochromes P-450, in: Mammalian Cytochromes P-450, Vol. 1 ( F. P. Guengerich, ed.), CRC Press, Boca Raton, FL, pp. 133–198.

    Google Scholar 

  73. Tinel, M., Belghiti, J., Descatoire, V., Amouyal, G., Letteron, P., Geneve, J., Larrey, D., and Pessayre, D., 1987, Inactivation of human liver cytochrome P-450 by the drug methoxsalen and other psoralen derivatives, Biochem. Pharmacol. 36: 951–955.

    Article  PubMed  CAS  Google Scholar 

  74. Ortiz de Montellano, P. R., and Correia, M. A., 1983, Suicidal destruction of cytochrome P-450 during oxidative drug metabolism, Annu. Rev. Pharmacol. Toxicol. 23: 481–503.

    Article  Google Scholar 

  75. Bailey, D. G., Spence, J. D., Munoz, C., and Arnold, J. M. O., 1991, Interaction of citrus juices with felodipine and nifedipine, Lancet 337: 268–269.

    Article  PubMed  CAS  Google Scholar 

  76. Barbeau, A., Roy, M., Bernier, G., Campanella, G., and Paris, S., 1987, Ecogenetics of Parkinson’s disease: Prevalence and environmental aspects in rural areas, Can. J. Neurol. Sci. 14: 36–41.

    PubMed  CAS  Google Scholar 

  77. Barbeau, A., Roy, M., Paris, S., Cloutier, T., Plasse, L., and Poirier, J.,1985, Ecogenetics of Parkinson’s disease: 4-Hydroxylation of debrisoquine, Lancet 11: 1213–1215.

    Google Scholar 

  78. Armstrong, M., Daly, A. K., Cholerton, S., Bateman, D. N., and Idle, J. R., 1992, Mutant debrisoquine hydroxylation genes in Parkinson’s disease, Lancet 339: 1017–1018.

    Article  PubMed  CAS  Google Scholar 

  79. Fonne-Pfister, R., Bargetzi, M. J., and Meyer, U. A., 1987, MPTP, the neurotoxin inducing Parkinson’s disease, is a potent competitive inhibitor of human and rat cytochrome P450 isozymes (P450bufl, P450dbl) catalyzing debrisoquine 4-hydroxylation, Biochem. Biophys. Res. Commun. 148: 1144 1150.

    Google Scholar 

  80. Ayesh, R., Idle, J. R., Ritchie, J. C., Crothers, M. J., and Hetzel, M. R., 1984, Metabolic oxidation phenotypes as markers for susceptibility to lung cancer, Nature 312: 169–170.

    Article  PubMed  CAS  Google Scholar 

  81. Idle, J. R., Armstrong, M., Boddy, A. V., Boustead, C., Cholerton, S., Cooper, J., Daly, A. K., Ellis, J., Gregory, W., Hadidi, H., Höfer, C., Holt, J., Leathart, J., McCracken, N., Monkman, S. C., Painter, J. E., Taber, H., Walker, D., and Yule, M., 1992, The pharmacogenetics of chemical carcinogenesis, Pharmacogenetics 2: 246–258.

    Article  PubMed  CAS  Google Scholar 

  82. Sugimura, H., Caporaso, N. E., Shaw, G. L., Modali, R. V., Gonzalez, F. J., Hoover, R. N., Resau, J. H., Trump, B. F., Weston, A., and Harris, C. C., 1990, Human debrisoquine hydroxylase gene polymorphisms in cancer patients and controls, Carcinogenesis 11: 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  83. Kaisary, A., Smith, P., Jaczq, E., McAllister, C. B., Wilkinson, G. R, Ray, W. A., and Branch, R. A., 1987, Genetic predisposition to bladder cancer: Ability to hydroxylate debrisoquine and mephenytoin as risk factors, Cancer Res. 47: 5488–5493.

    Google Scholar 

  84. Law, M. R., Hetzel, M. R., and Idle, J. R., 1989, Debrisoquine metabolism and genetic predisposition to lung cancer, Br. J Cancer 54: 686–687.

    Article  Google Scholar 

  85. Caporaso, N. E., Tucker, M. A., Hoover, R. N., Hayes, R. B., Pickle, L. W., Issaq, H. J., Muschik, G. M., Green-Gallo, L., Buivys, D., Aisner, S., Resau, J. H., Trump, B. F., Tollerud, D., Weston, A., and Harris, C. C., 1990, Lung cancer and the debrisoquine metabolic phenotype, J. Natl. Cancer Inst. 82: 1264–1271.

    Article  PubMed  CAS  Google Scholar 

  86. Wolff, T., Distlerath, L. M., Worthington, M. T., Groopman, J. D., Hammons, G. J., Kadlubar, F. F., Prough, R. A., Martin, M. V., and Guengerich, F. P., 1985, Substrate specificity of human liver cytochrome P-450 debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modeling, Cancer Res. 45: 2116–2122.

    PubMed  CAS  Google Scholar 

  87. Shimada, T., and Guengerich, F. P., 1991, Activation of amino-a-carboline, 2-amino-1-methyl-6phenylimidazo[4,5-b]pyridine, and a copper phthalocyanine cellulose extract of cigarette smoke condensate by cytochrome P450 enzymes in rat and human liver microsomes, Cancer Res. 51: 5284–5291.

    PubMed  CAS  Google Scholar 

  88. Roots, I., Drakoulis, N., and Brockmöller, J., 1993, Still an open question: Does active CYP2D6 predispose to lung cancer? in: 8th International Conference on Cytochrome P450: Biochemistry, Biophysics, and Molecular Biology (October 24–28, Lisbon), p. 159.

    Google Scholar 

  89. Ritter, J., Somasundaram, R., Heinemeyer, G., and Roots, I., 1986, The debrisoquine hydroxylation phenotype and the acetylator phenotype as genetic risk factors for the occurrence of larynx and pharynx carcinoma, Acta Pharmacol. Toxicol. 59 (Suppl. 5): 221.

    Google Scholar 

  90. Drakoulis, N., Minks, T., Ploch, M., Otte, F., Heinemeyer, G., Kampf, D., Loddenkemper, R., and Roots, I., 1986, Questionable association of debrisoquine hydroxylator phenotype and risk for bronchial carcinoma, Acta Pharmacol. Toxicol. 59 (Suppl. 5): 220.

    Google Scholar 

  91. Speirs, C. J., Murray, S., Davies, D. S., Mabadeje, A. E B., and Boobis, A. R., 1990, Debrisoquine oxidation phenotype and susceptibility to lung cancer, Br. J. Clin. Pharmacol. 29: 101–109.

    Article  PubMed  CAS  Google Scholar 

  92. Ladero, J. M., Benitez, J., Gonzalez, J. E, Vargas, E., and Díaz-Rubio, M., 1991, Oxidative polymorphism of debrisoquine is not related to human colo-rectal cancer, Eur. J. Clin. Pharmacol. 40: 525–527.

    Article  PubMed  CAS  Google Scholar 

  93. Caporaso, N. E., Shields, P. G., Landi, M. T., Shaw, G. L., Tucker, M. A., Hoover, M., Sugimura, H., Weston, A., and Harris, C. C., 1992, The debrisoquine metabolic phenotype and DNA-based assays: Implications of misclassification for the association of lung cancer and the debrisoquine metabolic phenotype, Environ. Health Perspect. 98: 101–105.

    Article  PubMed  CAS  Google Scholar 

  94. Waller, D. G., Renwick, A. G., Gruchy, B. S., and George, C. F., 1984, The first pass metabolism of nifedipine in man, Br. J. Clin. Pharmacol. 18: 951–954.

    Article  PubMed  CAS  Google Scholar 

  95. Kaminsky, L.S., and Fasco, M. J., 1992, Small intestinal cytochromes P450, Crit. Rev. Toxicol. 21: 407–422.

    Article  CAS  Google Scholar 

  96. Kolars, J. C., Schmiedlin-Ren, P., Schuetz, J. D., Fang, C., and Watkins, P. B., 1992, Identification of rifampin-inducible P450II1A4 (CYP3A4) in human small bowel enterocytes, J. Clin. Invest. 90: 1871–1878.

    Google Scholar 

  97. Meese, C. O., Fischer, C., Kupfer, A., Wisser, H., and Eichelbaum, M., 1991, Identification of the “major” polymorphic carbocysteine metabolite as S-(carboxymethylthio)-L-cysteine, Biochem. Pharmacol. 42: R13 - R16.

    Article  PubMed  CAS  Google Scholar 

  98. TLrgeon, D. K., Normolle, D. P., Leichtman, A. B., Annesley, T. M., Smith, D. E., and Watkins, P. B., 1992, Erythromycin breath test predicts oral clearance of cyclosporine in kidney transplant recipients, Clin. Pharmacol. Ther. 52: 471–478.

    Article  Google Scholar 

  99. Cresteil, T., and Eisen, H.J., 1988, Regulation of human cytochrome P1–450 gene, in: Liver Cells and Drugs, Colloque INSERM ( A. Guillouzo, ed.), INSERM/John Libbey Erotext Ltd., London, pp. 51–58.

    Google Scholar 

  100. Schweikl, H., Taylor, J. A., Kitareewan, S., Linko, P., Nagorney, D., and Goldstein, J. A., 1993, Expression of CYPIAJ and CYPIA2 genes in human liver, Pharmacogenetics 3: 239–249.

    Article  PubMed  CAS  Google Scholar 

  101. Kellerman, G., Luyten-Kellerman, M., and Shaw, C. R., 1973, Genetic variation of aryl hydrocarbon hydroxylase in human lymphocytes, Am. J. Hum. Genet. 25: 327–331.

    Google Scholar 

  102. Kellerman, G., Shaw, C. R., and Luyten-Kellerman, M., 1973, Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma, N. Engl. J Med. 298: 934–937.

    Article  Google Scholar 

  103. Paigen, B., Ward, E., Reilly, A., Houten, L., Gurtoo, H. L., Minowada, J., Steenland, K., Havens, M. B., and Sartori, P., 1981, Seasonal variation of aryl hydrocarbon hydroxylase activity in human lymphocytes, Cancer Res. 41: 2757–2761.

    PubMed  CAS  Google Scholar 

  104. Leboeuf, R., Havens, M., Tabron, D., and Paigen, B., 1981, Arylhydrocarbon hydroxylase activity and cytochrome P-450 in human tissues, Biochim. Biophys. Acta 658: 348–355.

    Article  PubMed  CAS  Google Scholar 

  105. Kouri, R. E., McKinney, C. E., Levine, A. S., Edwards, B. K., Vesell, E. S., Nebert, D. W., and McLemore, T. L., 1984, Variations in aryl hydrocarbon hydroxylase activities in mitogen-activated human and nonhuman primate lymphocytes, Toxicol. Pathol. 12: 44–48.

    Article  PubMed  CAS  Google Scholar 

  106. Kouri, R. E., McKinney, C. E., Slomiany, D. J., Snodgrass, D. R., Wray, N. P., and McLemore, T. L., 1982, Positive correlation between high aryl hydrocarbon hydroxylase activity and primary lung cancer as analyzed in cryopreserved lymphocytes, Cancer Res. 42: 5030–5037.

    PubMed  CAS  Google Scholar 

  107. McLemore, T. L., Adelberg, S., Liu, M. C., McMahon, N. A., Yu, S. J., Hubbard, W.C., Czerwinski, M., Wood, T. G., Storeng, R., Lubet, R. A., Eggleston, J. C., Boyd, M.R., and Hines, R. N., 1990, Expression of CYP1A1 gene in patients with lung cancer: Evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas, J. Natl. Cancer Inst. 82: 1333–1339.

    Article  PubMed  CAS  Google Scholar 

  108. Hayashi, S., Watanabe, J., Nakachi, K., and Kawajiri, K., 1991, Genetic linkage of lung cancer-associated Mspl polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene, J. Biochem. 110: 407–411.

    PubMed  CAS  Google Scholar 

  109. Tefre, T., Ryberg, D., Haugen, A., Nebert, D. W., Skaug, V., Brogger, A., and Borresen, A. L., 1991, Human CYP1A 1(cytochrome P1450) gene: Lack of association between the Msp I restriction fragment length polymorphism and incidence of lung cancer in a Norwegian population, Pharmacogenetics 1: 20–25.

    Article  PubMed  CAS  Google Scholar 

  110. Hirvonen, A., Husgafvel-Pursiainen, K., Karjalainen, A., Anttila, S., and Vainio, H., 1992, Point-mutational Mspl and Ile-Val polymorphisms closely linked in the CYP1A1 gene: Lack of association with susceptibility to lung cancer in a Finnish study population, Cancer Epidemiol. Biomarkers Prey. 1: 485–489.

    CAS  Google Scholar 

  111. Hayashi, S. I., Watanabe, J., Nakachi, K., and Kawajiri, K., 1991, PCR detection of an A/G polymorphism within exon 7 of the CYPIA1 gene, Nucl. Acids Res. 19: 4797.

    Article  PubMed  CAS  Google Scholar 

  112. Drakoulis, N., Cascorbi, I., Brockmöller, J., Gross, C. R., and Roots, I., 1993, Exon-7 point mutation (M2; 4889A>G) in human CYP1A1 gene as susceptibility factor for lung cancer, in: 8th International Conference on Cytochrome P450: Biochemistry, Biophysics, and Molecular Biology (October 24–28, Lisbon, Portugal ), p. 204.

    Google Scholar 

  113. Wedlund, R. J., Kimura, S., Gonzalez, F. J., and Nebert, D. W., 1994, I462V mutation in the human CYP1A1 gene: Lack of correlation with either the Msp I 1.9 kb (M2) allele or CYPIA1 inducibility in a three-generation family of East Mediterranean descent, Pharmacogenetics 4: 21–26.

    Article  PubMed  CAS  Google Scholar 

  114. Crofts, F., Cosma, G. N., Currie, D., Taioli, E., Toniolo, R, and Garte, S. J., 1993, A novel CYP1A1 gene polymorphism in African-Americans, Carcinogenesis 14: 1729–1731.

    Article  PubMed  CAS  Google Scholar 

  115. Roberts-Thomson, S. J., McManus, M. E., Tukey, R. H., Gonzalez, F. J., and Holder, G. M., 1993, The catalytic activity of four expressed human cytochrome P450s towards benzo[a]pyrene and the isomers of its proximate carcinogen, Biochem. Biophys. Res. Commun. 192: 1373–1379.

    Article  PubMed  CAS  Google Scholar 

  116. Shimada, T., Martin, M. V., Pruess-Schwartz, D., Marnett, L. J., and Guengerich, F. R, 1989, Roles of individual human cytochrome P450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycydic aromatic hydrocarbons, Cancer Res. 49: 6304–6312.

    PubMed  CAS  Google Scholar 

  117. Yun, C.-H., Shimada, T., and Guengerich, F. P., 1992, Roles of human liver cytochrome P-4502C and 3A enzymes in the 3-hydroxylation of benzo(a)pyrene, Cancer Res. 52: 1868–1874.

    PubMed  CAS  Google Scholar 

  118. McManus, M. E., Burgess, W. M., Veronese, M. E., Huggett, A., Quattrochi, L. C., and Tukey, R. H., 1990, Metabolism of 2-acetylaminofluorene and benzo(a)pyrene and activation of food-derived heterocyclic amine mutagens by human cytochromes P-450, Cancer Res. 50: 3367–3376.

