Skip to main content

Part of the book series: Environmental Science Research ((ESRH,volume 43))

Abstract

In the ten years since this subject was last reviewed (Harrison, 1980), significant progress has been made in understanding remineralization processes in the sea, where they occur, which organisms are responsible, and what role regenerated nutrients play in primary productivity. A proliferation of research on oceanic nutrient cycles in the 80s produced numerous excellent books and review papers on the subject (Morris, 1980; Platt, 1981; Williams, 1981; Fogg, 1982; Azam et al., 1983; Carpenter and Capone, 1983; Ducklow, 1984; Fasham, 1984; Smetacek and Pollehne, 1986; Blackburn and SĪ•rensen, 1988). Most of this literature has emphasized small scale to mesoscale processes within the oceanic euphotic zone and focussed on the role of microbial communities and their components in nutrient regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alldredge, A. L. and Cohen, Y., 1987, Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets, Science, 235:689.

    Article  PubMed  CAS  Google Scholar 

  • Alldredge, A. L. and Silver, M. W., 1988, Characteristics, dynamics and significance of marine snow, Prog. Oceanogr., 20:41.

    Article  Google Scholar 

  • Altabet, M. A., 1989, Particulate new nitrogen fluxes in the Sargasso Sea, J. Geophys. Res., 94:12,771.

    Google Scholar 

  • Anderson, O. K., Goldman, J. C., Caron, D. A., and Dennett, M. R., 1986, Nutrient cycling in a microflagellate food chain. III. Phosphorus dynamics, Mar. Ecol. Prog. Ser., 31, 47.

    Article  Google Scholar 

  • Azam, F. and Ammerman, J. W., 1984, Cycling of organic matter by bacterioplankton in pelagic marine ecosystems: microenvironmental considerations, in: “Flows of Energy and Materials in Marine Ecosystems,” M.J.R. Fasham, ed., Plenum Press, London.

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser., 10:257.

    Article  Google Scholar 

  • Azam, F. and Hodson, R. E., 1977, Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr., 22:492–501.

    Article  CAS  Google Scholar 

  • Banse, K., 1990, New views on the degradation and disposition of organic particles as collected by sediment traps in the open sea, Deep-Sea Res., 37:1177.

    Article  Google Scholar 

  • Berger, W. H., 1989, Appendix. Global maps of Ocean Productivity, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.C. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Berger, W. H., Fischer, K., Lai, C., and Wu, G., 1987, Oceanic productivity and organic carbon flux. Part 1. Overview and maps of primary production and export production. Univ. of California, San Diego, SIO Reference 87-30.

    Google Scholar 

  • Berger, W. H., Smetacek, V. S., and Wefer, G., 1989, Ocean productivity and paleoproductivity-an overview, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Berman, T., 1991, Protozoans as agents in planktonic nutrient cycling, in: “Protozoa and Their Role in Marine Processes,” P.C. Reid, CM. Turley and P.H. Burkill, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Berman, T., Nawrocki, M., Taylor, G. T., and Karl, D. M., 1987, Nutrient flux between bacteria, bactivorous nanoplanktonic protists and algae, Mar. Microbial Food Webs, 2:69.

    CAS  Google Scholar 

  • Bidigare, R. R., 1983, Nitrogen excretion by marine Zooplankton, in: “Nitrogen in the Marine Environment,” E.J. Carpenter and D.C. Capone, eds., Academic Press, New York.

    Google Scholar 

  • Bigg, G. R., Jickells, T. D., Knap, A. H., and Serriff-Dow, R., 1989, The significance of short term wind induced mixing events for “new” primary production in subtropical gyres, Oceanol. Acta, 12:437.

    CAS  Google Scholar 

  • Billen, G., 1984, Heterotrophic utilization and regeneration of nitrogen, in: “Heterotrophic Activity in the Sea,” J.E. Hobbie and P.J. LeB. Williams, eds., Plenum Press, New York.

    Google Scholar 

  • Blackburn, T. H. and SĪ•rensen, J., 1988, “Nitrogen Cycling in Coastal Marine Environments,” John Wiley & Sons, Chichester.

    Google Scholar 

  • Bratbak, G. and Thingstad, T. F., 1985, Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism, Mar. Ecol. Prog. Ser., 25:23.

    Article  Google Scholar 

  • Caperon, J., Schell, D., Hirota, J., and Laws, E., 1979, Ammonium excretion rates in Kaneohe Bay, Hawaii, measured by a 15N-isotope dilution technique, Mar. Biol., 54:33.

    Article  CAS  Google Scholar 

  • Caron, D. A., 1991, Evolving role of protozoa in aquatic nutrient cycles, in: “Protozoa and Their Role in Marine Processes,” P.C. Reid, CM. Turley and P.H. Burkill, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Caron, D. A., Davis, P. G., Madin, L. P., and Sieburth, J. McN., 1982, Heterotrophic bacteria and bactivorous protozoa in oceanic macroaggregates, Science, 218, 795.

    Article  PubMed  CAS  Google Scholar 

  • Caron, D. A. and Goldman, J. C., 1988, Dynamics of protistan carbon and nutrient cycling, J. Protozool., 35:247.

    Google Scholar 

  • Caron, D. A. and Goldman, J. C., 1990, Protozoan nutrient regeneration, in: “Ecology of Marine Protozoa,” G.M. Capriulo, ed., Oxford University Press, New York.

    Google Scholar 

  • Caron, D. A., Goldman, J. C., Anderson, O. K., and Dennett, M. R., 1985, Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling, Mar. Ecol. Prog. Ser., 24:243.

    Article  CAS  Google Scholar 

  • Caron, D. A., Goldman, J. C., and Dennett, M. R., 1988, Experimental demonstration of the role of bacteria and bactivorous protozoa in plankton nutrient cycles, Hydrobiol., 159:27.

    Article  Google Scholar 

  • Carpenter, E. J. and Capone, D. G., 1983, “Nitrogen in the Marine Environment,” Academic Press, New York.

    Google Scholar 

  • Cho, B. C. and Azam, F., 1988, Major role of bacteria in biogeochemical fluxes in the ocean’s interior, Nature, 332:441.

    Article  CAS  Google Scholar 

  • Cochlan, W. P., 1986, Seasonal study of uptake and regeneration of nitrogen on the Scotian Shelf, Cont. Shelf. Res., 5:555.

    Article  Google Scholar 

  • Currie, D. J., 1984, Microscale nutrient patches: Do they matter to the phytoplankton?, Limnol. Oceanogr., 29:211.

    Article  Google Scholar 

  • Ducklow, H. W., 1984, Geographical ecology of marine bacteria: physical and biological variability at the mesoscale, in: “Current Perspectives in Microbial Ecology,” M.J. Klug and C.A. Reddy, eds., Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  • Ducklow, H. W., Fasham, M. J. R., and Vezina, A. F., 1989, Derivation and analysis of flow networks for open ocean plankton systems, in: “Network Analysis in Marine Ecology,” F. Wulff, J.G. Field and K.H. Mann, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Ducklow, H. W. and Taylor, A. H., 1991, Modelling — session summary, in: “Protozoa and Their Role in Marine Processes,” P.C., Reid, C.M. Turley and P.H. Burkill, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Dugdale, R. C. and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr., 12:196.

    Article  CAS  Google Scholar 

  • Eppley, R. W., 1981, Autotrophic production of particulate matter, in: “Analysis of Marine Ecosystems,” A.R. Longhurst, ed., Academic Press, London.

    Google Scholar 

  • Eppley, R. W., 1989, New production: history, methods, problems, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Eppley, R. W. and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677.

    Article  Google Scholar 

  • Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G., 1977, Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the Central North Pacific, Mar. Biol., 39, 111.

    Article  CAS  Google Scholar 

  • Falkowski, P. G., 1980, “Primary Productivity in the Sea,” Plenum Press, New York.

    Book  Google Scholar 

  • Fasham, M. J. R., 1984, “Flows of Energy and Materials in Marine Ecosystems,” Plenum Press, London.

    Book  Google Scholar 

  • Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M., 1990, A nitrogen-based model of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48:591.

    Article  CAS  Google Scholar 

  • Fenchel, T., 1988, Microfauna in pelagic food chains, in: “Nitrogen Cycling in Coastal Marine Environments,” T.H. Blackburn and J. Sorensen, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Fogg, G. E., 1982, Nitrogen cycling in sea waters, Phil. Trans. R. Soc. Lond. B., 296:511.

    Article  CAS  Google Scholar 

  • Frost, B. W., 1987, Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp., Mar. Ecol. Prog. Ser., 39:49.

    Article  Google Scholar 

  • Fuhrman, J., 1987, Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach, Mar. Ecol. Prog. Ser., 37:45.

    Article  CAS  Google Scholar 

  • Fuhrman, J. A., Horrigan, S. G., and Capone, D. G., 1988, Use of 13N as a tracer for bacterial and algal uptake of ammonium from seawater, Mar. Ecol. Prog. Ser., 45:271.

    Article  CAS  Google Scholar 

  • Gast, V. and Horstmann, U., 1983, N-remineralization of phyto-and bacterioplankton by the marine ciliate Euplotes vannus, Mar. Ecol. Prog. Ser., 13:55.

    Article  Google Scholar 

  • Glibert, P. M., 1982, Regional studies of daily, seasonal and size fraction variability in ammonium remineralization, Mar. Biol., 70:209.

    Article  CAS  Google Scholar 

  • Glibert, P. M., Dennett, M. R., and Caron, D. A., 1988, Nitrogen uptake and NH4 regeneration by pelagic microplankton and marine snow from the North Atlantic, J. Mar. Res., 46:837.

    Article  CAS  Google Scholar 

  • Glibert, P. M., Goldman, J. C., and Carpenter, E. J., 1982a, Seasonal variation in the utilization of ammonium and nitrate by phytoplankton in Vineyard Sound, Massachusetts, USA. Mar. Biol., 70:237.

    Article  Google Scholar 

  • Glibert, P. M., Lipschultz, F., McCarthy, J. J., and Altabet, M. A., 1982b, Isotope dilution models of uptake and remineralization of ammonium by marine plankton. Limnol. Oceanogr., 27:639.

    Article  CAS  Google Scholar 

  • Glover, H. E., Prezelin, B. B., Campbell, L., Wyman, M., and Garside, C., 1988, A nitrate-dependent Synechococcus bloom in surface Sargasso Sea water, Nature, 331:161.

    Article  CAS  Google Scholar 

  • Goldman, J. C., 1984a, Oceanic nutrient cycles, in: “Flows of Energy and Materials in Marine Ecosystems: Theory and Practice,” M.J. Fasham, ed., Plenum Press, New York.

    Google Scholar 

  • Goldman, J. C., 1984b, Conceptual role for for microaggregates in pelagic waters. Bull. Mar. Sci., 35:462.

    Google Scholar 

  • Goldman, J. C., 1988, Spatial and temporal discontinuities of biological processes in pelagic surface waters, in: “Toward a Theory on Biological-Physical Interactions in the World Ocean,” B.J. Rothschild, ed., Kluwer Academic Publishers.

    Google Scholar 

  • Goldman, J. C. and Caron, D. A., 1985, Experimental studies on an omnivorous microflagellate: implications for grazing and nutrient regeneration in the marine microbial food chain, Deep-Sea Res., 32:899.

    Article  Google Scholar 

  • Goldman, J. C., Caron, D. A., Anderson, O. K., and Dennett, M. R., 1985, Nutrient cycling in a microflagellate food chain: I. nitrogen dynamics, Mar. Ecol. Prog. Ser., 24:231.

    Article  CAS  Google Scholar 

  • Goldman, J. C., Caron, D. A., and Dennett, M. R., 1987a, Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol. Oceanogr., 32:1239.

    Article  CAS  Google Scholar 

  • Goldman, J. C., Caron, D. A., and Dennett, M. R., 1987b, Nutrient cycling in a microflagellate food chain: IV. Phytoplankton-microflagellate interactions. Mar. Ecol. Prog. Ser., 38:75.

    Article  CAS  Google Scholar 

  • Goldman, J. C. and Dennett, M. R., 1991, Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates, Mar. Biol., In press.

    Google Scholar 

  • Gotschalk, C. C. and Alldredge, A. L., 1989, Enhanced primary production and nutrient regeneration within aggregated marine diatoms, Mar. Biol., 103:119.

    Article  Google Scholar 

  • Hansell, D. A. and Goering, J. J., 1989, A method for estimating uptake and production rates for urea in seawater using [14C] urea and [15N] urea, Can. J. Fish. Aq. Sci., 46:198.

    Article  CAS  Google Scholar 

  • Hanson, R. B. and Robertson, C. Y., 1988, Spring recycling of ammonium in turbid continental shelf waters off the southeastern United States, Cont. Shelf Res., 8:49.

    Article  Google Scholar 

  • Hanson, R. B., Robertson, C. Y., Yoder, J. A., Verity, P. G., and Bishop, S. S., 1990, Nitrogen recycling in coastal waters of southeastern U.S. during summer 1986, J. Mar. Res., 48:641.

    Article  CAS  Google Scholar 

  • Harris, E., 1959, The nitrogen cycle in Long Island Sound, Bull. Bingham Oceanogr. Collect., 17:31.

    Google Scholar 

  • Harrison, W. G., 1978, Experimental measurements of nitrogen remineralization in coastal waters, Limnol. Oceanogr., 23:684.

    Article  CAS  Google Scholar 

  • Harrison, W. G., 1980, Nutrient regeneration and primary production in the sea, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.

    Google Scholar 

  • Harrison, W. G., 1983a, Uptake and recycling of soluble reactive phosphorus by marine microplankton. Mar. Ecol. Prog. Ser., 10:127.

    Article  CAS  Google Scholar 

  • Harrison, W. G., 1983b, Use of isotopes, in: “Nitrogen in the Marine Environment,” E.J. Carpenter and D.G. Capone, eds., Academic Press, New York.

    Google Scholar 

  • Harrison, W. G., 1990, Nitrogen utilization in chlorophyll and primary productivity maximum layers: an analysis based on the f-ratio, Mar. Ecol. Prog. Ser., 60:85.

    Article  CAS  Google Scholar 

  • Harrison, W. G. and Cota, G. F., 1991, Primary production in polar waters: relation to nutrient availability, Polar Res., In press.

    Google Scholar 

  • Harrison, W. G., Douglas, D., Falkowski, P., Rowe, G., and Vidal, J., 1983, Summer nutrient dynamics of the Middle Atlantic Bight: nitrogen uptake and regeneration, J. Plankt. Res., 5:539.

    Article  CAS  Google Scholar 

  • Hopkinson, C. S., Jr., Sherr, B. F., and Ducklow, H. W., 1987, Microbial regeneration of ammonium in the water column of Davies Reef, Australia, Mar. Ecol. Prog. Ser., 41:147.

    Article  CAS  Google Scholar 

  • Jackson, G. A., 1980, Phytoplankton growth and Zooplankton grazing in oligotrophic oceans, Nature, 284:439.

    Article  Google Scholar 

  • Jackson, G. A., 1987, Simulating chemosensory responses of marine microorganisms, Limnol. Oceanogr., 32:1253.

    Article  CAS  Google Scholar 

  • Jackson, G. A., 1988, Implications of high dissolved organic matter concentrations for oceanic properties and processes, Oceanogr., 1:28.

    Article  Google Scholar 

  • Jahnke, R. A., 1990, Ocean flux studies: a status report, Rev. Geophys., 28:381.

    Article  Google Scholar 

  • Jahnke, R. A. and Jackson, G. A., 1987, Role of sea floor organisms in oxygen consumption in the deep North Pacific Ocean, Nature, 329:621.

    Article  CAS  Google Scholar 

  • Jenkins, W. J., 1982, Oxygen utilization rates in North Atlantic subtropical gyre and primary production in oligotrophic systems, Nature, 300:246.

    Article  CAS  Google Scholar 

  • Jenkins, W. J., 1988a, Nitrate flux into the euphotic zone near Bermuda. Nature, 331:521.

    Article  CAS  Google Scholar 

  • Jenkins, W. J., 1988b, The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Phil. Trans. R. Soc, London, Ser. A, 325:43.

    Article  CAS  Google Scholar 

  • Jenkins, W. J. and Goldman, J. C., 1985, Seasonal oxygen cycling and primary productivity in the Sargasso Sea, J. Mar. Res., 43:465.

    Article  CAS  Google Scholar 

  • Johannes, R. E., 1964, Phosphorus excretion as related to body size in marine animals: the significance of nannozooplankton in nutrient regeneration, Science, 146:923.

    Article  PubMed  CAS  Google Scholar 

  • Johannes, R. E., 1965, Influence of marine protozoa on nutrient regeneration, Limnol. Oceanogr., 10:434.

    Article  Google Scholar 

  • Karl, D. M., Knauer, G. A., and Martin, J. H., 1988, Downward flux of particulate organic matter in the ocean: a particle decomposition paradox, Nature, 332:438.

    Article  Google Scholar 

  • Kepkay, P. E. and Johnson, B. D., 1989, Coagulation on bubbles allows microbial respiration of oceanic dissolved organic carbon, Nature, 338:63.

    Article  CAS  Google Scholar 

  • King, F. D., 1984, Vertical distribution of Zooplankton glutamate dehydrogenase in relation to chlorophyll in the vicinity of the Nantucket Shoals, Mar. Biol., 79:249.

    Article  CAS  Google Scholar 

  • King, F. D., 1987, Nitrogen recycling efficiency in steady state oceanic environments, Deep-Sea Res., 34:843.

    Article  CAS  Google Scholar 

  • Kirchman, D. L., Keil, R. G., and Wheeler, P. A., 1989, The effect of amino acids on ammonium utilization and regeneration by heterotrophic bacteria in the subarctic Pacific, Deep-Sea Res., 36:1763.

    Article  CAS  Google Scholar 

  • Knauer, G. A., Martin, J. H., and Karl, D. M., 1984, The flux of particulate matter out of the euphotic zone, in: “Global Ocean Flux Studies: Proceedings of a Workshop,” National Academic Press, Woods Hole, MA.

    Google Scholar 

  • Knauer, G. A., Redalje, D. G., Harrison, W. G., and Karl, D. M., 1990, New production at the VERTEX time-series site, Deep-Sea Res., 37:1121.

    Article  Google Scholar 

  • Lancelot, C. and Billen, G., 1985, Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems, Adv. Aquat. Microbiol., 3:263.

    Google Scholar 

  • Laws, E. A., Harrison, W. G., and Ditullio, G. R., 1985, A comparison of nitrogen assimilation rates based on 15N uptake and autotrophic protein synthesis. Deep-Sea Res., 32:85.

    Article  CAS  Google Scholar 

  • Lehman, J. T. and Scavia, D., 1982, Microscale patchiness of nutrients in plankton communities, Science, 216:729.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, M. R., Harrison, W. G., Oakey, N. S., Hebert, D., and Platt, T., 1986, Vertical nitrate fluxes in the oligotrophic ocean, Science, 234:870.

    Article  PubMed  CAS  Google Scholar 

  • Lochte, K. and Turley, C. M., 1988, Bacteria and cyanobacteria associated with phytodetritus in the deep sea, Nature, 333:67.

    Article  Google Scholar 

  • Lohrenz, S. E., Knauer, G. A., Asper, V. L., Tuel, M., Michaels, A. F., and Knap, A. H., 1991, Seasonal variability in primary production and particle flux in the northwestern Sargasso Sea: U.S. JGOFS Bermuda Atlantic time-series study, Deep-Sea Res., In press.

    Google Scholar 

  • Longhurst, A. R., Bedo, A., Harrison, W. G., Head, E. J. H., Horne, E. P., Irwin, B., and Morales, C., 1989, NFLUX: a test of vertical nitrogen flux by diel migrant biota, Deep-Sea Res., 36:1705.

    Article  CAS  Google Scholar 

  • Longhurst, A. R. and Harrison, W. G., 1988, Vertical nitrogen flux from the oceanic photic zone by diel migrant Zooplankton and nekton, Deep-Sea Res., 35:881.

    Article  CAS  Google Scholar 

  • Longhurst, A. R. and Harrison, W. G., 1989, The biological pump: Profiles of plankton production and consumption in the upper ocean, Prog. Oceanogr., 22:47.

    Article  Google Scholar 

  • Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W., 1987, VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res., 34:267.

    Article  CAS  Google Scholar 

  • McCarthy, J. J. and Goldman, J. C., 1979, Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters, Science, 203:670.

    Article  PubMed  CAS  Google Scholar 

  • Moloney, C. L., Bergh, M. O., Field, J. G., and Newell, R. C., 1986, The effect of sedimentation and microbial nitrogen regeneration in a plankton community: a simulation investigation, J. Plankt. Res., 8:427.

    Article  CAS  Google Scholar 

  • Moloney, C. L. and Field, J. G., 1991, Modelling carbon and nitrogen flows in a microbial plankton community, in: “Protozoa and Their Role in Marine Processes,” P.C., Reid, C.M. Turley and P.H. Burkill, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Morris, I., 1980, “The Physiological Ecology of Phytoplankton,” Univ. of California Press, Berkeley.

    Google Scholar 

  • Musgrave, D. L., Chou, J., and Jenkins, W. J., 1988, Application of a model of upper-ocean physics for studying seasonal cycles of oxygen, J. Geophys. Res., 93:15,679.

    Google Scholar 

  • Newell, R. C., Moloney, C. L., Field, J. C., Lucas, M. I., and Probyn, T. A., 1988, Nitrogen models at the community level: plant-animal-microbe interactions, in: “Nitrogen Cycling in Coastal Marine Environments,” T.H. Backburn and J. SĪ•rensen, eds., John Wiley & Sons, hichester.

    Google Scholar 

  • Owens, N. J. P., Mantoura, R. F. C., Burkill, P. H., Howland, R. J. M., Pomroy, A. J., and Woodward, E. M. S., 1986, Nutrient cycling studies in Carmarthen Bay: phytoplankton production, nitrogen assimilation and regeneration, Mar. Biol., 93:329.

    Article  CAS  Google Scholar 

  • Paasche, E., 1988, Pelagic primary production in nearshore waters, in: “Nitrogen Cycling in Coastal Marine Environments,” T.H. Backburn and J. SĪ•rensen, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Paasche, E. and Kristiansen, S., 1982, Ammonium regeneration by microzooplankton in the Oslofjord, Mar. Biol., 69:55.

    Article  CAS  Google Scholar 

  • Packard, T. T., Denis, M., Rodier, M., and Garfield, P., 1988, Deep-ocean metabolic CO2 production: calculations from ETS activity, Deep-Sea Res., 35:371.

    Article  CAS  Google Scholar 

  • Platt, T. 1981, “Physiological Bases of Phytoplankton Ecology,”, Can. Bull. Fish. Aq. Sci., 210, Ottawa.

    Google Scholar 

  • Platt, T. and Harrison, W. G., 1985, Biogenic fluxes of carbon and oxygen in the ocean, Nature, 318:55.

    Article  CAS  Google Scholar 

  • Platt, T., Harrison, W. G., Lewis, M. R., Li, W. K. W., Sathyendranath, S., Smith, R.E.H., and Vezina, A., 1989, Biological production of the oceans: the case for a consensus. Mar. Ecol. Prog. Ser., 52:77.

    Article  Google Scholar 

  • Probyn, T. A., 1987, Ammonium regeneration by microplankton in an upwelling environment, Mar. Ecol. Prog. Ser., 37:53.

    Article  CAS  Google Scholar 

  • Proctor, L. M. and Fuhrman, J. A., 1990, Viral mortality of marine bacteria and cyanobacteria, Nature, 343:60.

    Article  Google Scholar 

  • Riley, G. A., 1970, Particulate organic matter in seawater, Adv. Mar. Biol., 8:1.

    Article  Google Scholar 

  • Sarmiento, J. L., Fasham, M. J. R., Slater, R., Toggweiler, J. R., and Ducklow, H. W., 1990a, The role of biology in the chemistry of CO2 on the ocean, in: “Chemistry of the Greenhouse Effect,” M. Farrell, ed., Lewis Publ. In press.

    Google Scholar 

  • Sarmiento, J. L., Thiele, G., Key, R. M., and Moore, W. S., 1990b, Oxygen and nitrate new production and remineralization in the North Atlantic subtropical gyre, J. Geophys. Res., 95:18,303.

    Google Scholar 

  • SCOR, 1990, Joint Global Ocean Flux Study: Science Plan, JGOFS Report No. 5.

    Google Scholar 

  • Shanks, A. L. and Trent, J. D., 1979, Marine snow: microscale nutrient patches, Limnol. Oceanogr., 24:850.

    Article  CAS  Google Scholar 

  • Sherr, B. F. and Sherr, E. B., 1984, Role heterotrophic protozoa in carbon and energy flow in aquatic ecosystems, in: “Current Perspectives in Microbial Ecology,” M.J. Klug and C.A. Reddy, eds., Am. Soc. Microbiol., Washington, D.C.

    Google Scholar 

  • Sherr, B. F., Sherr, E. B., and Berman, T., 1983, Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria, Appl. Environ. Microbiol., 45:1196.

    PubMed  CAS  Google Scholar 

  • Silver, M. W. and Gowing, M. M., 1991, The “particle” flux: origins and biological components, Prog. Oceanogr., 26:75.

    Article  Google Scholar 

  • Slawyk, G., Raimbault, P., and L’Helguen, S., 1990, Recovery of urea nitrogen from seawater for measurement of 15N abundance in urea regeneration studies using the isotope-dilution approach, Mar. Chem., 30:343.

    Article  CAS  Google Scholar 

  • Smetacek, V., 1985, Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance, Mar. Biol., 84:239–251.

    Article  Google Scholar 

  • Smetacek, V. and Pollehne, F., 1986, Nutrient cycling in pelagic systems: A reappraisal of the conceptual framework, Ophellia, 26:401.

    Article  Google Scholar 

  • Sorokin, Y. I., 1981, Microheterotrophic organisms in marine ecosystems, in: “Analysis of Marine Ecosystems,” A.R. Longhurst, ed., Academic Press, London.

    Google Scholar 

  • Spitzer, W. S. and Jenkins, W. J., 1989, Rates of vertical mixing, gas exchange and new production: Estimates from seasonal gas cycles in the upper ocean near Bermuda, J. Mar. Res., 47:169.

    Article  CAS  Google Scholar 

  • Stout, J. D., 1980, The role of protozoa in nutrient cycling and energy flow, Adv. Microbiol. Ecol., 4:1.

    Article  Google Scholar 

  • Suess, E., 1980, Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization, Nature, 28:260.

    Article  Google Scholar 

  • Sugimura, I. and Suzuki, Y., 1988, A high-temperature catalytic oxidation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample, Mar. Chem., 24:105.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Sugimura, Y., and Itoh, T., 1985, A catalytic oxidation method for the determination of total nitrogen dissolved in seawater, Mar. Chem., 16:83.

    Article  CAS  Google Scholar 

  • Sverdrup, H. U., Johnson, M. W., and Fleming, R. H., 1942, “The Oceans. Their Physics, Chemistry, and General Biology,” Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Taylor, G. T., 1982, The role of pelagic heterotrophic protozoa in nutrient cycling: a review, Ann. Inst. Oceanogr., 58(S): 227.

    Google Scholar 

  • Tezuka, Y., 1990, Bacterial regeneration of ammonium and phosphate as affected by the carbon:nitrogen:phosphorus ratio of organic substrates, Microb. Ecol., 19:227.

    Article  CAS  Google Scholar 

  • Toggweiler, J. R., 1989, Is the downward dissolved organic matter (DOM) flux important in carbon transport?, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek and G. Wefer, eds., John Wiley & Sons, Chichester.

    Google Scholar 

  • Tupas, L. and Koike, I., 1990, Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater, Limnol. Oceanogr., 31:998.

    Google Scholar 

  • Tupas, L. and Koike, I., 1991, Simultaneous uptake and regeneration of ammonium by mixed assemblages of heterotrophic marine bacteria, Mar. Ecol. Prog. Ser., 70:273.

    Article  Google Scholar 

  • Verity, P. G., 1985, Grazing, respiration, excretion and growth rates of tintinnids, Limnol. Oceanogr., 30:1268.

    Article  Google Scholar 

  • Vezina, A. F. and T. Platt, 1987, Small-scale variability of new production and particulate fluxes in the ocean, Can. J. Fish. Aq. Sci., 44:198.

    Article  Google Scholar 

  • Walsh, I., Dymond, J., and Collier, R., 1988, Rates of recycling of biogenic components of settling particles in the ocean derived from sediment trap experiments, Deep-Sea Res., 35:43.

    Article  CAS  Google Scholar 

  • Wassmann, P., 1990, Relationship between primary and export production in the boreal coastal zone of the North Atlantic, Limnol. Oceanogr., 35:464.

    Article  CAS  Google Scholar 

  • Wheeler, P. A. and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems, Limnol. Oceanogr., 31:998.

    Article  CAS  Google Scholar 

  • Williams, P. J. LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch. Sonderh., 5:1.

    Google Scholar 

  • Williams, P. J. LeB., and Muir, L. R., 1981, Diffusion as a constraint on the biological importance of microzones in the sea, in: “Ecohydrodynamics,” J.C.J. Nihoul, ed., Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Š 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harrison, W.G. (1992). Regeneration of Nutrients. In: Falkowski, P.G., Woodhead, A.D., Vivirito, K. (eds) Primary Productivity and Biogeochemical Cycles in the Sea. Environmental Science Research, vol 43. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0762-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0762-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0764-6

  • Online ISBN: 978-1-4899-0762-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics