Skip to main content
Log in

Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We have used a model food chain composed of a natural bacterial assemblage, a pennate diatom and a bacterivorous microflagellate to investigate the factors controlling the relative importance of bacteria and protozoa as sources for regenerated nitrogen in plankton communities. In bacterized diatom cultures in which diatom growth was nitrogen-limited, the carbon:nitrogen (C:N) ratio of the bacterial substrate greatly affected which population was responsible for the uptake of nitrogen. When nitrogen was added as NH +4 and the cultures were supplemented with glucose, the bacteria competed successfully with the algae for NH +4 and prevented the growth of algae by rapidly assimilating all NH +4 in the cultures. Bacterivorous protozoa inoculated into these cultures grazed the bacterial population and remineralized NH +4 , thus relieving the nitrogen limitation of algal growth and allowing an increase in algal biomass. In contrast, bacteria in cultures supplemented with the amino acid glycine (C:N = 2) were major remineralizers of nitrogen, and the influence of protozoan grazing was minimal. We conclude that the relative importance of bacteria and protozoa as nutrient regenerators in the detrital food loop is dependent largely on the overall carbon:nutrient ratio of the bacterial substrate. The role of bacterivorous protozoa as remineralizers of a growth-limiting nutrient is maximal in situations where the carbon:nutrient ratio of the bacterial substrate is high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amano, M., S. Hara & N. Taga, 1982. Utilization of dissolved amino acids in sea water by marine bacteria. Mar. Biol. 68: 31–36.

    Article  CAS  Google Scholar 

  • Andersen, O. K., J. C. Goldman, D. A. Caron & M. R. Dennett, 1986. Nutrient cycling in a microflagellate food chain. III. Phosphorus dynamics. Mar. Ecol. Prog. Ser. 31: 47–55.

    CAS  Google Scholar 

  • Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Barsdate, R. J., T. Fenchel & R. T. Prentki, 1974. Phosphorus cycle of model ecosystems: Significance for decomposer food chains and effect of bacterial grazers. Oikos 25: 239–251.

    CAS  Google Scholar 

  • Berman, T., 1985. Uptake of [32P]orthophosphate by algae and bacteria in Lake Kinneret. J. Plankton Res. 7: 71–84.

    CAS  Google Scholar 

  • Billen, G., 1984. Heterotrophic utilization and regeneration of nitrogen. In Hobbie, J. E. & P. J. leB. Williams (eds), Heterotrophic activity in the sea. Plenum Press, New York, pp. 313–355.

    Google Scholar 

  • Bratbak, G., 1985. Bacterial biovolume and biomass estimations. Appl. Environ. Microbiol. 49: 1488–1493.

    PubMed  Google Scholar 

  • Bratbak, G. & T. F. Thingstad, 1985. Phytoplankton-bacteria interactions: an apparent paradox? Analysis of a model system with both competition and commensalism. Mar. Ecol. Prog. Ser. 25: 23–30.

    Google Scholar 

  • Brown, C. M., D. S. MacDonald-Brown & S. O. Stanley, 1972. Inorganic nitrogen metabolism in marine bacteria: Nitrogen assimilation in some marine pseudomonads. J. Mar. Biol. Ass. UK. 52: 793–804.

    Article  CAS  Google Scholar 

  • Burney, C. M., 1986a. Bacterial utilization of in situ dissolved carbohydrate in offshore waters. Limnol. Oceanogr. 31: 427–431.

    CAS  Google Scholar 

  • Burney, C. M., 1986b. Diel dissolved carbohydrate accumulation in coastal water of South Florida, Bermuda and Oahu. Estuarine Coast. Shelf Sci. 23: 197–203.

    Article  CAS  Google Scholar 

  • Burney, C. M., P. G. Davis, K. M. Johnson & J. McN. Sieburth, 1981. Dependence of dissolved carbohydrate concentrations upon small scale nanoplankton and bacterioplankton distributions in the Western Sargasso Sea. Mar. Biol. 65: 289–296.

    Article  CAS  Google Scholar 

  • Burney, C. M., P. G. Davis, K. M. Johnson & J. McN. Sieburth, 1982. Diel relationships of microbial trophic groups and in situ dissolved carbohydrate dynamics in the Caribbean Sea. Mar. Biol. 67: 311–322.

    Article  CAS  Google Scholar 

  • Carlucci, A. F., D. B. Craven & S. M. Henrichs, 1984. Diel production and microheterotrophic utilization of dissolved free amino acids in waters off Southern California. Appl. Environ. Microbiol. 48: 165–170.

    PubMed  CAS  Google Scholar 

  • Caron, D. A., 1984. The role of heterotrophic microflagellates in plankton communities. Ph.D. Thesis, Woods Hole Oceanographic Institution and Massachusetts Institute of Technology, Woods Hole, 268 pp.

    Google Scholar 

  • Caron, D. A. & J. C. Goldman, in press. Dynamics of protistan carbon and nutrient cycling. J. Protozool.

  • Caron, D. A., J. C. Goldman, O. K. Andersen & M. R. Dennett, 1985. Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar. Ecol. Prog. Ser. 24: 243–254.

    CAS  Google Scholar 

  • Caron, D. A., J. C. Goldman & M. R. Dennett, 1986. Effect of temperature on growth, respiration and nutrient regeneration by an omnivorous microflagellate. Appl. Environ. Microbiol. 52: 1340–1347.

    PubMed  CAS  Google Scholar 

  • Cole, J. J., 1982. Interactions between bacteria and algae in aquatic ecosystems. Ann. Rev. Ecol. Syst. 13: 291–314.

    Article  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984a. A comparison of the abilities of freshwater algae and bacteria to acquire and retain phosphorus. Limnol. Oceanogr. 29: 298–310.

    CAS  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984b. The relative importance of phytoplankton and bacterioplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29: 311–321.

    CAS  Google Scholar 

  • Currie, D. J. & J. Kalff, 1984c. Can bacteria outcompete phytoplankton for phosphorus? A chemostat test. Microb. Ecol. 10: 205–216.

    Article  CAS  Google Scholar 

  • Davis, P. G., D. A. Caron, P. W. Johnson & J. McN. Sieburth, 1985. Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal and diel distributions. Mar. Ecol. Prog. Ser. 21: 15–26.

    Google Scholar 

  • Davis, P. G. & J. McN. Sieburth, 1982. Differentiation of the photosynthetic and heterotrophic populations of nanoplankters by epifluorescence microscopy. Annales Inst. Oceanogr., Paris. 58(S): 249–259.

    Google Scholar 

  • Faust, M. A. & D. L. Correll, 1976. Comparison of bacterial and algal utilization of orthophosphate in an estuarine environment. Mar. Biol. 34: 151–162.

    Article  CAS  Google Scholar 

  • Fenchel, T., 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9: 35–42.

    Google Scholar 

  • Fenchel, T., 1986. The ecology of heterotrophic microflagellates. Adv. Microb. Ecol. 9: 57–97.

    Google Scholar 

  • Fenchel, T. & T. H. Blackburn, 1979. Bacteria and mineral cycling. Academic Press, London, pp. 225.

    Google Scholar 

  • Ferguson, R. L. & W. G. Sunda, 1984. Utilization of amino acids by planktonic marine bacteria: Importance of clean technique and low substrate additions. Limnol. Oceanogr. 29: 258–274.

    CAS  Google Scholar 

  • Flynn, K. J. & P. J. Syrett, 1986a. Characteristics of the uptake system for L-lysine and L-arginine in Phaeodactylum tricornutum. Mar. Biol. 90: 151–158.

    Article  CAS  Google Scholar 

  • Flynn, K. J. & P. J. Syrett, 1986b. Utilization of L-lysine and L-arginine by the diatom Phaeodactylum tricornutum. Mar. Biol. 90: 159–163.

    Article  CAS  Google Scholar 

  • Fuhrman, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.

    Article  Google Scholar 

  • Gast, V. & U. Horstmann, 1983. N-remineralization of phyto- and bacterioplankton by the marine ciliate Euplotes vannus. Mar. Ecol. Prog. Ser. 13: 55–60.

    Google Scholar 

  • Goldman, J. C. & D. A. Caron, 1985. Experimental studies on an omnivorous microflagellate: Implications for grazing and nutrient regeneration in the marine microbial food chain. Deep-Sea Res. 32: 899–915.

    Article  Google Scholar 

  • Goldman, J. C., D. A. Caron, O. K. Andersen & M. R. Dennett, 1985. Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24: 231–242.

    CAS  Google Scholar 

  • Goldman, J. C. & J. J. McCarthy, 1978. Steady state growth and ammonium uptake of a fast-growing marine diatom. Limnol. Oceanogr. 23: 695–703.

    Article  CAS  Google Scholar 

  • Güde, H., 1979. Grazing by protozoa as selection factor for activated sludge bacteria. Microb. Ecol. 5: 225–237.

    Article  Google Scholar 

  • Güde, H., 1985. Influence of phagotrophic processes on the regeneration of nutrients in two-stage continuous culture systems. Microb. Ecol. 11: 193–204.

    Article  Google Scholar 

  • Hagström, A., J. A. Ammerman, S. Henrichs & F. Azam, 1984. Bacterioplankton growth in seawater. 2. Organic matter utilization during steady-state growth. Mar. Ecol. Prog. Ser. 18: 41–48.

    Google Scholar 

  • Hollibaugh, J. T., 1978. Nitrogen regeneration during the degradation of several amino acids by plankton communities collected near Halifax, Nova Scotia, Canada. Mar. Biol. 45: 191–201.

    Article  CAS  Google Scholar 

  • Hollibaugh, J. T. & F. Azam, 1983. Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr. 28: 1104–1116.

    CAS  Google Scholar 

  • Hollibaugh, J. T., A. B. Carruthers, J. A. Fuhrman & F. Azam, 1980. Cycling of organic nitrogen in marine plankton communities studied in enclosed water columns. Mar. Biol. 59: 15–21.

    Article  CAS  Google Scholar 

  • Horstmann, V. & U. G. Hoppe, 1981. Competition in the uptake of methylamine/ammonium by phytoplankton and bacteria. Kieler Meeresforsch. 5: 110–116.

    CAS  Google Scholar 

  • Jorgensen, N. O. G., 1982. Heterotrophic assimilation and occurrence of dissolved free amino acids in a shallow estuary. Mar. Ecol. Prog. Ser. 8: 145–159.

    Google Scholar 

  • Keller, M. D., T. H. Mague, M. Badenhausen & H. E. Glover, 1982. Seasonal variations in the production and consumption of amino acids by coastal microplankton. Est. Coast. Shelf Sci. 15: 301–315.

    Article  CAS  Google Scholar 

  • Kirchman, D. & R. E. Hodson, 1984. Inhibition by peptides of amino acid uptake by bacterial populations in natural waters: Implications for the regulation of amino acid transport and incorporation. Appl. Environ. Microbiol. 47: 624–631.

    PubMed  CAS  Google Scholar 

  • Krempin, D. W., S. M. McGrath, J. B. Soo Hoo & C. W. Sullivan, 1981. Orthophosphate uptake by phytoplankton and bacterioplankton from the Los Angeles Harbor and Southern California Coastal Waters. Mar. Biol. 64: 23–33.

    Article  CAS  Google Scholar 

  • Laacke, M., A. B. Dahle, K. Eberlein & K. Rein, 1983. A modelling approach to the interplay of carbohydrates, bacteria and non-pigmented flagellates in a controlled ecosystem experiment with Skeletonema costatum. Mar. Ecol. Prog. Ser. 14: 71–79.

    Google Scholar 

  • Lancelot, C. & G. Billen, 1985. Carbon-nitrogen relationships in nutrient metabolism of coastal marine ecosystems. Adv. Aquatic Microbiol. 3: 263–321.

    Google Scholar 

  • Mague, T. H., E. Frieberg, D. J. Hughes & I. Morris, 1980. Extracellular release of carbon by marine phytoplankton; a physiological approach. Limnol. Oceanogr. 25: 262–279.

    CAS  Google Scholar 

  • Mayfield, C. I. & W. E. Innis, 1978. Interactions between freshwater bacteria and Ankistrodesmus braunii in batch and continuous culture. Microb. Ecol. 4: 331–344.

    Article  Google Scholar 

  • McCarthy, J. J. & D. Kamykowski, 1972. Urea and other nitrogenous nutrients in La Jolla Bay during February, March, April 1970. Fish. Bull. U.S. 70: 1261–1274.

    CAS  Google Scholar 

  • Nagata, T., 1986. Carbon and nitrogen content of natural planktonic bacteria. Appl. Environ. Microbiol. 52: 28–32.

    PubMed  Google Scholar 

  • Nalewajko, C., K. Lee & P. Fay, 1980. Significance of algal extracellular products to bacteria in lakes and in cultures. Microb. Ecol. 6: 199–207.

    Article  CAS  Google Scholar 

  • Parsons, T. R., L. J. Albright, F. Whitney, C. S. Wong & P. J. leB. Williams, 1981. The effect of glucose on the productivity of seawater: An experimental approach using controlled aquatic ecosystems. Mar. Environ. Res. 4: 229–242.

    Article  CAS  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Rhee, G.-Y., 1972. Competition between an alga and an aquatic bacterium for phosphate. Limnol. Oceanogr. 17: 505–514.

    CAS  Google Scholar 

  • Sherr, B. F., E. B. Sherr & T. Berman, 1983. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl. Environ. Microbiol. 45: 1196–1201.

    PubMed  Google Scholar 

  • Sherr, E. B., B. F. Sherr, R. D. Fallon & S. Y. Newell, 1986. Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol. Oceanogr. 31: 177–183.

    Google Scholar 

  • Sherr, B. F., E. B. Sherr & S. Y. Newell, 1984. Abundance and productivity of heterotrophic nanoplankton in Georgia coastal waters. J. Plankton Res. 6: 195–202.

    Google Scholar 

  • Sieburth, J. McN., 1984. Protozoan bacterivory in pelagic marine waters. In Hobbie, J. E. & P. J. leB. Williams (eds), Heterotrophic activity in the sea. Plenum Press, New York, pp. 405–444.

    Google Scholar 

  • Sorokin, Y. I., 1981. Microheterotrophic organisms in marine ecosystems. In A. R. Longhurst (ed), Analysis of Marine Ecosystems. Academic Press, London, p. 293–342.

    Google Scholar 

  • Terry, K. L., J. Hirata & E. A. Laws, 1985. Light-, nitrogen-, and phosphorus-limited growth of Phaeodactylum tricornutum Bohlin strain TFX-1: Chemical composition, carbon partitioning, and the diel periodicity of physiological processes. J. Exp. Mar. Biol. Ecol. 86: 85–100.

    Article  CAS  Google Scholar 

  • Wambeke, F. Van & M. A. Bianchi, 1985. Bacterial biomass production and ammonium regeneration in Mediterranean seawater supplemented with amino acids. 2. Nitrogen flux through heterotrophic microplankton food chain. Mar. Ecol. Prog. Ser. 23: 117–128.

    Google Scholar 

  • Watson, S. W., T. J. Novitsky, H. L. Quinby & F. W. Valois, 1977. Determination of bacterial number and biomass in the marine environment. Appl. Environ. Microbiol. 33: 940–946.

    PubMed  CAS  Google Scholar 

  • Wheeler, P. A. & D. L. Kirchman, 1986. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr. 31: 998–1009.

    CAS  Google Scholar 

  • Williams, P. J. leB., T. Berman & O. Holm-Hansen, 1976. Amino acid uptake and respiration by marine heterotrophs. Mar. Biol. 35: 41–47.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caron, D.A., Goldman, J.C. & Dennett, M.R. Experimental demonstration of the roles of bacteria and bacterivorous protozoa in plankton nutrient cycles. Hydrobiologia 159, 27–40 (1988). https://doi.org/10.1007/BF00007365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00007365

Keywords

Navigation