    PubMed  CAS  Google Scholar 

  119. Eugster, H. P., Sengstag, C., Meyer, U. A., Hinnen, A., and Wiirgler, F. E., 1990, Constitutive and inducible expression of human cytochrome P450IA1 in yeast Saccharomyces cerevisiae: An alternative enzyme source for in vitro studies, Biochem. Biophys. Res. Commun. 172: 737–744.

    Article  PubMed  CAS  Google Scholar 

  120. Ching, M. S., Lennard, M. S., Tucker, G. T., Woods, H. E, Kelly, D. E., and Kelly, S. L., 1991, The expression of human cytochrome P450IA1 in the yeast Saccharomyces cerevisiae, Biochem. Pharmacol. 42: 753–758.

    Article  PubMed  CAS  Google Scholar 

  121. Renaud, J. P., Peyronneau, M. A., Urban, P., Truan, G., Cullin, C., Pompon, D., Beaune, P., and Mansuy, D., 1993, Recombinant yeast in drug metabolism, Toxicology 182: 39–52.

    Article  Google Scholar 

  122. Simon, I., Berthou, F., Riche, C., Beaune, P., and Ratanasavanh, D., 1993, Both cytochrome P4501A and 3A4 are involved in the N-demethylation of tamoxifen, in: Abstracts, 5th Europenn ISSX Meeting (September 26–29, Tours), Vol. 3, p. 44.

    Google Scholar 

  123. Berthou, E, Carriere, V., Ratanasavanh, D., Goasduff, T., Morel, F., Gautier, J. C., Guillouzo, A., and Beaune, P., 1993, On the specificity of chlorzoxazone as drug probe of cytochrome P4502E1, in: Abstracts, 5th European ISSX Meeting (September 26–29, Tours), Vol. 3, p. 116.

    Google Scholar 

  124. Farin, F. M., and Omiecinski, C. J., 1993, Regiospecific expression of cytochrome P-450s and microsomal epoxide hydrolase in human brain tissue, J. Toxicol. Environ. Health 40: 317–335.

    Article  PubMed  CAS  Google Scholar 

  125. Whitlock, J. P., Jr., 1993, Mechanistic aspects of dioxin action, Chem. Res. Toxicol. 6: 754–763.

    Article  PubMed  CAS  Google Scholar 

  126. Quattrochi, L. C., Vu, T., and Tukey, R. H., 1994, The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports Ah-receptor binding and promoter-specific induction, J. Biol. Chem. 269: 6949–6954.

    PubMed  CAS  Google Scholar 

  127. Butler, M. A., Iwasaki, M., Guengerich, F. P., and Kadlubar, F. F., 1989, Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines, Proc. Natl. Acad. Sci. USA 86: 7696–7700.

    Article  PubMed  CAS  Google Scholar 

  128. Butler, M. A., Lang, N. P., Young, J. F., Caporaso, N. E., Vineis, P., Hayes, R. B., Teitel, C. H., Massengill, J. P., Lawsen, M. F., and Kadlubar, E F., 1992, Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites, Pharmacogenetics 2: 116–127.

    Article  PubMed  CAS  Google Scholar 

  129. Vesell, E.S., and Penno, M. B., 1984, A new polymorphism of hepatic drug oxidation in humans: Family studies of antipyrine metabolites, Fed. Proc. 43: 2342–2347.

    PubMed  CAS  Google Scholar 

  130. Engel, G., Knebel, N. G., Hofmann, U., and Eichelbaum, M., 1992, In vitro characterization of human cytochrome P450-enzymes involved in antipyrine metabolism, in: Abstracts, 23rd European Workshop on Drug Metabolism (September 21–25, Bergamo).

    Google Scholar 

  131. Lang, N. P., Butler, M. A., Massengill, J., Lawson, M., Stotts, R. C., Hauer-Jensen, M., and Kadlubar, F. E, 1994, Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increases the risk for colorectal cancer or polyps, Cancer Epidemiol. Biomarkers Prey. 3: 675–682.

    CAS  Google Scholar 

  132. Kalow, W., and Tang, B. K., 1993, The use of caffeine for enzyme assays: A critical appraisal, Clin. Pharmacol. Ther. 53: 503–514.

    Article  PubMed  CAS  Google Scholar 

  133. Gu, L., Gonzalez, F. J., Kalow, W., and Tang, B. K., 1992, Biotransformation of caffeine, paraxanthine, theobromine and theophylline by cDNA-expressed human CYP1A2 and CYP2E 1, Pharmacogenetics 2: 73–77.

    Article  PubMed  CAS  Google Scholar 

  134. Robson, R. A., Matthews, A. R, Miners, J. O., McManus, M. E., Meyer, U. A., Hall, R. de la M., and Birken, D. J., 1987, Characterisation of theophylline metabolism in human liver microsomes, Br. J. Clin. Pharmacol. 24: 293–300.

    Article  PubMed  CAS  Google Scholar 

  135. Patten, C., Thomas, P. E., Guy, R., Lee, M., Gonzalez, F. J., Guengerich, F. P., and Yang, C. S., 1993, Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics, Chem. Res. Toxicol. 6: 511–518.

    Article  PubMed  CAS  Google Scholar 

  136. Dahlqvist, R., Bertilsson, L., Birkett, D. J., Eichelbaum, M., Säwe, J., and Sjöqvist, P., 1984, Theophylline metabolism in relation to antipyrine, debrisoquine, and sparteine metabolism, Clin. Pharmacol. Titer. 35: 815–821.

    Article  CAS  Google Scholar 

  137. Yamazaki, H., Guo, Z., Mimura, M., Gonzalez, F. J., Sugahara, C., Guengerich, E P., and Shimada, T., 1994, Bufuralol hydroxylation by cytochrome P450 2D6, 1A1, and 1A2 enzymes in human liver microsomes, Mol. Pharmacol. 46: 568–577.

    PubMed  CAS  Google Scholar 

  138. Woolf, T. F., Pool, W. F., Kukan, M., Bezek, S., Kunze, K., and Trager, W. F., 1993, Characterization of tacrine metabolism and bioactivation using heterologous expression systems and inhibition studies: Evidence for CYP 1 A2 involvement, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 139.

    Google Scholar 

  139. Kunze, K. L., Wienkers, L. C., Thutmnel, K. E., and Trager, W. F., 1993, The use of furafylline together with li ver screening techniques and enzyme kinetics to evaluate the role of P450 1 A2 in the metabolism of theophylline at therapeutic concentrations in human liver, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 138.

    Google Scholar 

  140. Rettie, A. E., Korzekwa, K. R., Kunze, K. L., Lawrence, R. E, Eddy, A. C., Aoyama, T., Gelboin, H. V., Gonzalez, F. J., and Trager, W. F., 1992, Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: A role for P-4502C9 in the etiology of (S)-warfarin drug interactions, Chem. Res. Toxicol. 5: 54–59.

    Article  PubMed  CAS  Google Scholar 

  141. Feldman, C. H., Hutchinson, V. E., Pippenger, C. E., Blemenfeld, T. A., Feldman, B. R., and Davis, W. J., 1980, Effect of dietary protein and carbohydrate on theophylline metabolism in children, Pediatrics 66: 956–962.

    PubMed  CAS  Google Scholar 

  142. Diaz, D., Fabre, I., Daujat, M., Saintaubert, B., Bories, P., Michel, H., and Maurel, P., 1990, Omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome-P450, Gastroenterology 99: 737–747.

    PubMed  CAS  Google Scholar 

  143. Quattrochi, L. C., and Tukey, R. H., 1993, Nuclear uptake of the Ah (dionan) receptor in response to omeprazole: Transcriptional activation of the human CYP1A1 gene, Mol. Pharmacol. 43: 504–508.

    PubMed  CAS  Google Scholar 

  144. Rost, K. L., and Roots, I., 1993, Accelerated caffeine metabolism after omeprazole treatment in breath, plasma, and urine, in: 8th International Conference on Cytochrome P450: Biochemistry, Biophysics, and Molecular Biology (October 24–28, Lisbon), p. 203.

    Google Scholar 

  145. Fisher, C. W., Caudle, D. L., Martin-Wixtrom, C., Quattrochi, L. C., Tukey, R. H., Waterman, M. R., and Estabrook, R. W., 1992, High-level expression of functional cytochrome P450 1A2 in Escherichia coli, FASEB J. 6: 759–764.

    PubMed  CAS  Google Scholar 

  146. Kadlubar, P. F., and Hammons, G. J., 1987, The role of cytochrome P-450 in the metabolism of chemical carcinogens, in: Mammalian Cytochromes P-450, Vol. 2 (F. P. Guengerich, ed.), CRC Press, Boca Raton, FL, pp. 81–130.

    Google Scholar 

  147. Sugimura, T., 1992, Multistep carcinogenesis: A 1992 perspective, Science 258: 603–607.

    Article  PubMed  CAS  Google Scholar 

  148. Crespi, C. L., Steimel, D. T., Aoyama, T., Gelboin, H. V., and Gonzalez, F. J., 1990, Stable expression of human cytochrome P450IA2 cDNA in a human lymphoblastoid cell line: Role of the enzyme in the metabolic activation of aflatoxin Bi, Mol. Carcinog. 3: 5–8.

    Article  PubMed  CAS  Google Scholar 

  149. Glatt, H. R., Pauly, K., Wölfel, C., Dogra, S., Seidel, A., Lee, H., Harvey, R. G., Oesch, F., and Doehmer, J., 1993, Stable expression of heterologous cytochromes P450 in V79 cells: Mutagenicity studies with polycyclic aromatic hydrocarbons, in: Polycyclic Aromatic Compounds: Synthesis, Properties, Analytical Measurements, Occurrence and Biological Effects. (Proceedings of the Thirteenth International Symposium on Polynuclear Aromatic Hydrocarbons, October 1–4, 1991, Bordeaux, France) ( P. Garrigues and M. Lamotte, eds.) Gordon and Breach, New York pp. 1167–1174.

    Google Scholar 

  150. Savas, U., Bhattacharyya, K. K., Christou, M., Alexander, D. L., and Jefcoate, C. R., 1994, Mouse cytochrome P450EF, representative of a new 1B subfamily of cytochrome P450s. Cloning, sequence determination, and tissue expression, J. Biol. Chem. 264: 14905–14911.

    Google Scholar 

  151. Sutter, T. R, Tang, Y. M., Hayes, C. L., Wo, Y-Y. P., Jabs, E. W., Li, X., Yin, H., Cody, C. S., and Greenlee, W. F., 1994, Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2, J. Biol. Chem. 269: 1309213099.

    Google Scholar 

  152. Yamano, S., Tatsuno, J., and Gonzalez, F. J., 1990, The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes, Biochemistry 29: 1322–1329.

    Article  PubMed  CAS  Google Scholar 

  153. Miles, J. S., McLaren, A. W., Forrester, L. M., Glancey, M. J., Lang, M. A., and Wolf, C. R., 1990, Identification of the human liver cytochrome P450 responsible for coumarin 7-hydroxylase activity, Biochem. J. 267: 365–371.

    PubMed  CAS  Google Scholar 

  154. Daly, A. K., Cholerton, S., Gregory, W., and Idle, J. R., 1993, Metabolic polymorphisms, Pharmacol. Ther. 57: 129–160.

    Article  PubMed  CAS  Google Scholar 

  155. Cholerton, S., Idle, M. E., Vas, A., Gonzalez, F. J., and Idle, J. R., 1992, Comparison of a novel thin-layer chromatographic—fluorescence detection method with a spectrofluorometric method for the determination of 7-hydroxycoumarin in human urine, J. Chromatogr. 575: 325–330.

    Article  PubMed  CAS  Google Scholar 

  156. Daly, A. K., Cholerton, S., Armstrong, M., and Idle, J. R., 1994, Genotyping for polymorphisms in xenobiotic metabolism as a predictor of disease susceptibility, Environ. Health Perspect. 102: 55–61.

    Article  PubMed  Google Scholar 

  157. Rautio, A., Kraul, H., Kojo, A., Salmela, E., and Pelkonen, 0., 1992, Interindividual variability of coumarin 7-hydroxylation in healthy volunteers, Pharmacogenetics 2: 227–233.

    Google Scholar 

  158. Crespi, C. L., Penman, B. W., Steimel, D. T., Gelboin, H. V., and Gonzalez, F. J., 1991, The development of a human cell line stably expressing human CYP3A4: Role in the metabolic activation of aflatoxin Bi and comparison to CYPIA2 and CYP2A3, Carcinogenesis 12: 355–359.

    Article  PubMed  CAS  Google Scholar 

  159. Crespi, C. L., Penman, B. W., Leakey, J.A.E., Arlotto, M. P., Stark, A., Parkinson, A., Turner, T., Steimel, D. T., Rudo, K., Davies, R. L., and Langenbach, R., 1990, Human cytochrome P4501IA3: cDNA sequence, role of the enzyme in the metabolic activation of promutagens, comparison to nitrosamine activation by human cytochrome P450IIE1, Carcinogenesis 11: 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  160. Yamazaki, H., Inui, Y., Yun, C. H., Mimura, M., Guengerich, E P., and Shimada, T., 1992, Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes, Carcinogenesis 13: 1789–1794.

    Article  PubMed  CAS  Google Scholar 

  161. Smith, T. J., Guo, Z., Gonzalez, P. J., Guengerich, E P., Stoner, G. D., and Yang, C. S., 1992, Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human lung and liver microsomes and cytochromes P-450 expressed in hepatoma cells, Cancer Res. 52: 1757–1763.

    PubMed  CAS  Google Scholar 

  162. Crespi, C. L., Penman, B. W., Gelboin, H. V., and Gonzalez, F. J., 1991, A tobacco smoke-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6, Carcinogenesis 12:1197-1201.

    Google Scholar 

  163. Hong, J. Y., Ding, X., Smith, T. J., Coon, M. J., and Yang, C. S., 1992, Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific carcinogen, by rabbit nasal microsomes and cytochrome P405s NMa and NMb, Carcinogenesis 13: 2141–2144.

    Article  PubMed  CAS  Google Scholar 

  164. Haugen, D. A., van der Hoeven, T. A., and Coon, M. J., 1975, Purified liver microsomal cytochrome P-450: Separation and characterization of multiple forms, J. Biol. Chem. 250: 3567–3570.

    PubMed  CAS  Google Scholar 

  165. Imai, Y., and Sato, R., 1974, A gel-electrophoretically homogeneous preparation of cytochrome P-450 from liver microsomes of phenobarbital-pretreated rabbits, Biochem. Biophys. Res. Commun. 60: 814.

    Article  Google Scholar 

  166. Guengerich, F. P., 1978, Separation and purification of multiple forms of microsomal cytochrome P-450. Partial characterization of three apparently homogeneous cytochromes P-450 prepared from livers of phenobarbital-and 3-methylcholanthrene-treated rats, J. Biol. Chem. 253: 7931–7939.

    PubMed  CAS  Google Scholar 

  167. Ryan, D. E., Thomas, P. E., Korzeniowski, D., and Levin, W., 1979, Separation and characterization of highly purified forms of liver microsomal cytochrome P-450 from rats treated with polychlorinated biphenyls, phenobarbital, and 3-methylcholanthrene, J. Biol. Chem. 254: 1365–1374.

    PubMed  CAS  Google Scholar 

  168. Yamano, S., Nhamburo, P. T., Aoyama, T., Meyer, U. A., Inaba, T., Kalow, W., Gelboin, H. V., McBride, 0. W., and Gonzalez, F. J., 1989, cDNA cloning and sequence and cDNA-directed expression of human P450 IIB1: Identification of a normal and two variant cDNAs derived from the CYP2B locus on chromosome 19 and differential expression of the IIB mRNAs in human liver, Biochemistry 28:7340–7348.

    Google Scholar 

  169. Flammang, A. M., Gelboin, H. V., Aoyama, T., Gonzalez, F. J., and McCoy, G. D., 1992, Nicotine metabolism by cDNA-expressed human cytochrome P-450s, Biochem. Arch. 8: 1–8.

    CAS  Google Scholar 

  170. Leo, M. A., Lasker, J. M., Raucy, J. L., Kim, C. I., Black, M., and Lieber, C. S., 1989, Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8, A rch. Biochem. Biophys. 269: 305–312.

    Article  CAS  Google Scholar 

  171. Wrighton, S. A., Thomas, P. E., Willis, P., Maines, S. L., Watkins, R. B., Levin, W., and Guzelian, P. S., 1987, Purification of a human liver cytochrome P-450 immunochemically related to several cytochromes P-450 purified from untreated rats, J. Clin. Invest. 80: 1017–1022.

    Article  PubMed  CAS  Google Scholar 

  172. Okino, S. T., Quattrochi, L. C., Pendurthi, U. R., McBride, O. W., and Tukey, R. H., 1987, Characterization of multiple human cytochrome P450 1 cDNAs, J. Biol. Chem. 262: 16072–16079.

    PubMed  CAS  Google Scholar 

  173. Kimura, S., Pastewka, J., Gelboin, H. V., and Gonzalez, F. J., 1987, cDNA and amino acid sequences of two members of the human P450I1C gene subfamily, Nucl. Acids Res. 15: 10053

    Google Scholar 

  174. Harris, J. W., Rahman, A., Kim, B.-R., Guengerich, F. R. and Collins, J. M., 1994, Metabolism of taxol by human hepatic microsomes and liver slices: Participation of cytochrome P450 3A4 and of an unknown P450 enzyme, Cancer Res. 54: 4026–4035.

    PubMed  CAS  Google Scholar 

  175. Cosme, J., Maurel, R, Soucek, R, Guengerich, F. R, and Beaune, R. H., 1994, Cloning, expression and characterization of human cytochrome P-450 2C8 in heterologous systems, Abstracts, 14th European Drug Metabolism Workshop (July 3–8, Paris).

    Google Scholar 

  176. Romkes, M., Faletto, M. B., Blaisdell, J. A., Raucy, J. L., and Goldstein, J. A., 1991, Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily, Biochemistry 30: 3247–3255.

    Article  PubMed  CAS  Google Scholar 

  177. Brian, W. R., Srivastava, P. K., Umbenhauer, D. R., Lloyd, R. S., and Guengerich, F. R, 1989, Expression of a human liver cytochrome P-450 protein with tolbutamide hydroxylase activity in Saccharomyces cerevisiae, Biochemistry 28: 4993–4999.

    CAS  Google Scholar 

  178. Relling, M. V., Aoyama, T., Gonzalez, F. J., and Meyer, U. A., 1990, Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily, J. Pharmacol. Exp. Ther. 252: 442–447.

    PubMed  CAS  Google Scholar 

  179. Lopez Garcia, M. R, Dansette, R. M., Valadon, R, Amar, C., Beaune, P. H., Guengerich, F. R, and Mansuy, D., 1993, Human liver P450s expressed in yeast as tools for reactive metabolite formation studies: Oxidative activation of tienilic acid by P450 2C9 and P450 2C10, Eur. J. Biochem. 213: 223–232.

    Article  Google Scholar 

  180. Veronese, M. E., Mackenzie, R. I., Doecke, C. J., McManus, M. E., Miners, J. O., and Birken, D. J., 1991, Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9, Biochem. Biophys. Res. Commun. 175: 1112–1118.

    Article  PubMed  CAS  Google Scholar 

  181. Zilly, W., Breimer, D. D., and Richter, E., 1977, Stimulation of drug metabolism by rifampicin in patients with cirrhosis or cholestasis measured by increased hexobarbital and tolbutamide clearance, Eur. J. Clin. Pharmacol. 11: 287–293.

    Article  PubMed  CAS  Google Scholar 

  182. Vasko, M. R., Bell, R. D., Daly, D. D., and Pippenger, C. E., 1980, Inheritance of phenytoin hypometabolism: A kinetic study of one family, Clin. Pharmacol. Ther. 27: 96–103.

    Article  PubMed  CAS  Google Scholar 

  183. Scott, J., and Poffenbarger, R. L., 1978, Pharmacogenetics of tolbutamide metabolism in humans, Diabetes 28: 41–51.

    Article  Google Scholar 

  184. Umbenhauer, D. R., Martin, M. V., Lloyd, R. S., and Guengerich, F. P., 1987, Cloning and sequence determination of a complementary DNA related to human liver microsomal cytochrome P-450 S-mephenytoin 4-hydroxylase, Biochemistry 26: 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  185. Srivastava, P. K., Yun, C.-H., Beaune, R H., Ged, C., and Guengerich, F. R, 1991, Separation of human liver tolbutamine hydroxylase and (S)-mephenytoin 4’-hydroxylase cytochrome P-450 enzymes, Mol. Pharmacol. 40: 69–79.

    PubMed  CAS  Google Scholar 

  186. Kato, R., Yasumori, T., Nagata, K., Yang, S. K., Chen, L. S., Murayama, N., and Yamazoe, Y., 1993, Oxidative metabolism of diazepam in human liver: Differential role of CYP2C and CYP3A depending on substrate concentration, in: 8th International Conference on Cytochrome P450: Biochemistry, Biophysics, and Molecular Biology (October 24–28, Lisbon), p. 241.

    Google Scholar 

  187. Yasumori, T., Nagata, K., Yang, S. K., Chen, L.-S., Murayama, N., Yamazoe, Y., and Kato, R., 1993, Cytochrome P450 mediated metabolism of diazepam in human and rat: Involvement of human CYP2C in N-demethylation in the substrate concentration-dependent manner, Pharmacogenetics 3: 291–301.

    Article  PubMed  CAS  Google Scholar 

  188. Leeman, T., Transon, C., and Dayer, P., 1993, Cytochrome P450TB (CYP2C): A major monooxygenase catalyzing diclofenac 4’-hydroxylation in human liver, Life Sci. 52: 29–34.

    Article  Google Scholar 

  189. Knodell, R. G., Dubey, R. K., Wilkinson, G. R., and Guengerich, F. P., 1988, Oxidative metabolism of hexobarbital in human liver: Relationship to polymorphic S-mephenytoin 4-hydroxylation, J. Pharmacol. Exp. Ther. 245: 845–849.

    PubMed  CAS  Google Scholar 

  190. Leeman, T. D., Transon, C., Bonnabry, P., and Dayer, P., 1993, A major role for cytochrome P450m (CYP2C subfamily) in the actions of non-steroidal antiinflammatory drugs, Drugs Exp. Clin. Res. 19: 189–195.

    Google Scholar 

  191. Stearns, R. A., Chakravarty, P. K., Chen, R., and Chiu, S.H.L., 1993, Investigations into the mechanism of oxidation of losartan, an alcohol, to its active metabolite, a carboxylic acid derivative, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 238.

    Google Scholar 

  192. Kupfer, A., and Branch, R. A., 1985, Stereoselective mephobarbital hydroxylation cosegregates with mephenytoin hydroxylation, Clin. Pharmacol. Ther. 38: 414–418.

    Article  PubMed  CAS  Google Scholar 

  193. Hall, S. D., Guengerich, F. P., Branch, R. A., and Wilkinson, G. R., 1987, Characterization and inhibition of mephenytoin 4-hydroxylase activity in human liver microsomes, J. Pharmacol. Exp. Ther. 240: 216–222.

    PubMed  CAS  Google Scholar 

  194. Andersson, T., Regârdh, C. G., Dahl-Puustinen, M. L., and Bertilsson, L., 1990, Slow omeprazole metabolizers are also poor S-mephenytoin hydroxylators, Ther. Drug Monitoring 12: 415–416.

    Article  CAS  Google Scholar 

  195. Curi-Pedrosa, R., Pichard, L., Bonfils, C., Jacqz-Aigrain, E., Guengerich, F. R, and Maurel, P., 1993, Major implication of cytochrome P450 3A4 in the oxidative metabolism of antisecretory drugs omeprazole and lansoprazole in human liver microsomes and hepatocytes, in: Abstracts, 5th European ISSX Meeting (September 26–29, Tours), Vol. 3, p. 46.

    Google Scholar 

  196. Knodell, R. G., Hall, S. D., Wilkinson, G. R., and Guengerich, F. R, 1987, Hepatic metabolism of tolbutamide: Characterization of the form of cytochrome P-450 involved in methyl hydroxylation and relationship to in vivo disposition, J. Pharmacol. Exp. Ther. 241: 1112–1119.

    PubMed  CAS  Google Scholar 

  197. Nakamura, M., Tanaka, E., Misawa, S., Shimada, T., Imaoka, S., and Funae, Y., 1994, Trimethadione metabolism, a useful indicator for assessing hepatic drug-oxidizing capacity, Biochem. Pharmacol. 47: 247–251.

    PubMed  CAS  Google Scholar 

  198. Furuya, H., Meyer, U. A., Gelboin, H. V., and Gonzalez, F. J., 1991, Polymerase chain reaction-directed identification, cloning, and quantification of human CYP2C18 mRNA, Mol. Pharmacol. 40: 375–382.

    PubMed  CAS  Google Scholar 

  199. Yasumori, T., Murayama, N., Yamazoe, Y., Nogi, Y., Fukasawa, T., and Kato, R., 1989, Expression of a human P-4501íC gene in yeast cells using galactose-inducible expression system, Mol. Pharmacol. 35: 443–449.

    PubMed  CAS  Google Scholar 

  200. Goldstein, J. A., Faletto, M. B., Romkessparks, M., Sullivan, T., Kitareewan, S., Raucy, J. L., Lasker, J. M., and Ghanayem, B. I., 1994, Evidence that CYP2C19 is the major (S)-mephenytoin 4’hydroxylase in humans, Biochemistry 33: 1743–1752.

    Article  PubMed  CAS  Google Scholar 

  201. Wedlund, R. J., Aslanian, W. S., McAllister, C. B., Wilkinson, G. R., and Branch, R. A., 1984, Mephenytoin hydroxylation deficiency in Caucasians: Frequency of a new oxidative drug metabolism polymorphism, Clin. Pharmacol. Ther. 36: 773–780.

    Article  PubMed  CAS  Google Scholar 

  202. Kupfer, A., and Preisig, R., 1984, Pharmacogenetics of mephenytoin: A new drug hydroxylation polymorphism in man, Eur. J. Clin. Phnrmacol. 26: 753–759.

    Article  CAS  Google Scholar 

  203. Miners, J. O., Smith, K. J., Robson, R. A., McManus, M. E., Veronese, M. E., and Birkett, D. J., 1988, Tolbutamide hydroxylation by human liver microsomes: Kinetic characterisation and relationship to other cytochrome P-450 dependent xenobiotic oxidations, Biochem. Pharmacol. 37: 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  204. Gonzalez, E J., Skoda, R. C., Kimura, S., Umeno, M., Zanger, U. M., Neben, D. W., Gelboin, H. V., Hardwick, J. P., and Meyer, U. A., 1988, Characterization of the common genetic defect in humans deficient in debrisoquine metabolism, Nature 331: 442–446.

    Article  PubMed  CAS  Google Scholar 

  205. Kimura, S., Umeno, M., Skoda, R. C., Meyer, U. A., and Gonzalez, F. J.,1989, The human debrisoquine 4-hydroxylase (CYP2D) locus: Sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene, Am. J. Hum. Genet. 45: 889–904.

    Google Scholar 

  206. Idle, J. R., Mahgoub, A., Lancaster, R., and Smith, R. L., 1978, Hypotensive response to debrisoquine and hydroxylation phenotype, Life Sci. 22: 979–984.

    Article  PubMed  CAS  Google Scholar 

  207. Eichelbaum, M., Spannbrucker, N., Steincke, B., and Dengler, H. J., 1979, Defective N-oxidation of sparteine in man: A new pharmacogenetic defect, Eur. J. Clin. Pharmacol. 16: 183–187.

    Article  PubMed  CAS  Google Scholar 

  208. Lennard, M. S., Silas, J. H., Freestone, S., Tucker, G. T., Ramsay, L. E., and Woods, H. F., 1982, Impaired metabolism of metoprolol in poor hydroxylators of debrisoquine, Br. J. Pharmscol. 16: 572P - 573 P.

    Google Scholar 

  209. Bertilsson, L., Eichelbaum, M., Mellström, B., Säwe, J., Schulz, H. U., and Sjögvist, E, 1980, Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man, Life Sci. 27: 1673–1677.

    Article  PubMed  CAS  Google Scholar 

  210. Larrey, D., Distlerath, L. M., Dannan, G. A., Wilkinson, G. R., and Guengerich, F. P., 1984, Purification and characterization of the rat liver microsomal cytochrome P-450 involved in the 4-hydroxylation of debrisoquine, a prototype for genetic variation in oxidative drug metabolism, Biochemistry 23: 2787–2795.

    Article  PubMed  CAS  Google Scholar 

  211. Gonzalez, E J., Matsunaga, T., Nagata, K., Meyer, U. A., Nebert, D. W., Pastewka, J., Kozak, C. A., Gillette, J., Gelboin, H. V., and Hardwick, J. P., 1987, Debrisoquine 4-hydroxylase: Characterization of a new P450 gene subfamily, regulation, chromosomal mapping, and molecular analysis of the DA rat polymorphism, DNA 6: 149–161.

    Article  PubMed  CAS  Google Scholar 

  212. Matsunaga, E., Zanger, U. M., Hardwick, J. P., Gelboin, H. V., Meyer, U. A., and Gonzalez, F. J., 1989, The CYP2D gene subfamily: Analysis of the molecular basis of the debrisoquine 4-hydroxylase deficiency in DA rats, Biochemistry 28: 7349–7355.

    Article  PubMed  CAS  Google Scholar 

  213. Gut, J., Gasser, R., Dayer, P., Kronbach, T., Catin, T., and Meyer, U. A., 1984, Debrisoquine-type polymorphism of drug oxidation: Purification from human liver of a cytochrome P450 isozyme with high activity for bufuralol hydroxylation, FEBS Lett. 173: 287–290.

    Article  PubMed  CAS  Google Scholar 

  214. Skoda, R. C., Gonzalez, F. J., Demierre, A., and Meyer, U. A., 1988, Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs, Proc. Natl. Acad. Sci. USA 85: 5240–5243.

    Article  PubMed  CAS  Google Scholar 

  215. Tyndale, R., Aoyama, T., Broly, F., Matsunaga, T., Inaba, T., Kalow, W., Gelboin, H. V., Meyer, U. A., and Gonzalez, F. J., 1991, Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: Possible association with the poor metabolizer phenotype, Pharmacogenetics 1: 26–32.

    Article  PubMed  CAS  Google Scholar 

  216. Armstrong, M., Fairbrother, K., Idle, J. R., and Daly, A. K., 1994, The cytochrome P450 CYP2D6 allelic variant CYPD6J and related polymorphisms in a European population, Pharmacogenetics 4 73–81.

    Article  PubMed  CAS  Google Scholar 

  217. Armstrong, M., Idle, J. R., and Daly, A. K., 1993, A polymorphic CfoI site in exon 6 of the human cytochrome P50 CYP2D6 gene detected by the polymerase chain reaction, Hum. Genet. 91: 616–617.

    Article  PubMed  CAS  Google Scholar 

  218. Gonzalez, F. J., and Meyer, U. A., 1991, Molecular genetics of the debrisoquin-sparteine polymorphism, Clin. Pharmacol. Ther. 50: 233–238.

    Article  PubMed  CAS  Google Scholar 

  219. Gough, A. C., Miles, J. S., Spurr, N. K., Moss, J. E., Gaedigk, A., Eichelbaum, M., and Wolf, C. R., 1990, Identification of the primary gene defect at the cytochrome P450 CYP2D locus, Nature 347: 773–776.

    Article  PubMed  CAS  Google Scholar 

  220. Heim, M., and Meyer, U. A., 1990, Genotyping of poor metabolizers of debrisoquine by allele-specific PCR amplification, Lancet 336: 529–532.

    Article  PubMed  CAS  Google Scholar 

  221. Daly, A. K., Armstrong, M., Monkman, S. C., Idle, M. E., and Idle, J. R., 1991, Genetic and metabolic criteria for the assignment of debrisoquine 4-hydroxylation (cytochrome P4502D6) phenotypes, Pharmacogenetics 1: 33–41.

    Article  PubMed  CAS  Google Scholar 

  222. Evans, W. E., Relling, M. V., Rahman, A., McLeod, H. L., Scott, E. P., and Lin, J. S., 1993, Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in black Americans, J. Clin. Invest. 91: 2150–2154.

    Article  PubMed  CAS  Google Scholar 

  223. Johansson, I., Lundqvist, E., Bertilsson, L., Dahl, M. L., Sjoqvist, F., and Ingelman-Sundberg, M. 1993, Inherited amplification of an active gene in the cytochrome-P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine, Proc. Natl. Acad. Sci. USA. 90: 11825–11829.

    Article  PubMed  CAS  Google Scholar 

  224. Matsunaga, E., Zeugin, T., Zanger, U. M., Aoyama, T., Meyer, U. A., and Gonzalez, F. J., 1990, Setuence requirements for cytochrome P-450IID1 catalytic activity: A single amino acid change (Ile-80 Phe) specifically decreases V. of the enzyme for bufuralol but not debrisoquine hydroxylation, J. Biol. Chem. 265: 17197–17201.

    PubMed  CAS  Google Scholar 

  225. Köppel, C., Tenczer, J., and Arndt, I., 1989, Metabolic disposition of ajmaline, Eur. J. Drug Metab. Pharmacokin. 14: 309–316.

    Article  Google Scholar 

  226. Alvan, G., Grind, M., Graffner, C., and Sjöqvist, F., 1984, Relationship of N-demethylation of amiflamine and its metabolite to debrisoquine hydroxylation polymorphism, Clin. Pharmacol. Ther. 36: 515–519.

    Article  PubMed  CAS  Google Scholar 

  227. Mellström, B., Säwe, J., Bertilsson, L., and Sjöqvist, F., 1986, Amitriptyline metabolism: Association with debrisoquin hydroxylation in nonsmokers, Clin. Pharmacol. Ther. 39: 369–371.

    Article  PubMed  Google Scholar 

  228. Ebner, T., and Eichelbaum, M., 1993, The metabolism of apridine in relation to the sparteine/debrisoquine polymorphism, Br. J. Clin. Pharmacol. 35: 426–430.

    Article  PubMed  CAS  Google Scholar 

  229. Dayer, P., Balant, L., Kupfer, A., Striberni, R., and Leemann, T., 1985, Effect of oxidative polymorphism (debrisoquine/sparteine type) on hepatic first-pass metabolism of bufuralol, Eur. J. Clin. Pharmacol. 28: 317–320.

    Article  PubMed  CAS  Google Scholar 

  230. Pressacco, J., Muller, R., and Kalow, W., 1993, Interactions of bupranolol with the polymorphic debrisoquine/spearteine monooxygenase (CYP2D6), Eur J, Clin. Pharmacol. 45: 261–264.

    Article  CAS  Google Scholar 

  231. Gleiter, C. H., Aichele, G., Nilsson, E., Hengen, N., Antonin, K. H., and Bieck, P. R., 1985, Discovery of altered pharmacokinetics of CGP 15 210 G in poor hydroxylators of debrisoquine during early drug development, Br. J. Clin. Pharmacol. 20: 81–84.

    Article  PubMed  CAS  Google Scholar 

  232. Balant-Gorgia, A. E., Balant, L. P., Genet, C., Dayer, P., Aeschlimann, J. M., and Garrone, G., 1986, Importance of oxidative polymorphism and levomepromazine treatment on the steady-state blood concentrations of clomipramine and its major metabolites, Eue J. Clin. Pharmacol. 31: 449–455.

    Article  CAS  Google Scholar 

  233. Fischer, V., Vogels, B., Maurer, G., and Tynes, R. E., 1992, The anti psychotic clozapine is metabolized by the polymorphic human microsomal and recombinant cytochrome P450 2D6, J. Pharmacol. Exp. Ther. 260: 1355–1360.

    PubMed  CAS  Google Scholar 

  234. Dayer, P., Desmeules, J., Leemann, T., and Striberni, R., 1988, Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation, Biochem. Biophys. Res. Commun. 152: 411–416.

    Article  PubMed  CAS  Google Scholar 

  235. Tucker, G. T., Silas, J. H., Iyun, A. O., Lennard, M. S., and Smith, A. J., 1977, Polymorphic hydroxylation of debrisoquine, Lancet. 11: 718.

    Article  Google Scholar 

  236. Evans, D.A.P., Harmer, D., Downham, D. Y., Whibley, E. J., Idle, J. R, Ritchie, J., and Smith, R. L., 1983, The genetic control of sparteine and debrisoquine metabolism in man with new methods of analysing bimodal distributions, J. Med. Genet. 20: 321–329.

    Article  PubMed  CAS  Google Scholar 

  237. Mahgoub, A., Idle, J. R., Dring, L. G., Lancaster, R., and Smith, R. L., 1977, Polymorphic hydroxylation of debrisoquine in man, Lancet 11: 584–586.

    Article  Google Scholar 

  238. Broly, F., Gaedigk, A., Heim, M., Eichelbaum, M., Morike, K., and Meyer, U. A., 1991, Debrisoquine/sparteine hydroxylation genotype and phenotype: Analysis of common mutations and alleles of CYP2D6 in a European population, DNA Cell Biol. 10: 545–558.

    Article  PubMed  CAS  Google Scholar 

  239. Grace, J. M., Kinter, M. T., and Macdonald, T.L., 1994, Atypical metabolism of deprenyl and its enantiomer, (S)-(+)N,a-dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6, Chem. Res. Toxicol. 7: 286–290.

    Article  PubMed  CAS  Google Scholar 

  240. Spina, E., Steiner, E., Ericsson, Ö., and Sjöqvist, F., 1987, Hydroxylation of desmethylimipramine: Dependence on the debrisoquin hydroxylation phenotype, Clin. Pharmacol. Ther. 41: 314–319.

    Article  PubMed  CAS  Google Scholar 

  241. Coulter, C., Sanzgiri, U., and Parkinson, A., 1993, Evidence for the involvement of CYP3A enzymes in the N-demethylation of dextromethorphan, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 183.

    Google Scholar 

  242. Mortimer, O., Lindström, B., Laurell, H., Bergman, U., and Rane, A., 1989, Dextromethorphan: Polymorphic serum pattern of the 0-demethylated and didemethylated metabolites in man, Br. J. Clin. Pharmacol. 27: 223–227.

    Google Scholar 

  243. Küpfer, A., Schmid, B., Preisig, R., and Pfaff, G., 1984, Dextromethorphan as a safe probe for debrisoquine hydroxylation polymorphism, Lancet 11: 517–518.

    Article  Google Scholar 

  244. Woosley, R. L., Roden, D. M., Dai, G., Wang, T., Altenbern, D., Oates, J., and Wilkinson, G. R., 1986, Co-inheritance of the polymorphic metabolism of encainide and debrisoquin, Clin. Pharmacol. Ther. 39: 282–287.

    Article  PubMed  CAS  Google Scholar 

  245. Gross, A. S., Mikus, G., Fischer, C., Hertrampf, R, Gundert-Remy, U., and Eichelbaum, M., 1989, Stereoselective disposition of flecainide in relation to the sparteine debrisoquine metaboliser phenotype, Br. J. Clin. Pharmacol. 28: 555–566.

    Article  PubMed  CAS  Google Scholar 

  246. Sloan, P., Mahgoub, A., Lancaster, R., Idle, J. R., and Smith, R. L., 1978, Polymorphism of carbon oxidation of drugs and clinical implications, Br. Med. J. 2: 655–657.

    Article  PubMed  CAS  Google Scholar 

  247. Subramanyam, B., Woolf, T., and Castagnoli, N., Jr., 1991, Studies on the in vitro conversion of haloperidol to a potentially neurotoxic pyridinium metabolite, Chem. Res. Toxicol. 4: 123–128.

    Article  PubMed  CAS  Google Scholar 

  248. Otton, S. V., Schadel, M., Cheung, S. W., Kaplan, H. L., Busto, U. E., and Sellers, E. M., 1993, CYP2D6 phenotype determines the metabolic conversion of hydrocodone to hydromorphone, Clin. Pharmacol. Ther. 54: 463–472.

    Article  PubMed  CAS  Google Scholar 

  249. Lemoine, A., Gautier, J. C., Azoulay, D., Guengerich, F. P., Beaune, P., Maurel, P., and Leroux, J. P., 1993, The major pathway of imipramine metabolism is catalyzed by cytochrome P-450 1 A2 and P-450 3A4 in human liver, Mol. Pharmacol. 43: 827–832.

    PubMed  CAS  Google Scholar 

  250. Pierce, D. M., 1990, A review of the clinical pharmacokinetics and metabolism of the alpha 1-adrenoceptor antagonist indoramin, Xenobiotica 20: 1357–1367.

    Article  PubMed  CAS  Google Scholar 

  251. Dow, J. D., Laucher-Harsany, V., and Haegele, K. D., 1993, In vitro studies on the metabolism of the putative anxiolytic MDL 73005 using human liver microsomes and microsomes prepared from cells expressing a single human cytochrome P-450 isozyme, in: Abstracts, 5th European ISSX Meeting (September 26–29, Tours), Vol. 3, p. 48.

    Google Scholar 

  252. Kitchen, I., Tremblay, J., Andre, J., Dring, L. G., Idle, J. R., Smith, R. L., and Williams, R. T., 1979, Interindividual and interspecies variation in the metabolism of the hallucinogen 4-methoxyamphetamine, Xenobiotica 9: 397–404.

    Article  PubMed  CAS  Google Scholar 

  253. Roy, S. D., Hawes, E. M., McKay, G., Korchinski, E. D., and Midha, K. K., 1985, Metabolism of methoxyphenamine in extensive and poor metabolizers of debrisoquin, Clin. Pharmacol. Ther. 38: 128–133.

    Article  PubMed  CAS  Google Scholar 

  254. Ellis, S. W., Ching, M. S., Watson, P. F., Henderson, C. J., Simula, A. P., Lennard, M. S., Tucker, G. T., and Woods, H. F., 1992, Catalytic activities of human debrisoquine 4-hydroxylase cytochrome P450 (CYP2D6) expressed in yeast, Biochem. Pharmacol. 44: 617–620.

    Article  PubMed  CAS  Google Scholar 

  255. Lennard, M. S., Silas, J. H., Freestone, S., Ramsay, L. E., Tucker, G. T., and Woods, H. F., 1982, Oxidation phenotype—A major determinant of metoprolol metabolism and response, N. Engl. J. Med. 307: 1558–1560.

    Article  PubMed  CAS  Google Scholar 

  256. Turgeon, J., Fiset, C., Giguère, R., Gilbert, M., Moerike, K., Rouleau, J. R., Kroemer, H. K., Eichelbaum, M., Grech-Bélanger, O., and Bélanger, P. M., 1991, Influence of debrisoquine phenotype and of quinidine on mexiletine disposition in man, J. Pharmacol. Exp. Ther. 259: 789–798.

    PubMed  CAS  Google Scholar 

  257. Marre, T., Fabre, G., Lacarelle, B., Bourrie, M., Catalin, J., Berger, Y., Rahmani, R., and Cano, J. P., 1992, Involvement of the cytochrome P-450IID subfamily in minaprine 4-hydroxylation by human microsomes, Drug Metab. Dispos. 20: 316–321.

    PubMed  CAS  Google Scholar 

  258. Bertilsson, L., Mellström, B., Sjöqvist, F., M$rtensson, B., and Asberg, M., 1981, Slow hydroxylation of nortriptyline and concomitant poor debrisoquine hydroxylation: Clinical implications, Lancet 11: 560–561.

    Google Scholar 

  259. Bloomer, J. C., Woods, P. R., Haddock, R. E., Lennard, M. S., and Tucker, G. T., 1992, The role of cytochrome P4502D6 in the metabolism of paroxetine by human liver microsomes, Br. J. Clin. Pharmacol. 33: 521–523.

    Article  PubMed  CAS  Google Scholar 

  260. Shah, R. R., Oates, N. S., Idle, J. R., Smith, R. L., and Lockhart, J.D.F., 1982, Impaired oxidation of debrisoquine in patients with perhexiline neuropathy, Br. Med. J. 284: 295–299.

    Article  CAS  Google Scholar 

  261. Dahl-Puustinen, M. L., Lidén, A., Alm, C., Nordin, C., and Bertilsson, L., 1989, Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings, Clin. Pharmacol. Ther. 46: 78–81.

    Article  PubMed  CAS  Google Scholar 

  262. Oates, N. S., Shah, R. R., Idle, J. R., and Smith, R. L., 1981, Phenfornún-induced lactic acidosis associated with impaired debrisoquine hydroxylation, Lancet i:837–838.

    Google Scholar 

  263. Kroemer, H. K., Fischer, C., Meese, C. O., and Eichelbaum, M., 1991, Enantiomer–enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: In vitro evaluation of the mechanism, Mol. Pharmacol. 40: 135–142.

    PubMed  CAS  Google Scholar 

  264. Lee, J. T., Kroemer, H. K., Silberstein, D. J., Funck-Brentano, C., Lineberry, M. D., Wood, A. J. J., Roden, D. M., and Woosley, R. L., 1990, The role of genetically determined polymorphic drug metabolism in the beta-blockade produced by propafenone, N. Engl. J. Med. 322: 1764–1768.

    Article  PubMed  CAS  Google Scholar 

  265. Zekorn, C., Achtert, G., Hausleiter, H. J., Moon, C. H., and Eichelbaum, M., 1985, Pharmacokinetics of N-propylajmaline in relation to polymorphic sparteine oxidation, K(in. Wochenschr. 63: 1180–1186.

    Article  CAS  Google Scholar 

  266. Shaw, L., Lennard, M. S., Tucker, G. T., Bax, N.D.S., and Woods, H. E, 1987, Irreversible binding and metabolism of propranolol by human liver microsomes—relationship to polymorphic oxidation, Biochem. Pharmacol. 36: 2283–2288.

    Article  PubMed  CAS  Google Scholar 

  267. Osikowska-Evers, B., Dayer, P., Meyer, U. A., Robertz, G. E, and Eichelbaum, M., 1987, Evidence for altered catalytic properties of the cytochrome P-450 involved in sparteine oxidation in poor metabolizers, Clin. Pharmacol. Ther. 41: 320–325.

    Article  PubMed  CAS  Google Scholar 

  268. Baumann, P., Meyer, J. W., Amey, M., Baettig, D., Bryois, C., Jonzier-Perey, M., Koeb, L., Monney, C., and Woggon, B., 1992, Dextromethorphan and mephenytoin phenotyping of patients treated with thioridazine or amitriptyline, Ther. Drug Monitor. 14: 1–8.

    Article  CAS  Google Scholar 

  269. McGourty, J. C., Silas, J. H., Fleming, J. J., McBurney, A., and Ward, J. W., 1985, Pharmacokinetics and beta-blocking effects of timolol in poor and extensive metabolizers of debrisoquin, Clin. Pharmacol. Ther. 38: 409–413.

    Article  PubMed  CAS  Google Scholar 

  270. Lewis, R. V., Lennard, M. S., Jackson, P. R., Tucker, G. T., Ramsay, L. E., and Woods, H. E, 1985, Timolol and atenolol: Relationships between oxidation phenotype, pharmacokinetics and pharmacodynamics, Br. J. Clin. Pharmacol. 19: 329–333.

    Article  PubMed  CAS  Google Scholar 

  271. Otton, S. V., Inaba, T., and Kalow, W., 1984, Competitive inhibition of sparteine oxidation in human liver by (3-adrenoceptor antagonists and other cardiovascular drugs, Life Sci. 34: 73–80.

    Article  PubMed  CAS  Google Scholar 

  272. Fonne-Pfister, R., and Meyer, U. A., 1988, Xenobiotic and endobiotic inhibitors of cytochrome P-450db1 function, the target of the debrisoquine/sparteine type polymorphism, Biochem. Pharmacol. 37: 3829–3835.

    Article  PubMed  CAS  Google Scholar 

  273. Strobl, G. R., von Kruedener, S., Stöckigt, J., Guengerich, F. P., and Wolff, T., 1993, Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: Molecular modeling and inhibition studies, J. Med. Chem. 36: 1136–1145.

    Article  PubMed  CAS  Google Scholar 

  274. Inaba, T., Tyndale, R. E., and Mahon, W. A., 1986, Quinidine: Potent inhibition of sparteine and debrisoquine oxidation in vivo, Br. J. Clin. Pharmacol. 22: 199–200.

    Article  PubMed  CAS  Google Scholar 

  275. Leemann, T., Dayer, P., and Meyer, U. A., 1986, Single-dose quinidine treatment inhibits metoprolol oxidation in extensive metabolizers, Eur. J. Clin. Pharmacol. 29: 739–741.

    Article  PubMed  CAS  Google Scholar 

  276. Mikus, G., Bochner, F., Eichelbaum, M., Horak, P., Somogyi, A. A., and Spector, S., 1994, Endogenous codeine and morphine in poor and extensive metabolisers of the YP2D6 (debrisoquine/sparteine) polymorphism, J. Pharmacol. Exp. Ther. 268: 546–551.

    PubMed  CAS  Google Scholar 

  277. Islam, S. A., Wolf, C. R., Lennard, M. S., and Sternberg, M.J.E., 1991, A three-dimensional molecular template for substrates of human cytochrome P450 involved in debrisoquine 4-hydroxylation, Carcinogenesis 12: 2211–2219.

    Article  PubMed  CAS  Google Scholar 

  278. Koymans, L., Vermeulen, N.P.E., van Acker, S.A.B.E., te Koppele, J. M., Heykants, J.J.P., Lavrijsen, K., Meuldermans, W., and Donné-Op den Kelder, G. M., 1992, A predictive model for substrates of cytochrome P450-debrisoquine (2D6), Chem. Res. Toxicol. 5: 211–219.

    Article  PubMed  CAS  Google Scholar 

  279. Guengerich, F. P., Müller-Enoch, D., and Blair, I. A., 1986, Oxidation of quinidine by human liver cytochrome P-450, Mol. Pharmacol. 30: 287–295.

    PubMed  CAS  Google Scholar 

  280. Macdonald, T. L., Gutheim, W.G., Martin, R. B., and Guengerich, F. P., 1989, Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation—reduction potential of cytochrome P-450, Biochemistry 28: 2071–2077.

    Article  PubMed  CAS  Google Scholar 

  281. Niznik, H. B., Tyndale, R. F., Sallee, E R., Gonzalez, F. J., Hardwick, J. P., Inaba, T., and Kalow, W., 1990, The dopamine transporter and cytochrome P450I1D1 (debrisoquine 4-hydroxylase) in brain: Resolution and identification of two distinct [1H]GBR-12935 binding proteins, Arch. Biochem. Biophys. 276: 424–432.

    Article  PubMed  CAS  Google Scholar 

  282. Gonzalez, F. J., and Nebert, D. W., 1990, Evolution of the P450 gene superfamily: Animal—plant `warfare,’ molecular drive and human genetic differences in drug oxidation, Trends Genet. 66: 164–168.

    Google Scholar 

  283. Idle, J. R., Mahgoub, A., Sloan, T. P., Smith, R. L., Mbanefo, C. O., andBababunmi, E. A., 1981, Some observations on the oxidation phenotype status of Nigerian patients presenting with cancer, Cancer Lett. 11: 331–338.

    Article  CAS  Google Scholar 

  284. Barbeau, A., Roy, M., Paris, S., Cloutier, T., Plasse, L., and Poirier, J., 1985, Ecogenetics of Parkinson’s disease: 4-Hydroxylation of debrisoquine, Lancet 11: 1213–1215.

    Article  Google Scholar 

  285. Boobis, A. R., and Davies, D. S., 1990, Debrisoquine oxidation phenotype and susceptibility to lung cancer, Br. J. Clin. Pharmacol. 30: 653–656.

    Article  PubMed  CAS  Google Scholar 

  286. Vallada, H., Collier, D., Dawson, E., Owen, M., Nanko, S., Murray, R, and Gill, M., 1992, Debrisoquine 4-hydroxylase (CYP2D) locus and possible susceptibility to schizophrenia, Lancet 340: 181–182.

    Article  PubMed  CAS  Google Scholar 

  287. Ding, X., Pemecky, S. J., and Coon, M. J., 1991, Purification and characterization of cytochrome P450 2E2 from hepatic microsomes of neonatal rabbits, Arch. Biochem. Biophys. 291: 270–276.

    Article  PubMed  CAS  Google Scholar 

  288. Koop, D. R., 1992, Oxidative and reductive metabolism by cytochrome P450 2E1, FASEB J. 6: 724–730.

    PubMed  CAS  Google Scholar 

  289. Yang, C. S., Yoo, J.S.H., Ishizaki, H., and Hong, J., 1990, Cytochrome P4501IE1: Roles in nitrosamine metabolism and mechanisms of regulation, Drug Metab. Rev. 22: 147–159.

    Article  PubMed  CAS  Google Scholar 

  290. Uematsu, F., Kikuchi, H., Motomiya, M., Abe, T., Ishioka, C., Kanamaru, R, Sagami, I., and Watanabe, M., 1992, Human cytochrome P450I1E1 gene: Dral polymorphism and susceptibility to cancer, Tohoku J. Exp. Med. 168: 113–117.

    Article  PubMed  CAS  Google Scholar 

  291. Peter, R., Böcker, R. G., Beaune, P. H., Iwasaki, M., Guengerich, F. P., and Yang, C.-S., 1990, Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450 IIEi, Chem. Res. Toxicol. 3: 566–573.

    Article  PubMed  CAS  Google Scholar 

  292. Guengerich, F. P., and Turvy, C. G., 1991, Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples, J. Pharmacol. Exp. Ther. 256: 1189–1194.

    PubMed  CAS  Google Scholar 

  293. Hong, J. Y., Ning, S. M., Ma, B. L., Lee, M. J., Pan, J., and Yang, C. S., 1990, Roles of pituitary hormones in the regulation of hepatic cytochrome P45011E1 in rats and mice, Arch. Biochem. Biophys. 281: 132–138.

    Article  PubMed  CAS  Google Scholar 

  294. Pan, J., Hong, J. Y., and Yang, C. S., 1992, Post-transcriptional regulation of mouse renal cytochrome P450 2E1 by testosterone, Arch. Biochem. Biophys. 299: 110–115

    Article  PubMed  CAS  Google Scholar 

  295. Ronis, M.J.J., Johansson, I., Hultenby, K., Lagercrantz, J., Glaumann, H., and Ingelman-Sundberg, M., 1991, Acetone-regulated synthesis and degradation of cytochrome P4502E and cytochrome P4502B1 in rat liver, Eur. J. Biochem. 198: 383–389.

    Article  PubMed  CAS  Google Scholar 

  296. Ingelman-Sundberg, M., and Jörnvall, H., 1984, Induction of the ethanol-inducible form of rabbit liver microsomal cytochrome P450 by inhibitors of alcohol dehydrogenase, Biochem. Biophys. Res. Commun. 124: 375–382.

    Article  PubMed  CAS  Google Scholar 

  297. Gonzalez, F. J., Kimura, S., Song, B. J., Pastewka, J., Gelboin, H. V., and Hardwick, J. P., 1986, Sequence of two related P450 mRNAs transcriptionally increased during rat development, J. Biol. Chem. 261: 10667–10672.

    PubMed  CAS  Google Scholar 

  298. Song, B. J., Veech, R. L., Park, S. S., Gelboin, H. V., and Gonzalez, E. J., 1989, Induction of rat hepatic N-nitrosodimethylamine demethylase by acetone is due to protein stabilization, J. Biol. Chem. 264: 3568–3572.

    PubMed  CAS  Google Scholar 

  299. Perrot, N., Nalpas, B., Yang, C. S., and Beaune, R H., 1989, Modulation of cytochrome P450 isozymes in human liver, by ethanol and drug intake, Eur. J. Clin. Invest. 19: 549–555.

    Article  PubMed  CAS  Google Scholar 

  300. Hayashi, S., Watanabe, J., and Kawajiri, K., 1991, Genetic polymorphisms in the 5’-flanking region change transcriptional regulation of the human P450IIE1 gene, J. Biochem. 110: 559–565.

    PubMed  CAS  Google Scholar 

  301. Patten, C. J., Ishizaki, H., Aoyama, T., Lee, M., Ning, S. M., Huang, W., Gonzalez, F. J., and Yang, C. S., 1992, Catalytic properties of the human cytochrome P450 2E1 produced by cDNA expression in mammalian cells, Arch. Biochem. Biophys. 299: 163–171.

    Article  PubMed  CAS  Google Scholar 

  302. Mapoles, J., Berthou, F., Alexander, A., Simon, F., and Ménez, J.-F., 1993, Mammalian PC-12 cell genetically engineered for human cytochrome P450 2E1 expression, Eur. J. Biochem. 214: 735–745.

    Article  PubMed  CAS  Google Scholar 

  303. Winters, D. K., and Cederbaum, A. I., 1992, Expression of a catalytically active human cytochrome P-4502E1 in Escherichia coli, Biochem. Biophys. Acta 1156: 43–49.

    CAS  Google Scholar 

  304. Wade, D., Yang, C. S., Metral, C. J., Roman, J. M., Hrabie, J. A., Riggs, C. W., Anjo, T., Keefer, L. K., and Mico, B. A., 1987, Deuterium isotope effect on denitrosation and demethylation of N-nitrosodimethylamine by rat liver microsomes, Cancer Res. 47: 3373–3377.

    PubMed  CAS  Google Scholar 

  305. Yang, C. S., Ishizaki, H., Lee, M., Wade, D., and Fadel, A., 1991, Deuterium isotope effect in the interaction of N-nitrosodimethylamine, ethanol, and related compounds with cytochrome P-450IIE1, Chem. Res. Toxicol. 4: 408–413.

    Article  PubMed  CAS  Google Scholar 

  306. Andersen, M. E., Clewell, H. J., III, Mahle, D. A., and Gearhart, J. M., 1993, Deuterium isotope effects of dichloromethane in vivo and the mechanism of substrate oxidation by cytochrome P450 2E1, Toxicol. Appl. Pharmacol. 128: 158–165.

    Article  Google Scholar 

  307. Kharasch, E. D., Thummel, K. E., and Mautz, D., 1993, Human enflurane metabolism in vivo by cytochrome P450 2E1, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 143.

    Google Scholar 

  308. O’Shea, D., Davis, S. N., Kim, R. B., and Wilkinson, G. R., 1994, Effect of fasting and obesity in humans on the 6-hydroxylation of chloroxazone—A putative probe of CYP2E1 activity, Clin. Pliarrnacol. The,. 56: 359–367.

    Google Scholar 

  309. Ziegler, D. M., 1988, Flavin-containing monooxygenases: Catalytic mechanism and substrate specificities, Drug Metab. Rev. 19:1–32.

    Google Scholar 

  310. Lee, S. K., Nesheim, J. C., and Lipscomb, J. D., 1993, Transient intermediates of the methane monooxygenase catalytic cycle, J. Biol. Chem. 268: 21569–21577.

    PubMed  CAS  Google Scholar 

  311. Crespi, C. L., Penman, B. W., Leakey, J. A., Arlotto, M. R, Stark, A., Parkinson, A., Turner, T., Steimel, D. T., Rudo, K., Davies, R. L., and Langenbach, R., 1990, Human cytochrome P4501IA3: cDNA sequence, role of the enzyme in the metabolic activation of promutagens, comparison to nitrosamine activation by human cytochrome P4501IE1, Carcinogenesis 11: 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  312. Nhamburo, P. T., Kimura, S., McBride, O. W., Kozak, C. A., Gelboin, H. V., and Gonzalez, F. J., 1990, The human CYP2F gene subfamily: Identification of a cDNA encoding a new cytochrome P450, cDNA-directed expression, and chromosome mapping, Biochemistry 29: 5491–5499.

    Article  PubMed  CAS  Google Scholar 

  313. Gonzalez, F. J., and Gelboin, H. V., 1993, Role of human cytochrome P-450s in risk assessment and susceptibility to environmentally based disease, J. Toxicol. Environ. Health 40: 289–308.

    Article  PubMed  CAS  Google Scholar 

  314. Guengerich, F. P., Gillam, E. M. J., Martin, M. V., Baba, T., Kim, B. R., Shimada, T., Raney, K. D., and Yun, C. H., 1994, The importance of cytochrome P450 3A enzymes in drug metabolism, in: Schering Foundation Workshop, Assessment of the Use of Single Cytochrome P450 Enzymes in Drug Research (March 23–25, Springer-Verlag Berlin), pp 161–186.

    Google Scholar 

  315. Yun, C.-H., Wood, M., Wood, A. J. J., and Guengerich, F. P., 1992, Identification of the pharmacogenetic determinants of alfentanil metabolism: Cytochrome P-450 3A4. An explanation of the variable elimination clearance, Anesthesiology 77: 467–474.

    Article  PubMed  CAS  Google Scholar 

  316. Gillet, G., Pichard, L., Filali-Ansary, A., Thénot, J. P., and Maurel, P., 1993, Identification of the major cytochromes P450 involved in the formation of plasma metabolites of alpidem in man, in: Abstracts, 5th European ISSX Meeting (September 26–29, Tours) Vol. 3, p. 47.

    Google Scholar 

  317. Fabre, G., Julian, B., Saint-Aubert, B., Joyeux, H., and Berger, Y., 1993, Evidence for CYP3A-mediated N-deethylation of aminodarone in human liver microsomal fractions, Drug Metab. Dispos. 21: 978–985.

    PubMed  CAS  Google Scholar 

  318. Guengerich, E R, Brian, W. R., Iwasaki, M., Sari, M.-A., Bäärnhielm, C., and Berntsson, R, 1991, Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 II1A4, J. Med. Chem. 34: 1838–1844.

    Article  PubMed  CAS  Google Scholar 

  319. Andersson, R, and Jönsson, G., 1993, The metabolism of budesonide in human liver is catalysed by cytochrome P450 3A isoenzymes, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 236.

    Google Scholar 

  320. Jönsson, G., Andersson, P., and Äström, A., 1993, Budesonide is metabolised by cytochrome P4503A isoenzymes in human liver, in: 8th International Conference on Cytochrome P450: Biochemistry, Biophysics, and Molecular Biology (October 24–28, Lisbon), p. 242.

    Google Scholar 

  321. Pellinen, R, Honkakoski, P., Stenbäck, F., Niemitz, M., Alhava, E., Pelkonen, O., Lang, M., and Pasanen, M., 1994, Cocaine N-demethylation and the metabolism-related hepatotoxicity can be prevented by cytochrome P450 3A inhibitors, Eur. J. Pharmacol. Environ. Toxicol. Pharmacol. Sect. 270: 35–43.

    Article  CAS  Google Scholar 

  322. Ged, C., Rouillon, J. M., Pichard, L., Combalbert, J., Bressot, N., Bories, R. Michel, H., Beaune, R, and Maurel, R, 1989, The increase in urinary excretion of 6ß-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction, Br. J. Clin. Pharmacol. 28: 373–387.

    CAS  Google Scholar 

  323. Brian, W. R., Sari, M.-A., Iwasaki, M., Shimada, T., Kaminsky, L. S., and Guengerich, F. R, 1990, Catalytic activities of human liver cytochrome P-450 111A4 expressed in Saccharomyces cerevisiae, Biochemistry 29: 11280–11292.

    CAS  Google Scholar 

  324. Waxman, D. J., Chang, T.K.H., and Chen, G., 1993, Role of individual human liver P450s and other enzymes in anti-cancer drug metabolism: Drug activation and drug resistance mechanisms, in: 8th International Conference on Cytochrome P450: Biochemistry, Biophysics, and Molecular Biology (October 24–28, Lisbon), p. 71.

    Google Scholar 

  325. Combalbert, J., Fabre, I., Fabre, G., Dalet, I., Derancourt, J., Cano, J. R, and Maurel, P., 1989, Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily, Drug Metab. Dispos. 17: 197–207.

    PubMed  CAS  Google Scholar 

  326. Kronbach, T., Fischer, V., and Meyer, U. A., 1988, Cyclosporine metabolism in human liver: Identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs, Clin. Pharmacol. Ther. 43: 630–635.

    Article  PubMed  CAS  Google Scholar 

  327. Fleming, C. M., Branch, R. A., Wilkinson, G. R., and Guengerich, F. R, 1992, Human liver microsomal N-hydroxylation of dapsone by cytochrome P450 3A4, Mol. Pharmacol. 41: 975–980.

    PubMed  CAS  Google Scholar 

  328. Chauncey, M. A., and Ninomiya, S., 1990, Metabolic studies with model cytochrome P-450 systems, Tetrahedron Lett. 31: 5901–5904.

    Article  CAS  Google Scholar 

  329. Stevens, J. C., Berger, R. L., and Bordeaux, K. G., 1993, Metabolism of ebastine by human liver microsomes and cDNA-expressed cytochrome P450 forms, in: Abstracts, 5th European ISSX Meeting (September 26–29, Tours), Vol. 3, p. 66.

    Google Scholar 

  330. Ball, S. E., Maurer, G., Zollinger, M., Ladona, M., and Vickers, A. E. M., 1992, Characterization of the cytochrome P-450 gene family responsible for the N-dealkylation of the ergot alkaloid CQA 206–291 in humans, Drug Metab. Dispos. 20: 56–63.

    PubMed  CAS  Google Scholar 

  331. Kerlan, V., Dreano, Y., Bercovici, J. R, Beaune, P. H., Foch, H. H., and Berthou, F., 1992, Nature of cytochromes P450 involved in the 2-/4-hydroxylations of estradiol in human liver microsomes, Biochem. Pharmacol. 44: 1745–1756.

    Article  PubMed  CAS  Google Scholar 

  332. Waxman, D. J., Lapenson, D. P., Aoyama, T., Gelboin, H. V., Gonzalez, F. J., and Korzekwa, K., 1991, Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s, Arch. Biochem. Biophys. 290: 160–166.

    Article  PubMed  CAS  Google Scholar 

  333. Guengerich, F. R, 1988, Oxidation of 17a-ethynylestradiol by human liver cytochrome P-450, Mol. Pharmscol. 33: 500–508.

    CAS  Google Scholar 

  334. Sattler, M., Guengerich, F. R, Yun, C.-H., Christians, U., and Sewing, K. F., 1992, Human and rat liver microsomal cytochrome P450 3A enzymes are involved in biotransformation of FK506 and rapamyein, Drug Metab. Dispos. 20: 753–761.

    PubMed  CAS  Google Scholar 

  335. Vincent, S. H., Karanam, B. V., Painter, S. K., and Chiu, S.H.L., 1992, In vitro metabolism of FK-506 in rat, rabbit, and human liver microsomes: Identification of a major metabolite and of cytochrome P450 3A as the major enzymes responsible for its metabolism, Arch. Biochem. Biophys. 294: 454–460.

    Article  PubMed  CAS  Google Scholar 

  336. Bargetzi, M. J., Aoyama, T., Gonzalez, F. J., and Meyer, U. A., 1989, Lidocaine metabolism in human liver microsomes by cytochrome P450II1A4, Clin. Pharniacol. Ther. 46: 421–427.

    Google Scholar 

  337. Imaoka, S., Enomoto, K., Oda, Y., Asada, A., Fujimori, M., Shimada, T., Fujita, S., Guengerich, F. R, and Funae, Y., 1990, Lidocaine metabolism by human cytochrome P-450s purified from hepatic microsomes: Comparison of those with rat hepatic cytochrome P-450s, J. Pharmacol. Exp. Ther. 255: 1385–1391.

    PubMed  CAS  Google Scholar 

  338. Vyas, K. P., Kari, R. H., Pitzenberger, S. M., Wang, R. W., and Lu, A. Y. H., 1993, Identification of 3’,5’-dihydro-3’,5’-diol-A4-lovastatin as a new cytochrome P450 3A catalyzed metabolite of lovastatin in rat and human liver microsomes, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 35.

    Google Scholar 

  339. Kronbach, T., Mathys, D., Umeno, M., Gonzalez, F. J., and Meyer, U. A., 1989, Oxidation of midazolam and triazolam by human liver cytochrome P450111A4, Mol. Pharmacol. 36: 89–96.

    PubMed  CAS  Google Scholar 

  340. Böcker, R. H., and Guengerich, F. R, 1986, Oxidation of 4-aryl-and 4-alkyl-substituted 2,6-dimethyl3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450, J. Med. Chem. 29: 1596–1603.

    Article  PubMed  Google Scholar 

  341. Andersson, T., Miners, J. O., Veronese, M. E., and Birkett, D. J., 1993, Primary and secondary metabolism of omeprazole in human liver microsomes, in: Abstracts, 5th European ISSX Meeting (September 26–29, Tours), Vol. 3, p. 45.

    Google Scholar 

  342. Waxman, D. J., Attisano, C., Guengerich, E R, and Lapenson, D. R, 1988, Cytochrome P-450 steroid hormone metabolism catalyzed by human liver microsomes, Arch. Biochem. Biophys. 263: 424–436.

    Article  PubMed  CAS  Google Scholar 

  343. Mulford, D. J., Rodrigues, A. D., and Bopp, B. A., 1993, Identification of the human cytochrome P450 enzymes involved in the N-dealkylation of [14C]sertindole, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 147.

    Google Scholar 

  344. Mitra, A. K., Kalhorn, T. F., Thummel, K. E., Unadkat, J. D., and Slattery, J. T., 1993, Metabolism of arylamines by human liver microsomal cytochrome P450(s), in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 148.

    Google Scholar 

  345. Jacolot, F., Simon, I., Dreano, Y., Beaune, P., Riche, C., and Berthou, F., 1991, Identification of the cytochrome P450111A family as the enzymes involved in the N-demethylation of tamoxifen in human liver microsomes, Biochem. Pharmacol. 41: 1911–1919.

    Article  PubMed  CAS  Google Scholar 

  346. Kumar, G. N., Thornburg, K. R., Walle, U. K., and Walle, T., 1993, Evidence for human liver microsomal CYP 3A mediated hydroxylation of taxol, in: Abstracts, 5th North American ISSX Meeting (October, Tucson), Vol. 4, p 145.

    Google Scholar 

  347. Yun, C. H., Okerholm, R. A., and Guengerich, F. R, 1993, Oxidation of the antihistaminic drug terfenadine in human liver microsomes: Role of cytochrome P450 3A(4) in N-dealkylation and C-hydroxylation, Drug Metab. Dispos. 21: 403–409.

    PubMed  CAS  Google Scholar 

  348. Aoyama, T., Yamano, S., Waxman, D. J., Lapenson, D. R, Meyer, U. A., Fischer, V., Tyndale, R, Inaba, T., Kalow, W., Gelboin, H. V., and Gonzalez, E J., 1989, Cytochrome P-450 hPCN3, a novel cytochrome P450 IIIA gene product that is differentially expressed in adult human liver, J. Biol. Chem. 264: 10388–10395.

    PubMed  CAS  Google Scholar 

  349. Renaud, J. P., Cullin, C., Pompon, D., Beaune, P., and Mansuy, D., 1990, Expression of human liver cytochrome P450 IIIA4 in yeast: A functional model for the hepatic enzyme, Eur. J. Biochem. 194: 889–896.

    Article  PubMed  CAS  Google Scholar 

  350. Kroemer, H. K., Gautier, J.-C., Beaune, P., Henderson, C., and Wolf, C. R., 1993, Identification of P450 enzymes involved in metabolism of verapamil in humans, Naunyn-Schmiedebergs Arch. Pharmacol. 348: 332–337.

    PubMed  CAS  Google Scholar 

  351. Ring, B. J., Parli, C. J., George, M. C., and Wrighton, S. A., 1993, Interspecies comparison and role of CYP3A in zatosetron metabolism, in: Abstracts, 5th North American ISSX Meeting (October 17–21, Tucson), Vol. 4, p. 36.

    Google Scholar 

  352. Nakasa, H., Komiya, M., Ohmori, S., Rikihisa, T., and Kitada, M., 1993, Rat liver microsomal cytochrome P-450 responsible for reductive metabolism of zonisamide, Drug Metab. Dispos. 21: 777–781.

    PubMed  CAS  Google Scholar 

  353. Beaune, P. H., Umbenhauer, D. R., Bork, R. W., Lloyd, R. S., and Guengerich, E. P., 1986, Isolation and sequence determination of a cDNA clone related to human cytochrome P-450 nifedipine oxidase, Proc. Natl. Acad. Sci. USA 83: 8064–8068.

    Article  PubMed  CAS  Google Scholar 

  354. Elshourbagy, N. A., and Guzelian, P. S., 1980, Separation, purification, and characterization of a novel form of hepatic cytochrome P450 from rats treated with pregnenolone-l6a-carboni tri le, J. Biol. Chem. 255: 1279–1285.

    PubMed  CAS  Google Scholar 

  355. Molowa, D. T., Schuetz, E.G., Wrighton, S. A., Watkins, P. B., Kremers, P., Mendez-Picon, G., Parker, G. A., and Guzelian, P. S., 1986, Complete eDNA sequence of a cytochrome P-450 inducible by glucocorticoids in human liver, Proc. Natl. Acad. Sci. USA 83: 5311–5315.

    Article  PubMed  CAS  Google Scholar 

  356. Bork, R. W., Muto, T., Beaune, P. H., Srivastava, P. K., Lloyd, R. S., and Guengerich, F. P., 1989, Characterization of mRNA species related to human liver cytochrome P-450 nifedipine oxidase and the regulation of catalytic activity, J. Biol. Chem. 264: 910–919.

    PubMed  CAS  Google Scholar 

  357. Kolars, J., Schmiedelin-Ren, P., Dobbins, W., Merion, R., Wrighton, S., and Watkins, P., 1990, Heterogeneity of P-450 ILIA expression in human gut epithelia, FASEB J. 4: A2242.

    Google Scholar 

  358. Daujat, M., Pichard, L., Fabre, I., Diaz, D., Maurice, M., Pineau, T., Blanc, P., Fabre, G., Fabre, J. M., Saint Aubert, B., and Maurel, P., 1990, Human P450IA and IIIA subfamilies: Regulation of expression and inducibility in primary cultures of human hepatocytes, in: Drug Metabolizing Enzymes: Genetics, Regulation and Toxicology, Proceedings of the Eighth International Symposium on Microsomes and Drug Oxidations (Stockholm, June 25–29) (M. Ingelman-Sundberg, J.-A. Gustafsson, and S. Orrenius, eds.), p. 16.

    Google Scholar 

  359. Schuetz, J. D., Molowa, D. T., and Guzelian, P. S., 1989, Characterization of a eDNA encoding a new member of the glucocorticoid-responsive cytochromes P450 in human liver, Arch. Biochem. Biophys. 274: 355–365.

    Article  PubMed  CAS  Google Scholar 

  360. Wrighton, S. A., Ring, B. J., Watkins, P. B., and VandenBranden, M., 1989, Identification of a polymorphically expressed member of the human cytochrome P-450III family, Mol. Pharmacol. 86: 97–105.

    Google Scholar 

  361. Wrighton, S. A., Brian, W. R., Sari, M. A., Iwasaki, M., Guengerich, E P., Raucy, J. L., Molowa, D. T., and VandenBranden, M., 1990, Studies on the expression and metabolic capabilities of human liver cytochrome P4501IIA5 (HLp3), Mol. Pharmacol. 38: 207–213.

    PubMed  CAS  Google Scholar 

  362. Kitada, M., Kamataki, T., Itahashi, K., Rikihisa, T., Kato, R., and Kanakubo, Y., 1985, Purification and properties of cytochrome P-450 from homogenates of human fetal livers, Arch. Biochem. Biophys. 241: 275–280.

    Article  PubMed  CAS  Google Scholar 

  363. Komori, M., Nishio, K., Kitada, M., Shiramatsu, K., Muroya, K., Soma, M., Nagashima, K., and Kamataki, T., 1990, Fetus-specific expression of a form of cytochrome P-450 in human livers, Biochemistry 29: 4430–4433.

    Article  PubMed  CAS  Google Scholar 

  364. Schuetz, J. D., Kauma, S., and Guzelian, P. S., 1993, Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta, J. Clin. Invest. 92: 1018–1024.

    Article  PubMed  CAS  Google Scholar 

  365. Hancock, R. L., 1992, Theoretical mechanisms for synthesis of carcinogen-induced embryonic proteins: XXVII. Intermediate generalizations (Part B), Med. Hypoth. 37: 6–1 I.

    Article  CAS  Google Scholar 

  366. Hashimoto, H., Toide, K., Kitamura, R., Fujita, M., Tagawa, S., Itoh, S., and Kamataki, T., 1993, Gene structure of CYP3A4, an adult-specific form of cytochrome-P450 in human livers, and its transcriptional control, Eur. J. Biochem. 218: 585–595.

    Article  PubMed  CAS  Google Scholar 

  367. Kelly, J. D.,Eaton, D. L., Guengerich, F. P., and Coulombe, R. A., Jr., 1995, Aflatoxin B1 activation in human lung: Role of cytochrome P450 3A, Carcinogenesis, in press.

    Google Scholar 

  368. Kolars, J. C., Awni, W. M., Merion, R. M., and Watkins, P. B., 1991, First-pass metabolism of cyclosporin by the gut, Lancet 338: 1488–1490.

    Article  PubMed  CAS  Google Scholar 

  369. Schwab, G. E., Raney, J. L., and Johnson, E. F., 1988, Modulation of rabbit and human hepatic cytochrome P-450-catalyzed steroid hydroxylations by a-naphthoflavone, Mol. Pharmacol. 33: 493499.

    Google Scholar 

  370. Imaoka, S., Lmai, Y., Shimada, T., and Funae, Y., 1992, Role of phospholipids in reconstituted cytochrome P450 3A forms and mechanism of their activation of catalytic activity, Biochemistry 31: 6063–6069.

    Article  PubMed  CAS  Google Scholar 

  371. Peyronneau, M. A., Renaud, J. P., Truan, G., Urban, P., Pompon, D., and Mansuy, D., 1992, Optimization of yeast-expressed human liver cytochrome-P450 3A4 catalytic activities by coexpressing NADPH-cytochrome P450 reductase and cytochrome b5, Eur. J. Biochem. 207: 109–116.

    Article  CAS  Google Scholar 

  372. Guengerich, F. P., 1995, Cytochrome P450s of human liver. Classification and activity profile of the major enzymes, in: Advances in Drug Metabolism in Man ( G. M. Pacifici and G. N. Fracchia, eds.), Medical Research Commission, European Communities, Brussels, pp. 179–231.

    Google Scholar 

  373. Buening, M. K., Fortner, J. G., Kappas, A., and Conney, A. H., 1978, 7,8-Benzoflavone stimulates the metabolic activation of aflatoxin Bi to mutagens by human liver, Biochem. Biophys. Res. Commun. 82: 348–355.

    Google Scholar 

  374. Buening, M. K., Chang, R. L., Huang, M. R., Former, J. G., Wood, A. W., and Conney, A. H., 1981, Activation and inhibition of benzo(a)pyrene and aflatoxin Bi metabolism in human liver microsomes by naturally occurring flavonoids, Cancer Res. 41: 67–72.

    PubMed  CAS  Google Scholar 

  375. Shimada, T., and Guengerich, F. P., 1989, Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver, Proc. Natl. Acad. Sci. USA 86: 462–465.

    Article  PubMed  CAS  Google Scholar 

  376. Shimada, T., Iwasaki, M., Martin, M. V., and Guengerich, F. P., 1989, Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by mu gene response in Salmonella typhimurium TA1535/pSK1002, Cancer Res. 49: 3218–3228.

    PubMed  CAS  Google Scholar 

  377. Raney, K. D., Shimada, T., Kim, D.-H., Groopman, J. D., Harris, T. M., and Guengerich, F. P., 1992, Oxidation of aflatoxin Bi and related dihydrofurans by human liver microsomes: Significance of aflatoxin QI as a detoxication product, Chem. Res. Toxicol. 5: 202–210.

    Article  PubMed  CAS  Google Scholar 

  378. Guengerich, F. P., Kim, B.-R., Gillam, E. M. J., and Shimada, T., 1994, Mechanisms of enhancement and inhibition of cytochrome P450 catalytic activity, in: Proceedings, 8th Int. Conf. on Cytochrome P450: Biochemistry, Biophysics, and Molecular Biology, ( M. C. Lechner, ed.) John Libbey Eurotext, Chichester, U.K., pp. 97–101.

    Google Scholar 

  379. Huang, M. T., Johnson, E. F., Muller-Eberhard, U., Koop, D. R., Coon, M. J., and Conney, A. H., 1981, Specificity in the activation and inhibition by flavonoids of benzo[a)pyrene hydroxylation by cytochrome P-450 isozymes from rabbit liver microsomes, J. Biol. Chem. 256: 10897–10901.

    PubMed  CAS  Google Scholar 

  380. Johnson, E. F., Schwab, G. E., and Vickery, L. E., 1988, Positive effectors of the binding of an active site-directed amino steroid to rabbit cytochrome P-450 3c, J. Biol. Chem. 263: 17672–17677.

    PubMed  CAS  Google Scholar 

  381. Rao, M. S., and Reddy, J. K., 1991, An overview of peroxisome proliferator-induced hepatocarcinogenesis, Environ. Health Perspect. 93: 205–209.

    Article  PubMed  CAS  Google Scholar 

  382. Gibson, G. G., 1993, Peroxisome proliferators: Paradigms and prospects, Toxicol. Lett. 68: 193–201.

    Article  PubMed  CAS  Google Scholar 

  383. Roman, L. J., Palmer, C.N.A., Clark, J. E., Muerhoff, A. S., Griffin, K. J., Johnson, E. F., and Masters, B.S.S., 1993, Expression of rabbit cytochromes P4504A which catalyze the to-hydroxylation of arachidonic acid, fatty acids, and prostaglandins, Arch. Biochem. Biophys. 307: 57–65.

    Article  PubMed  CAS  Google Scholar 

  384. Nhamburo, P. T., Gonzalez, F. J., McBride, O. W., Gelboin, H. V., and Kimura, S., 1989, Identification of a new P450 expressed in human lung: Complete cDNA sequence, cDNA-directed expression, and chromosome mapping, Biochemistry 28: 8060–8066.

    Article  PubMed  CAS  Google Scholar 

  385. Haurand, M., and Ullrich, V., 1985, Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P450 enzyme, J. Biol. Chem. 260: 15059–15067.

    PubMed  CAS  Google Scholar 

  386. Nüsing, R., Schneider-Voss, S., and Ullrich, V., 1990, Immunoaffinity purification of human thromboxane synthase, Arch. Biochem. Biophys. 280: 325–330.

    Article  PubMed  Google Scholar 

  387. Graf, H., Ruf, H. H., and Ullrich, V., 1983, Prostacyclin synthase, a cytochrome P450 enzyme, Angew. Chem. Int. Ed. Engl. 22: 487–488.

    Article  Google Scholar 

  388. Ullrich, V., and Graf, H., 1984, Prostacyclin and thromboxane synthase as P-450 enzymes, Trends Pharmacol. Sci. 5: 352–355.

    Article  CAS  Google Scholar 

  389. Hecker, M., and Ullrich, V., 1989, On the mechanism of prostacyclin and thromboxane A2 biosynthesis, J. Biol. Chem. 264: 141–150.

    PubMed  CAS  Google Scholar 

  390. Hecker, M., Haurand, M., Ullrich, V., and Terao, S., 1986, Spectral studies on structure—activity relationships of thromboxane synthase inhibitors, Eur. J Biochem. 157: 217–223.

    Article  PubMed  CAS  Google Scholar 

  391. Danielsson, H., and Sjövall, J., 1975, Bile acid metabolism, Annu Rev. Biochem. 44: 233–253.

    Article  PubMed  CAS  Google Scholar 

  392. Li, Y. C., Wang, D. P., and Chiang, J. Y. L., 1990, Regulation of cholesterol 7a-hydroxylase in the liver: Cloning, sequencing, and regulation of cholesterol 7a-hydroxylase mRNA, J. Biol. Chem. 265: 12012–12019.

    PubMed  CAS  Google Scholar 

  393. Pendak, W. M., Li, Y. C., Chiang, J. Y. L., Studer, E. J., Gurley, E. C., Heuman, D. M., Vlahcevic, Z. R., and Hylemon, R. B., 1991, Regulation of cholesterol 7a-hydroxylase mRNA and transcriptional activity by taurocholate and cholesterol in the chronic biliary diverted rat, J. Biol. Chem. 266: 34163421.

    Google Scholar 

  394. Nishimoto, M., Noshiro, M., and Okuda, K., 1993, Structure of the gene encoding human liver cholesterol 7a-hydroxylase, Biochim. Biophys. Acta 1172: 147–150.

    Article  PubMed  CAS  Google Scholar 

  395. Morohashi, K., Sogawa, K., Omura, T., and Fujii-Kuriyama, Y., 1987, Gene structure of human cytochrome P-450(SCC), cholesterol desmolase, J. Biochem. 101: 879–887.

    PubMed  CAS  Google Scholar 

  396. Lin, D., Gitelman, S. E., Saenger, P., and Miller, W. L., 1991, Normal genes for the cholesterol side chain cleavage enzyme, P450., in congenital lipoid adrenal hyperplasia, J Clin. Invest. 88: 1955–1962.

    Article  PubMed  CAS  Google Scholar 

  397. Lauber, M., Sugano, S., Ohnishi, T., Okamoto, M., and Müller, J., 1987, Aldosterone biosynthesis and cytochrome P4504: Evidence for two different forms of the enzyme in rats, J. Steroid Biochem. 26: 693–698.

    Article  PubMed  CAS  Google Scholar 

  398. Lorence, M. C., Trant, J. M., Clark, B. J., Khyatt, B., Mason, J. I., Estabrook, R. W., and Waterman, M. R., 1990, Construction and expression of human/bovine P45017a chimeric proteins: Evidence for distinct tertiary structures in the same P450 from two different species, Biochemistry 29: 9819–9824.

    Article  PubMed  CAS  Google Scholar 

  399. Swart, P., Swart, A. C., Waterman, M. R., Estabrook, R. W., and Mason, J. I., 1993, Progesterone 16a-hydroxylase activity is catalyzed by human cytochrome P450 17a-hydroxylase, J. Clin. Endocrinol. Metab. 77: 98–102.

    Article  PubMed  CAS  Google Scholar 

  400. Yanase, T., Kagimoto, M., Matsui, N., Simpson, E. R., and Waterman, M. R., 1988, Combined 17a-hydroxylase/17,20-lyase deficiency due to a stop codon in the N-terminal region of 17a-hydroxylase cytochrome P-450, Mol. Cell. Endocrino!. 59: 249–253.

    Article  CAS  Google Scholar 

  401. Kagimoto, M., Winter, J.S.D., Kagimoto, K., Simpson, E. R., and Waterman, M. R., 1988, Structural characterization of normal and mutant human steroid 17a-hydroxylase genes: Molecular basis of one example of combined 17a-hydroxylase/17,20 lyase deficiency, Mol. Endocrinol. 2: 564–570.

    Article  PubMed  CAS  Google Scholar 

  402. Yanase, T., Kagimoto, M., Suzuki, S., Hashiba, K., Simpson, E. R., and Waterman, M. R., 1989, Deletion of a phenylalanine in the N-terminal region of human cytochrome P-45017a results in partial combined 17a-hydroxylase/17,20-lyase deficiency, J. Biol. Chem. 264:18076–18082.

    Google Scholar 

  403. Yanase, T., Imai, T., Simpson, E. R., and Waterman, M. R., 1992, Molecular basis of 17a-hydroxylase/17,20-lyase deficiency, J. Steroid Biochem. Mol. Biol. 43: 973–979.

    Article  PubMed  CAS  Google Scholar 

  404. Ryan, K. J., 1958, Conversion of androstenedione to estrone by placental microsomes, Biochim. Biophys. Acta 27: 658–662.

    Article  PubMed  CAS  Google Scholar 

  405. Brodie, A. M. H., 1987, Aromatase inhibitors: Applications of inhibitors of estrogen biosynthesis, IS/ Atlas of Science: Pharmacology 266–269.

    Google Scholar 

  406. Kellis, J. T., Jr.., and Vickery, L. E., 1987, Purification and characterization of human placental aromatase cytochrome P-450, J. Biol. Chem. 262: 4413–4420.

    CAS  Google Scholar 

  407. Chen, S., Besman, M. J., Shively, J. E., Yanagibashi, K., and Hall, P. F., 1989, Human aromatase, Drug Metab. Rev. 20: 511–517.

    Article  PubMed  CAS  Google Scholar 

  408. Oh, S.S., and Robinson, C. H., 1993, Mechanism of human placental aromatase: A new active site model, J. Steroid Biochem. Mol. Biol. 44: 389–397.

    Article  PubMed  CAS  Google Scholar 

  409. Tan, L., and Muto, N., 1986, Purification and reconstitution properties of human placental aromatase: A cytochrome P450-type monooxygenase, Eur. J. Biochem. 157: 243–250.

    Article  Google Scholar 

  410. Hall, P. F., Chen, S., Nakajin, S., Shinoda, M., and Shively, J. E., 1987, Purification and characterization of aromatase from human placenta, Steroids 50: 37–50.

    Article  PubMed  CAS  Google Scholar 

  411. Chen, S., Shively, J. E., Nakajin, S., Shinoda, M., and Hall, P. F., 1986, Amino terminal sequence analysis of human placenta aromatase, Biochem. Biophys. Res. Commun. 135: 713–179.

    Article  PubMed  CAS  Google Scholar 

  412. Mendelson, C. R., Wright, E. E., Evans, C. T., Porter, J. C., and Simpson, E. R., 1985, Preparation and characterization of polyclonal and monoclonal antibodies against human aromatase cytochrome P-450 (P-450arom), and their use in its purification, Arch. Biochem. Biophys. 243: 480–491.

    Article  PubMed  CAS  Google Scholar 

  413. Yoshida, N., and Osawa, Y., 1991, Purification of human placental aromatase cytochrome P-450 with monoclonal antibody and its characterization, Biochemistry 30: 3003–3010.

    Article  PubMed  CAS  Google Scholar 

  414. Corbin, C. J., Graham-Lorence, S., McPhaul, M., Mason, J. I., Mendelson, C. R., and Simpson, E. R., 1988, Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450 and its expression in nonsteroidogenic cells, Proc. Natl. Acad. Sci. USA 85: 8948–8952.

    Article  PubMed  CAS  Google Scholar 

  415. Toda, K., Terashima, M., Kawamoto, T., Sumimoto, H., Yokoyama, Y., Kuribayashi, I., Mitsuuchi, Y., Maeda, T., Yamamoto, Y., Sagara, Y., Ikeda, H., and Shizuta, Y., 1990, Structural and functional characterization of human aromatase P-450 gene, Eur. J. Biochem. 193: 559–565.

    Article  PubMed  CAS  Google Scholar 

  416. Toda, K., and Shizuta, Y., 1994, Identification and characterization of cis-acting regulatory elements for the expression of the human aromatase cytochrome P-450 gene, J. Biol. Chem. 269: 8099–8107.

    PubMed  CAS  Google Scholar 

  417. Toda, K., and Shizuta, Y., 1993, Molecular cloning of a cDNA showing alternative splicing of the 5’-untranslated sequence of mRNA for human aromatase P-450, Eur. J. Biochem. 213: 383–389.

    Article  PubMed  CAS  Google Scholar 

  418. Harada, N., 1992, A unique aromatase (P-450AROm) mRNA formed by alternative use of tissue-specific exons 1 in human skin fibroblasts, Biochem. Biophys. Res. Commun. 189: 1001–1007.

    Article  PubMed  CAS  Google Scholar 

  419. Harada, N., Utsumi, T., and Takagi, Y., 1993, Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis, Proc. Natl. Acad. Sci. USA 90: 11312–11316.

    Article  PubMed  CAS  Google Scholar 

  420. Guengerich, F. P., and Macdonald, T. L., 1993, Sequential electron transfer oxidation reactions catalyzed by cytochrome P-450 enzymes, in: Advances in Electron Transfer Chemistry, Vol. 3 (P. S. Mariano, ed.), JAI Press, Greenwich, CT, pp. 191–241.

    Google Scholar 

  421. Ortiz de Montellano, P. R., 1986, Oxygen activation and transfer, in: Cytochrome P-450 ( P. R. Ortiz de Montellano, ed.), Plenum Press, New York, pp. 217–271.

    Google Scholar 

  422. Cole, P. A., and Robinson, C. H., 1988, A peroxide model reaction for placental aromatase, J. Am. Chem. Soc. 110: 1284–1285.

    Article  CAS  Google Scholar 

  423. Akhtar, M., Calder, M. R., Corina, D. L., and Wright, J. N., 982, Mechanistic studies on C-19 demethylation in oestrogen biosynthesis, Biochem. J. 201: 569–580.

    Google Scholar 

  424. Cole, P. A., and Robinson, C. H., 1990, Mechanism and inhibition of cytochrome P-450 aromatase, J. Med. Chem. 33: 2933–2942.

    Article  PubMed  CAS  Google Scholar 

  425. Cole, R A., and Robinson, C. H., 1991, Mechanistic studies on a placental aromatase model reaction, J. Am. Chem. Soc. 113: 8130–8137.

    Article  CAS  Google Scholar 

  426. Vaz, A. D. N., Roberts, E. S., and Coon, M. J., 1991, Olefin formation in the oxidative deformylation of aldehydes by cytochrome P-450. Mechanistic implications for catalysis by oxygen-derived peroxide, J. Am. Chem. Soc. 113: 5886–5887.

    Article  CAS  Google Scholar 

  427. Brodie, A. M. H., Banks, P. K., Inskster, S. E., Dowsett, M., and Coombes, R. C., 1990, Aromatase inhibitors and hormone-dependent cancers, J. Steroid Biochem. Mol. Biol. 37: 327–333.

    Article  PubMed  CAS  Google Scholar 

  428. Bhamagar, A. S., Häusler, A., Schieweck, K., Browne, L. J., Bowman, R., and Steele, R. E., 990, Novel aromatase inhibitors, J. Steroid Biochem. Mol. Biol. 37: 363–367.

    Google Scholar 

  429. Kellis, J. T., Jr., and Vickery, L. E., 1984, Inhibition of human estrogen synthetase (aromatase) by flavones, Science 225:1032–1034.

    Google Scholar 

  430. Kellis, J. T., Jr., Nesnow, S., and Vickery, L. E., 1986, Inhibition of aromatase cytochrome P-450 (estrogen synthetase) by derivatives of a-naphthoflavone, Biochem. Pharmacol. 35: 2887–2891.

    Article  PubMed  CAS  Google Scholar 

  431. Shimozawa, O., Sakaguchi, M., Ogawa, H., Harada, N., Mihara, K., and Omura, T., 1993, Core glycosylation of cytochrome P-405(arom): Evidence for localization of N terminus of microsomal cytochrome P-450 in the lumen, J. Biol. Chem. 268: 21399–21402.

    PubMed  CAS  Google Scholar 

  432. Chen, S., Zhou, D., Swiderek, K. M., Kadohama, N., Osawa, Y., and Hall, P. F., 1993, Structure-function studies of human aromatase, J. Steroid Biochem. Mol. Biol. 44: 347–356.

    Article  PubMed  CAS  Google Scholar 

  433. Zhou, D., Pompon, D., and Chen, S., 1991, Structure-function studies of human aromatase by site-directed mutagenesis: Kinetic properties of mutants Pro-308 Phe, Tyr-361 Phe, Tyr-361 Leu, and Phe-406 Arg, Proc. Natl. Acad. Sci. USA 88: 410–414.

    Article  PubMed  CAS  Google Scholar 

  434. Graham-Lorence, S., Khalil, M. W., Lorence, M. C., Mendelson, C. R., and Simpson, E. R., 1991, Structure-function relationships of human aromatase cytochrome P-450 using molecular modeling and site-directed mutagenesis, J. Biol. Chem. 266: 11939–11946.

    PubMed  CAS  Google Scholar 

  435. Chen, S., and Zhou, D., 1992, Functional domains for aromatase cytochrome P450 inferred from comparative analyses of amino acid sequences and substantiated by site-directed mutagenesis experiments, J. Biol. Chem. 267: 22587–22594.

    PubMed  CAS  Google Scholar 

  436. Laughton, C. A., 1993, A detailed molecular model for human aromatase, J. Steroid Biochem. Mol. Biol. 44: 399–407.

    Article  PubMed  CAS  Google Scholar 

  437. Kagawa, N., and Waterman, M. R., 1991, Evidence that an adrenal-specific nuclear protein regulates the cAMP responsiveness of the human CYP21B (P450C21) gene, J. Biol. Chem. 266: 11199–11204.

    PubMed  CAS  Google Scholar 

  438. Higashi, Y., Yoshioka, H., Yamane, M., Gotoh, O., and Fujii-Kuriyama, Y., 1986, Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: A pseudo-gene and a genuine gene, Proc. Natl. Acad. Sci. USA 83: 2841–2845.

    Article  PubMed  CAS  Google Scholar 

  439. Gitelman, S. E., Bristow, J., and Miller, W. L., 1992, Mechanism and consequences of the duplication of the human C4/P450c21/gene X locus, Mol. Cell. Biol. 12: 2124–2134.

    PubMed  CAS  Google Scholar 

  440. Higashi, Y., Tanae, A., Inoue, H., and Fujii-Kuriyama, Y., 1988, Evidence for frequent gene conversion in the steroid 21-hydroxylase P-450(C21) gene: Implications for steroid 21-hydroxylase deficiency, Am. J. Hum. Genet. 42: 17–25.

    PubMed  CAS  Google Scholar 

  441. Helmberg, A., Tabarelli, M., Fuchs, M. A., Keller, E., Dobler, G., Schnegg, I., Knorr, D., Albert, E., and Kofler, R., 1992, Identification of molecular defects causing congenital adrenal hyperplasia by cloning and differential hybridization of polymerase chain reaction-amplified 21-hydroxylase (CYP21) genes, DNA Cell Biol. 11: 359–368.

    Article  PubMed  CAS  Google Scholar 

  442. Chiou, S. H., Hu, M. C., and Chung, B., 1990, A missense mutation at Ile 172-Asn or Arg356-*Trp causes steroid 21-hydroxylase deficiency, J. Biol. Chem. 265: 3549–3552.

    PubMed  CAS  Google Scholar 

  443. New, M. I., 1994, 21-Hydroxylase deficiency congenital adrenal hyperplasia, J. Steroid Biochem. Mol. Biol. 48: 15–22.

    Google Scholar 

  444. Cali, J. J., and Russell, D. W., 1991, Characterization of human sterol 27-hydroxylase: Amitochondrial cytochrome P-450 that catalyzes multiple oxidation reactions in bile acid biosynthesis, J. Biol. Chem. 266: 7774–7778.

    PubMed  CAS  Google Scholar 

  445. Cali, J. J., Hsieh, C. L., Francke, U., and Russell, D. W., 1991, Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis, J. Biol. Chem. 266: 7779–7783.

    PubMed  CAS  Google Scholar 

  446. Ishida, N., Aoyama, Y., Hatanaka, R., Oyama, Y., Imajo, S., Ishiguro, M., Oshima, T., Nakazato, H., Noguchi, T., Maitra, U.S., Mohan, V. P., Sprinson, D. B., and Yoshida, Y., 1988, A single amino acid substitution converts cytochrome P45014DM to an inactive form, cytochrome P450SG1: Complete primary structures deduced from cloned DNAs, Biochem. Biophys. Res. Commun. 155: 317–323.

    Article  PubMed  CAS  Google Scholar 

  447. Aoyama, Y., Yoshida, Y., Nishino, T., Katsuki, H., Maitra, U. S., Mohan, V. P., and Sprinson, D. B., 1987, Isolation and characterization of an altered cytochrome P-450 from a yeast mutant defective in lanosterol 14a-demethylation, J. Biol. Chem. 262: 14260–14264.

    PubMed  CAS  Google Scholar 

  448. Coles, B. E, Welch, A. M., Hertzog, P. J., Lindsay Smith, J. R., and Garner, R. C., 1980, Biological and chemical studies on 8,9-dihydroxy-8,9-dihydro-aflatoxin B1 and some of its esters, Carcinogenesis 1: 79–90.

    Article  PubMed  CAS  Google Scholar 

  449. Poulos, T. L., Finzel, B. C., and Howard, A. J., 1987, High-resolution crystal structure of cytochrome P450cam, J. Mol. Biol. 195: 687–700.

    Article  PubMed  CAS  Google Scholar 

  450. Ravichandran, K. G., Boddupalli, S. S., Hasemann, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P450 BM-3, a prototype for microsomal P450’s, Science 261: 731–736.

    Article  PubMed  CAS  Google Scholar 

  451. Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Deisenhofer, J., 1994, Crystal structure and refinement of cytochrome P450(terp) at 2.3 angstrom resolution, J. Mol. Biol. 236: 1169–1185.

    Article  PubMed  CAS  Google Scholar 

  452. Poulos, T. L., 1991, Modeling of mammalian P450s on basis of P450cam X-ray structure, Methods Enzymol. 206: 11–30.

    Article  PubMed  CAS  Google Scholar 

  453. Crespi, C. L., Langenbach, R., and Penman, B. W., 1993, Human cell lines, derived from AHH-1 TK+/— human lymphoblasts, genetically engineered for expression of cytochromes P450, Toxicology 82: 89–104.

    Article  PubMed  CAS  Google Scholar 

  454. Schmalix, W. A., Mäser, H., Kiefer, F., Reen, R., Wiebel, F. J., Gonzalez, F., Seidel, A., Glatt, H., Greiff’, H., and Doehmer, J., 1994, Stable expression of human cytochrome P450 lAl cDNA in V79 Chinese hamster cells and metabolic activation of benzo[a]pyrene, Eur. J. Pharmacol. 248: 251–261.

    Google Scholar 

  455. Larson, J. R., Coon, M. J., and Porter, T. D., 1991, Alcohol-inducible cytochrome P-45011E1 lacking the hydrophobic NH2-terminal segment retains catalytic activity and is membrane-bound when expressed in Escherichia coli, J. Biol. Chem. 266: 7321–7324.

    CAS  Google Scholar 

  456. Barnes, H. J., Arlotto, M. P., and Waterman, M. R., 1991, Expression and enzymatic activity of recombinant cytochrome P450 17a-hydroxylase in Escherichia coli, Proc. Natl. Acad. Sci. USA 88: 5597–5601.

    Article  CAS  Google Scholar 

  457. Kinirons, M. T., Oshea, D., Downing, T. E., Fitzwilliam, A. T., Joellenbeck, L., Groopman, J. D., Wilkinson, G. R., and Wood, A. J. J., 1993, Absence of correlations among 3 putative in vivo probes of human cytochrome-P4503A activity in young healthy men, Clin. Pharmacol. Ther. 54: 621–629.

    Article  PubMed  CAS  Google Scholar 

  458. Mueller, G. C., and Miller, J. A., 1953, The metabolism of methylated aminoazo dyes. II. Oxidative demethylation by rat liver homogenates, J. Biol. Chem. 202: 579–587.

    PubMed  CAS  Google Scholar 

  459. Richardson, H. L., Stier, A. R., and Borsos-Nachtnebel, E., 1952, Liver tumor inhibition and adrenal histologic responses in rats to which 3’-methyl-4-dimethylaminoazobenzene and 20-methylcholan-threne were simultaneously administered, Cancer Res. 12: 356–361.

    PubMed  CAS  Google Scholar 

  460. Miller, E. C., Miller, J. A., and Conney, A. H., 1954, On the mechanism of the methylcholanthrene inhibition of carcinogenesis by 3’-methyl-4-dimethylaminoazobenzene, Proc. Am. Assoc. Cancer Res. 1: 32.

    Google Scholar 

  461. Miller, E. C., Miller, J. A., Brown, R. R., and MacDonald, J. C., 1958, On the protective action of certain polycyclic aromatic hydrocarbons against carcinogenesis by aminoazo dyes and 2-acetylaminofluorene, Cancer Res. 18: 469–477.

    PubMed  CAS  Google Scholar 

  462. Conney, A. H., Miller, E. C., and Miller, J. A., 1956, The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene, Cancer Res. 16: 450–459.

    PubMed  CAS  Google Scholar 

  463. Nebert, D. W., 1978, Genetic control of carcinogen metabolism leading to individual differences in cancer risk, Biochimie 60: 1019–1029.

    Article  CAS  Google Scholar 

  464. Nebert, D. W., 1989, The Ah locus: Genetic differences in toxicity, cancer, mutation, and birth defects, Crit. Rev. Toxicol. 20: 153–174.

    Article  PubMed  CAS  Google Scholar 

  465. Guengerich, F. P., 1988, Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy, Cancer Res. 48: 2946–2954.

    PubMed  CAS  Google Scholar 

  466. Guengerich, E. P., 1990, Characterization of roles of human cytochrome P450 enzymes in carcinogen metabolism, Asia Pac. J. Pharmacol. 5: 327–345.

    CAS  Google Scholar 

  467. Guengerich, F. P., 1992, Metabolic activation of carcinogens, Pharmacol. Ther. 54: 17–61.

    Article  PubMed  CAS  Google Scholar 

  468. Guengerich, F. P., 1993, The 1992 Bernard B. Brodie Award Lecture. Bioactivation and detoxication of toxic and carcinogenic chemicals, Drug Metab. Dispos. 21: 1–6.

    Google Scholar 

  469. Yamazaki, H., Mimura, M., Oda, Y., Inui, Y., Shiraga, T., Iwasaki, K., Guengerich, P. R, and Shimada, T., 1993, Roles of different forms of cytochrome P450 in the activation of the promutagen 6-aminochrysene to genotoxic metabolites in human liver microsomes, Carcinogenesis 14: 1271–1278.

    Article  PubMed  CAS  Google Scholar 

  470. Caporaso, N. E., Shields, P. G., Landi, M. T., Shaw, G. L., Tucker, M. A., Hoover, M., Sugimura, H., Weston, A., and Harris, C. C., 1992, The debrisoquine metabolic phenotype and DNA-based assays: Implications of misclassification for the association of lung cancer and the debrisoquine metabolic phenotype, Environ. Health Perspect. 98: 101–105.

    Article  PubMed  CAS  Google Scholar 

  471. Uematsu, F., Kikuchi, H., Motomiya, M., Abe, T., Sagami, I., Ohmachi, T., Wakui, A., Kanamaru, and Watanabe, M., 1991, Association between restriction fragment length polymorphism of the human cytochrome P4501IE1 gene and susceptibility to lung cancer, Jpn. J Cancer Res. 82: 254–256.

    Article  PubMed  CAS  Google Scholar 

  472. Kirby, G. M., Wolf, C. R, Neal, G. E., Judah, D. J., Henderson, C. J., Srivatanakul, P., and Wild, C. P., 1993, In vitro metabolism of aflatoxin Bt by normal and tumorous liver tissue from Thailand, Carcinogenesis 14: 2613–2620.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guengerich, F.P. (1995). Human Cytochrome P450 Enzymes. In: de Montellano, P.R.O. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2391-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2391-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3248-8

  • Online ISBN: 978-1-4757-2391-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics