Skip to main content

Sphingomyelin and Cholesterol: From Membrane Biophysics and Rafts to Potential Medical Applications

  • Chapter
Membrane Dynamics and Domains

Part of the book series: Subcellular Biochemistry ((SCBI,volume 37))

Abstract

The preferential sphingomyelin—cholesterol interaction which results from the structure and the molecular properties of these two lipids seems to be the physicochemical basis for the formation and maintenance of cholesterol/sphingolipid-enriched nano- and micro-domains (referred to as membrane “rafts”) in the plane of plasma and other organelle (i.e., Golgi) membranes. This claim is supported by much experimental evidence and also by theoretical considerations. However, although there is a large volume of information about these rafts regarding their lipid and protein composition, their size, and their dynamics, there is still much to be clarified on these issues, as well as on how rafts are formed and maintained. It is well accepted now that the lipid phase of the rafts is the liquid ordered (LO) phase. However, other (non-raft) parts of the membrane may also be in the LO phase.

There are indications that the raft LO phase domains are more tightly packed than the non-raft LO phase, possibly due to intermolecular hydrogen bonding involving sphingolipid and cholesterol. This also explains why the former are detergent-resistant membranes (DRM), while the non-raft LO phase domains are detergent-soluble (sensitive) membranes (DSM).

Recent findings suggest that protein—protein interactions such as cross-linking can be controlled by protein distribution between raft and non-raft domains, and, as well, these interactions affect raft size distribution.

The cholesterol/sphingomyelin-enriched rafts seem to be involved in many biological processes, mediated by various receptors, as exemplified by various lipidated glycosylphosphatidylinositol (GPI)- and acyl chain-anchored proteins that reside in the rafts. The rafts serve as signaling platforms in the cell. Various pathogens (viruses and toxins) utilize the raft domains on the host cell membrane as a port of entry, site of assembly (viruses), and port of exit (viral budding). Existence and maintenance of cholesterolsphingomyelin rafts are dependent on the level of membrane cholesterol and sphingomyelin. This explains why reduction of cholesterol level — either through reverse cholesterol transport, using cholesterol acceptors such as β-cyclodextrin, or through cholesterol biosynthesis inhibition using statins — interferes with many processes which involve rafts and can be applied to treating raft-related infections and diseases.

Detailed elucidation of raft structure and function will improve understanding of biological membrane composition—structure—function relationships and also may serve as a new avenue for the development of novel treatments for major diseases, including viral infections, neurodegenerative diseases (Alzheimer’s), atherosclerosis, and tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson, S., Dahlen, B., Lofgren, H., Pascher, I., Sundell, S. 1977. In: Abrahamsson, S., Pascher, I., Eds. Structure of Biological Membranes. Plenum Press, New York, p. 1.

    Book  Google Scholar 

  • Ali, A., Avalos, R.T., Ponimaskin, E., Nayak, D.P. 2000. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J. Virol. 74: 8709–8719.

    Article  PubMed  CAS  Google Scholar 

  • Aussenac, F., Tavares, M., Dufourc, E.J. 2003. Cholesterol dynamics in membranes of raft composition: a molecular point of view from 2H and 31P solid-state NMR. Biochemistry 42, 1383–1390.

    Article  PubMed  CAS  Google Scholar 

  • Bar, L.K., Barenholz, Y., Thompson, T.E. 1986. The fraction of cholesterol undergoing spontaneous exchange between small unilamellar phosphatidylcholine vesicles. Biochemistry 25: 6701–6705.

    Article  PubMed  CAS  Google Scholar 

  • Bar, L.K., Barenholz, Y., Thompson, T.E. 1987. Dependence of the fraction of cholesterol undergoing spontaneous exchange between small unilamellar vesicles and their phospholipid composition. Biochemistry 26: 5460–5465.

    Article  PubMed  CAS  Google Scholar 

  • Bar, L.K., Chong, P.C., Barenholz, Y, Thompson, T.E. 1989. Spontaneous transfer between phospholipid bilayers of dehydroergosterol, a fluorescent cholesterol analog. Biochim. Biophys. Acta 983: 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Bar, L.K., Barenholz, Y, Thompson, T.E. 1997. The effect of sphingomyelin composition on the phase structure of phosphatidylcholine-sphingomyelin bilayers. Biochemistry 36: 2507–2516.

    Article  PubMed  CAS  Google Scholar 

  • Barenholz, Y. 1984. Sphingomyelin-lecithin balance in membranes: composition, structure, and function relationships. In: Shinitzky, M., Ed. Physiology of Membrane Fluidity, Vol. I. CRC Press, Boca Raton, FL, pp. 131–172.

    Google Scholar 

  • Barenholz, Y. 2001. Liposome application: problems and prospects. Curr. Opin. Colloid Interface Sci. 6: 66–77.

    Article  CAS  Google Scholar 

  • Barenholz, Y. 2002. Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog. Lipid Res. 41: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Barenholz, Y, Cevc, G. 2000. Structure and properties of membranes. In: Baszkin, A., Norde, W, Eds. Physical Chemistry of Biological Surfaces. Marcel Dekker, New York, pp. 171–241.

    Google Scholar 

  • Barenholz, Y, Gatt, S. 1982. Sphingomyelin: metabolism, chemical synthesis, chemical and physical properties. In: Hawthorne, J.N., Ansell, G.B., Eds. Phospholipids. Comprehensive Biochemistry. Elsevier, New York, pp. 129–177.

    Google Scholar 

  • Barenholz, Y, Greenfeld, Z. 1997. Method of improving renal function. U.S. Patent 5,622,715 (April 22 ).

    Google Scholar 

  • Barenholz, Y, Shmeeda, H. 2003. Involvement of membrane and lipoprotein lipid in aging processes. In: Rosin, A., Ed. Aging and Gerontology in Israel. JDC-Eshel, Jerusalem, pp. 173–200.

    Google Scholar 

  • Barenholz, Y, Thompson, T.E. 1980. Sphingomyelins in bilayers and biological membranes. Biochim. Biophys. Acta 604: 129–158.

    PubMed  CAS  Google Scholar 

  • Barenholz, Y., Thompson, T.E. 1999. Sphingomyelin: biophysical aspects. Chem. Phys. Lipids 102: 29–34.

    Article  PubMed  CAS  Google Scholar 

  • Barenholz, Y., Yechiel, E. 1989. Lipid replacement therapy. U.S. Patent 4,812,314, March 14.

    Google Scholar 

  • Barenholz, Y, Suurkuusk, J., Mountcastle, D., Thompson, T.E., Biltonen, R.L. 1976. A calorimetric study of the thermotropic behavior of aqueous dispersions of natural and synthetic sphingomyelins. Biochemistry 15: 2441–2447.

    Article  PubMed  CAS  Google Scholar 

  • Barenholz, Y, Yechiel, E., Cohen, R., Deckelbaum, R.J. 1981. Importance of cholesterolphospholipid interaction in determining dynamics of normal and abetalipoproteinemia red blood cell membrane. Cell Biophys. 3: 115–126.

    PubMed  CAS  Google Scholar 

  • Bavari, S., Bosio, C.M., Wiegand, E., Ruthel, G., Will, A.B. et al. 2002. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J. Exp. Med. 195: 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Yashar, V., Barenholz, Y 1989. The interaction of cholesterol and cholest-4-en-3-one with dipalmitoylphosphatidylcholine: comparison based on the use of three fluorophores. Biochim. Biophys. Acta 985: 271–278.

    Article  PubMed  CAS  Google Scholar 

  • Bittman, R. 1997. Has nature designed the cholesterol side chain for optimal interaction with phospholipids? Subcell. Biochem. 28: 145–171.

    CAS  Google Scholar 

  • Boggs, J.M. 1987. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim. Biophys. Acta 906: 353–404.

    Article  PubMed  CAS  Google Scholar 

  • Borchelt, D.R., Scott, M., Taraboulos, A., Stahl, N., Prusiner, S.B. 1990. Scrapie and cellular prion proteins differ in their kinetics of synthesis and topology in cultured cells. J. Cell Biol. 110: 743–752.

    Article  PubMed  CAS  Google Scholar 

  • Brady, R.O. 2003. Enzyme replacement therapy: conception, chaos and culmination. Philos. Trans. R. Soc. London B. Biol. Sci. 358: 915–919.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.A., London, E. 2000. Structure and function of sphingolipid-and cholesterol-rich rafts. J. Biol. Chem. 275: 17221–17224.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.A., Rose, J.K. 1992. Sorting of GPI-anchored proteins to glycolipids-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533–544.

    Article  PubMed  CAS  Google Scholar 

  • Burns, M., Duff, K. 2002. Cholesterol in Alzheimer’s disease and tauopathy. Ann. N.Y. Mad. Sci. 977: 367–675.

    Article  CAS  Google Scholar 

  • Carey, M.C., Donovan, J.M., Eckhardt, E.R.M., Wang, D.Q-H. 2002. Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology 122: 948–956.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, R., Barenholz, Y., Gatt, S., Dagan, A. 1984. Preparation and characterization of well defined D-erythro sphingomyelins. Chem. Phys. Lipids 35: 371–384.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, R.A., Strauss, J.F. 1984. In: Shinitizky, M., Ed. Physiology of Membrane Fluidity, Vol. I. CRC Press, Boca Raton, FL, pp. 73–97.

    Google Scholar 

  • Gier, J., Manderslot, J.G., van Deenen, L.L.M. 1969. The role of cholesterol in lipid membranes. Biochim. Biophys. Acta 173: 143–152.

    Article  PubMed  Google Scholar 

  • Kruijff, B., Cullis, P.R., Verkeleij, A.J., Hope, M.J., Van Echteld, C.J.A., Taraschi, T.F. 1985. In: Marnetosi, A.N., Ed. The Enzymes of Biological Membranes, 2nd ed., Vol. I. Plenum Press, New York, pp. 131–204.

    Book  Google Scholar 

  • Deamer, D.W., Chakrabarti, A. 1996. In: Barenholz, Y, Lasic, D.D., Eds. Handbook of Nonmedical Applications of Liposomes, Vol. II ( Models for biological phenomena). CRC Press, Boca Raton, FL, pp. 303–313.

    Google Scholar 

  • Demel, R.A., Bruckdorfer, K.R., van Deenen, L.L.M. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol and Rb+. Biochim. Biophys. Acta 255: 321–330.

    Article  PubMed  CAS  Google Scholar 

  • Demel, R.A., Jansen, J.W.C.M., Van Dijck, P.W.M., Van Deenen, L.L.M. 1977. The preferential interaction of cholesterol with different classes of phospholipids. Biochim. Biophys. Acta 465: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Dietrich, C., Bagatolli, L.A., Volovyk, Z.N., Thompson, N.L., Levi, M., Jacobson, K., Grafton, E. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 80: 1417–1428.

    Article  PubMed  CAS  Google Scholar 

  • Dobrowsky R.T. 2000. Sphingolipid signaling domains floating on rafts or buried in caves? Cell. Signal. 12: 81–90.

    Article  CAS  Google Scholar 

  • Drevot, P., Langlet, C., Guo, X.J., Bernard, A.M., Colard, O., Chauvin, J.P., Lasserre, R., He, H.T. 2002. TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts. EMBO J. 21: 1899–1908.

    Article  PubMed  CAS  Google Scholar 

  • Dufourc, E.J., Parish, E.J., Chitrakorn, S., Smith, I.C.P. 1984. Structural and dynamical details of cholesterol lipid interaction as revealed by deuterium NMR. Biochemistry 23: 6062–6071.

    Article  CAS  Google Scholar 

  • Dufour, E, Zhao, W, Ravindranath, L., Alkon, D. 2003. Abnormal cholesterol processing in Alzheimer’s disease patient’s fibroblasts. Neurobiol. Lipids Vol. 1, article 7. Published online March 14, 2003. Available at: http://neurobiologyoflipids.org/ content/1/7/

    Google Scholar 

  • Edidin, M. 2003. The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32: 257–283.

    Article  PubMed  CAS  Google Scholar 

  • Estep, T.N., Calhoun, W.I., Barenholz, Y., Biltonen, R.L., Shipley, G.G., Thompson, T.E. 1980. Evidence for metastability in N-stearoyl sphingomyelin in bilayer. Biochemistry 19: 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Feher, J.J. 1974. Studies of self-association and solvent-association of cholesterol and other 3 ß-hydroxysteroids in nonpolar media. J. Phys. Chem. 78: 250–255.

    Article  CAS  Google Scholar 

  • Ferguson-Yankey, S.R., Borchman, D., Taylor, K.G., Du Pre, A.B., Yappert, M.C. 2000. Conformational studies of sphingolipid by NMR spectroscopy. I. Dihydrosphingomyelin. Biochim. Biophys. Acta 1467: 307–325.

    Article  CAS  Google Scholar 

  • Fielding, C.J., Fielding, P.E. 2000. Cholesterol and caveolae: structural and functional relationships. Biochim. Biophys. Acta 1529: 210–222.

    Article  PubMed  CAS  Google Scholar 

  • Frank, A., Barenholz, Y., Lichtenberg, D., Thompson, T.E. 1983. Spontaneous transfer of sphingomyelin between phospholipid bilayers. Biochemistry 22: 5647–5651.

    Article  CAS  Google Scholar 

  • Freed, E.O. 2002. Rafting with Ebola. Science 296: 279.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, M., Byers, S.O., Rosenman, R.H. 1957. Resolution of aortic atherosclerotic infil-

    Google Scholar 

  • tration in the rabbit by phosphatide infusion. Proc. Soc. Exp. Biol. Med. 95:586–588. Futerman, A.H. 1995. Inhibition of sphingolipid synthesis - effects on glycosphingolipid-

    Google Scholar 

  • GPI-anchored protein microdomains. Trends Cell Biol. 5:377–380.

    Google Scholar 

  • Garver, W.S., Heidenreich, R.A. 2002. The Niemann-Pick C proteins and trafficking of cholesterol through the endosomal/lysosomal system. Curr. Mol. Med. 2: 485–505.

    Article  PubMed  CAS  Google Scholar 

  • Gatt, S., Barenholz, Y. 1999. Editors of “Sphingomyelin: Chemistry, Biophysics, Metabolism, Genetics and Signaling”, Chem. Phys. Lipids 102: issues 1 and 2.

    Google Scholar 

  • Gilbert, D.B., Reynolds, J.A. 1976. Thermodynamic equilibria of cholesterol-detergent-water. Biochemistry 15: 71–74.

    Article  PubMed  CAS  Google Scholar 

  • Gousset, K., Crowe, J.H., Field, C.L., Oliver, A.E., Tablin, E, Tsvetkova, N.M., Walker, N.J., Wolkers, W.F. 2002. Evidence for a physiological role for membrane rafts in human platelets. J. Cell. Physiol. 190: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Grant, G.J., Barenholz, Y, Piskoun, B., Bansinath, M., Turndorf, H., Bolotin, E. 2001. DRV liposomal bupivacaine: preparation, characterization and in vivo evaluation in mice. Pharm. Res. 18: 336–343.

    Article  PubMed  CAS  Google Scholar 

  • Grunze, M., Deuticke, B. 1974. Changes of membrane permeability due to extensive cholesterol depletion in mammalian erythrocytes. Biochim. Biophys. Acta 356: 125–136.

    Article  PubMed  CAS  Google Scholar 

  • Haines, T.H. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res. 299–324.

    Google Scholar 

  • Haldar, K., Hanson, T., Hiller, N.L., Lauer, S., McManus, H., Mohandas, N., Samuel, B.U., VanWye, J. 2000. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO 19: 3556–3564.

    Article  Google Scholar 

  • Haran, G., Cohen, R., Bar, L.K., Barenholz, Y. 1993. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim. Biophys. Acta 1151: 201–215.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, H., Pascher, I., Pearson, R.H., Sundell, S. 1981. Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim. Biophys. Acta 650: 25–51.

    Google Scholar 

  • Helms, J.B., Bruegger, B., Gkantiragas, I., Kaloyanova, D., Li, X.-Y., Loehr, K., Lottspeich, E, Stueven, E., Wieland, F.T. 2001. Sphingomyelin-enriched microdomains at the Golgi complex. Mol. Biol. Cell 12: 1819–1833.

    PubMed  Google Scholar 

  • Hertz, R., Barenholz, Y. 1975. Permeability and integrity properties of lecithinsphingomyelin liposomes. Chem. Phys. Lipids 15: 138–156.

    Article  PubMed  CAS  Google Scholar 

  • Hertz, R., Barenholz, Y. 1977. The relations between the composition of liposomes and their interaction with Triton X-100. J. Colloid Interface Sci. 60: 188–200.

    Article  CAS  Google Scholar 

  • Hildreth, J.E. 2001. Beta-cyclodextrin compositions and use to prevent transmission of sexually transmitted diseases. U.S. Pat. Appl. 801393/09, July 3.

    Google Scholar 

  • Huang, C. 1977. A structural model for the cholesterol-phosphatidyl choline complexes in bilayer membranes. Lipids 12: 348–358.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C., Mason, J.T. 1986. Structure and properties of mixed-chain phospholipid assemblies. Biochim. Biophys. Acta 864: 423–470.

    Article  PubMed  CAS  Google Scholar 

  • Ipsen, J.H., Karlstrom, G., Mouritsen, O.G., Wennerstrom, H., Zuckerman, M.J. 1987. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim. Biophys. Acta 905: 162–172.

    Article  PubMed  CAS  Google Scholar 

  • Ipsen, J.H., Mouritsen, O.G., Bloom, M. 1990. Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain order. The effects of cholesterol. Biophys. J. 57: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Israelachvili, J.N. 1992. Intermolecular and Surface Forces. 2nd ed. Academic Press, London, pp. 366–399.

    Google Scholar 

  • Israelachvili, J.N., Marcelja, S., Horn, R.G. 1980. Physical principles of membrane organization. Q. Rev. Biophys. 13: 121–200.

    Article  PubMed  CAS  Google Scholar 

  • Jain, M.K., White, H.B. 3rd. 1977. Long-range order in biomembranes. Adv. Lipid Res. 15: 1–60.

    PubMed  CAS  Google Scholar 

  • Jedlovszky, P., Mezei, M. 2003. Effect of cholesterol on properties of phospholipid membrane. 1: Structural features. J. Phys. Chem. B107: 5311–5321.

    CAS  Google Scholar 

  • Jendrasiak, G.L., Smith, R.L. 2001. The effect of choline head group on phospholipid hydration. Chem. Phys. Lipids 113: 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Kan, C.C., Kolesnick, R. 1993. Signal transduction via the sphingomyelin pathway. Trends Glycosci. Glycotechnol. 5: 99–106.

    Article  CAS  Google Scholar 

  • Klausner, R.D., Kleinfeld, A.M., Hoover, R.L., Karnovsky, M.J. 1980. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 255: 1286–1295.

    PubMed  CAS  Google Scholar 

  • Kolesnick, R., Golde, D.W. 1994. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 77: 325–328.

    Article  PubMed  CAS  Google Scholar 

  • Koudinova, N.Y., Kontush, A., Berezov, T.T., Koudinov, A.R. 2003. Amyloid beta, neural lipids, cholesterol and Alzheimer’s disease. Neurobiol. Lipids Vol. 1, article 6. Published online March 3, 2003. Available at http://neurobiologvoflipids.org/content/1/6.

    Google Scholar 

  • Kumar, S., Gompper, G., Lipowsky, K. 2001. Budding dynamics of multicomponent membranes. Phys. Rev. Lett. 86: 3911–3914.

    Article  CAS  Google Scholar 

  • Kumar, VV 1991. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc. Natl. Acad. Sci. USA 88: 444–448.

    Article  PubMed  CAS  Google Scholar 

  • Kurzchalia, T.V., Parton, R.G. 1999. Membrane microdomains and caveolae. Curr. Opin. Cell Biol. 11: 424–431.

    Article  PubMed  CAS  Google Scholar 

  • Lentz, B.R., Hoechli, M., Barenholz, Y. 1981. Acyl chain order and lateral domain formation in mixed phosphatidylcholine-sphingomyelin multilamellar and unilamellar vesicles. Biochemistry 20: 6803–6809.

    Article  PubMed  CAS  Google Scholar 

  • Levin, LW., Thompson, T.E., Barenholz, Y., Huang, C. 1985. Two types of hydrocarbon chain. Interdigitation in sphingomyelin bilayers. Biochemistry 24: 6282–6286.

    Article  PubMed  CAS  Google Scholar 

  • Liao, Z., Graham, D.R., Hildreth, J.E.K. 2003. Lipid rafts and HIV pathogenesis: viron-associated cholesterol is required for fusion and infection of susceptible cells. Aids Res. Hum. Retroviruses 19: 675–687.

    Article  CAS  Google Scholar 

  • Liao, Z., Cimakasky, L.M., Hampton, R., Nguyen, D.H., Hildreth, J.E.K. 2001. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type I. Aids Res. Hum. Retroviruses 17: 1009–1019.

    Article  CAS  Google Scholar 

  • Lichtenberg, D., Barenholz, Y. 1988. Liposomes: Preparation, characterization and preservation. In: Glick, D., Ed. Methods of Biochemical Analysis. Wiley, New York, Vol. 33, pp. 337–462.

    Google Scholar 

  • Lindwasser, O.W. and Resh, M.D. 2001. Multimerization of human immunodeficiency virus type 1 Gag promotes its localization to barges, raft-like membrane microdomains. J. Virol. 75: 7913–7924.

    Article  PubMed  CAS  Google Scholar 

  • Lipowsky, R. 2002. Domains and rafts in membranes–hidden dimensions of self-organization. J. Biol. Phys. 28: 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Lofgren, H., Pascher, I. 1977. Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides. Chem. Phys. Lipids 20: 273–284.

    Article  PubMed  CAS  Google Scholar 

  • London E, Brown, D.A. 2000. Insolubility of lipids in Triton X-100: physical origin and relationship in sphingolipid/cholesterol membranes domains (rafts). Biochim. Biophys. Acta 1508: 182–195.

    Article  PubMed  CAS  Google Scholar 

  • Lu, P.S., Diaz-Sarmineto, C.S., Seed, B.A., Xavier, R., Irving, B. 2002. PDZ domain interactions and lipid rafts. U.S. Pat. Appl. 080273/10, Feb. 19.

    Google Scholar 

  • Marsh, D. 1990. CRC Handbook Of Lipid Bilayers. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Merrill, A.H. Jr., Schmelz, E.M., Wang, E., Schroeder, J.J., Dillehay, D.L. 1995. Role of dietary sphingolipids and inhibitors of sphingolipid metabolism in cancer and other diseases. J. Nutr. 125:1677S–1682S.

    Google Scholar 

  • Merrill, A.H. Jr., Schmelz, E.M., Dillehay, D.L., Spiegel, S., Shayman, J.A., Schroeder, J.J., Riley, R.T., Voss, K.A., Wang. E. 1997. Sphingolipids–the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142: 208–225.

    CAS  Google Scholar 

  • Migata, H. 2001. Microstructure in cell membranes and their roles in cellular activities. Membrane 26: 134–140.

    Article  Google Scholar 

  • Milhiet, P.E., Giocondi, M-C., Le Grimellec, C. 2002. Cholesterol is not crucial for the existence of microdomains in kidney brush-border membrane models. J. Biol. Chem. 277: 875–878.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D.C., Litman, B.J. 1998. Effect of cholesterol on molecular order and dynamics in highly polyunsaturated phospholipid bilayers. Biophys. J. 75: 896–908.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D.C., Litman, B.J. 2001. Modulation of receptor signaling by phospholipid acyl chain composition, In: Mostofsky, D.I., Yehuda, S., Salem, N., Eds. Fatty acids: From Neuronal Membrane to Physiological and Behavioral Functions, Part I, Chapter 2. Humana Press.

    Google Scholar 

  • Mouritsen, O.G., Jorgensen, K. 1995. Micro, nano and meso-scale heterogeneity of lipid bilayers and its influence on macrospopic membrane properties. Mol. Membr. Biol. 12: 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen, O.G., Jorgensen, K. 1994. Dynamical order and disorder in lipid bilayers. Chem. Phys. Lipids 73: 3–25.

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen, O.G., Jorgensen, K. 1998. A new look at lipid-membrane structure in relation to drug research. Pharm. Res. 15: 1507–1519.

    Article  PubMed  CAS  Google Scholar 

  • Mouritsen, O.G., Jorgensen, K., Trandum, C., Werth, P. 1999. Association of ethanol with lipid membranes containing cholesterol, sphingomyelin and gangliosides. A titration calorimetry study. Biochim. Biophys. Acta 1420: 179–188.

    Article  PubMed  Google Scholar 

  • Mueller, W.E., Eckert, G.P., Igbavoboa, U., Wood, W.G. 2001. Characterization of lipid rafts isolated from purified brain membranes of C57BL/6J mice. Soc. Neurosci. Abstracts 27.

    Google Scholar 

  • Naslaysky, N., Shmeeda, H., Friedlander, G., Yanai, A., Futerman, A.H., Barenholz, Y., Taraboulos, A. 1999. Sphingolipid depletion increases formation of the scrapie prion protein in neuroblastoma cells infected with prions. J. Biol. Chem. 274: 20763–20771.

    Article  Google Scholar 

  • Nes, W.R. 1974. Role of sterols in membranes. Lipids 9: 596–612.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, D.H., Hildreth, J.F. 2000. Evidence for budding of human immunodeficiency virus type 1 from glycolipid-enriched membrane rafts. J. Virol. 74: 3264–3272.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, M., Miao, L., Ipsen, J.H., Zuckerman, M, Mouristen, O. 1999. Off lattice model for phase behavior of lipid cholesterol bilayers. Phys. Rev. 59: 5790–5803.

    CAS  Google Scholar 

  • Niu, S., Litman, B.J. 2002. Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition. Biophys. J. 83: 3408–3415.

    Article  PubMed  CAS  Google Scholar 

  • Nyberg, L., Duan, R., Nilsson, A. 2000. A mutual inhibitory effect on absorption of sphingomyelin and cholesterol. J. Nutr. Biochem. 11: 244–249.

    Article  PubMed  CAS  Google Scholar 

  • Obeid, L.M., Hannun, Y.A. 1995. Ceramide: a stress signal and mediator of growth suppression and apoptosis. J. Cell Biochem. 58: 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Oborina, E.M., Yapert, M.C. 2003. Effect of sphingomyelin versus dipalmitoyl phosphatidyl choline on extent of lipid oxidation. Chem. Phys. Lipids 123: 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Ohvo-Rekila, H., Ramstedt, B., Leppimaki, P., Slotte, J.P. 2002. Cholesterol interaction with phospholipids in membranes. Prog. Lipid Res. 41: 66–97.

    Article  PubMed  CAS  Google Scholar 

  • Ono, A., Freed, E.O. 2001. Plasma membrane rafts play a critical role in HIV-assembly and release. Proc. Natl. Acad. Sci. USA 98: 13925–13930.

    Article  PubMed  CAS  Google Scholar 

  • Pal, R., Barenholz, Y, Wagner, R.R. 1981. Depletion and exchange of cholesterol from the membrane of vesicular stomatitis virus by interaction with serum lipoproteins or poly(vinylpyrrolidone) complexed with bovine serum albumin Biochemistry 20: 530–539.

    CAS  Google Scholar 

  • Paphadjopoulos, D., Lowden, M., Kimelberg, H. 1973. Role of cholesterol in membranes: effects on phospholipid-protein interactions, membrane permeability and enzymatic activity. Biochim. Biophys. Acta 330: 8–26.

    Article  Google Scholar 

  • Parasassi, T., Distfano, M., Loiero, M., Ravagnan, G., Gratton, E. 1994. Biophys. J. 66: 1895–1902.

    Article  Google Scholar 

  • Parkin, E.T., Hooper, N.M., Turner, A.J. 2001. Differential effects of glycosphingolipids on the detergent insolubility of the glycosylphosphatidyl-inositol-anchored membrane dipeptidase. Biochem. J. 358: 209–216.

    Article  PubMed  CAS  Google Scholar 

  • Pascher, I. 1976. Molecular arrangements in sphingolipids conformation on membrane stability and permeability. Biochim. Biophys. Acta 455: 433–451.

    Article  PubMed  CAS  Google Scholar 

  • Patra, S.K., Alonso, A., Arrondo, J.L.R., Gm’ i, F.M. 1999. Liposomes containing sphingomyelin and cholesterol. detergent solubilization and infrared spectroscopic studies. J. Liposome Res. 9: 247–260.

    Article  CAS  Google Scholar 

  • Patton, S. 1970. Correlative relationship of cholesterol and sphingomyelin cell membrane. J. Theor. Biol. 29: 489–491.

    Article  PubMed  CAS  Google Scholar 

  • Patzer, E.J., Wagner, R.R., Barenholz, Y. 1978a. Cholesterol oxidase as a probe for studying membrane organization. Nature 274: 394–395.

    Article  PubMed  CAS  Google Scholar 

  • Patzer, E.J., Moore, N.F., Barenholz, Y., Shaw, J.M., Wagner, RR. 1978b. Lipid organization of the membrane of vesicular Stomatitis virus. J. Biol. Chem. 253: 4544–4550.

    PubMed  CAS  Google Scholar 

  • Pearson, R.H., Pascher, R.H. 1979. The molecular structure of lecithin dihydrate. Nature 281: 499–501.

    Article  PubMed  CAS  Google Scholar 

  • Pinheiro, T.J., Sanghera, N. 2002. Binding of prion protein to lipid membranes and implications for prion conversion. J. Mol. Biol. 315: 1241–1256.

    Article  PubMed  CAS  Google Scholar 

  • Presti, F.T., Pace, R.J., Chan, S.I. 1982. Cholesterol-phospholipid interaction in membranes. 2. Stoichiometry and molecular packing of cholesterol-rich domains. Biochemistry 21: 3831–3835.

    Article  PubMed  CAS  Google Scholar 

  • Riboni, R.H., Riboni, L., Viani, P., Rosseria, B., Rinetti, A., Tettamenti, G. 1997. The role of sphingolipids in the process of signal transduction. Prog. Lipid Res. 36: 153–195.

    Article  PubMed  CAS  Google Scholar 

  • Ridgeway, N.D. 2000. Interaction between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta 1484: 129–141.

    Article  Google Scholar 

  • Rinia, H.A., Snel, M.M., van der Eerden, J.P., de Kruijff, B. 2001. Visualizing detergent resistant domains in model membranes with atomic force microscopy. FEBS Lett. 501: 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein, J.L.R., Smith, B.A., McConnell, H.M. 1979. Lateral diffusion in binary mix- tures of cholesterol and phosphatidylcholines. Proc. Natl. Acad. Sci. USA 76: 15–18.

    Article  PubMed  CAS  Google Scholar 

  • Sackman, E. 1994. Membrane bending energy concept of vesicle-and shape-transitions. FEBS Lett. 346: 3–16.

    Article  Google Scholar 

  • Samuel, B., McManus, H., Hiller, L., Harrison, T., Halder, K., Lanes, S., Mohandas, M., Van Wye, J. 2001. Red cell microdomain lipids play a critical role in malarial parasite invasion and intracellular development. Blood 96: 5919.

    Google Scholar 

  • Samuni, A., Lipman, A., Barenholz, Y. 2000. Damage to liposomal lipids: protection by antioxidants and cholesterol-mediated dehydration. Chem. Phys. Lipids 105: 121–134.

    Article  PubMed  CAS  Google Scholar 

  • Saura, J., Miranda, S.R.P., Schuchman, E.H., Hawkes, R. 2001. Patterned cerebellar Purkinije cell death in transgenic mouse model of Niemann-Pick type AB disease. Eur. J. Neurosci. 13: 1873–1880.

    Article  Google Scholar 

  • Schmidt, C.F., Barenholz, Y., Huang, C., Thompson, T.E. 1978. Monolayer coupling in sphingomyelin bilayer systems. Nature 271: 775–777.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, R., London, E., Brown, D. 1994. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc. Natl. Acad. Sci. USA 91: 12130–12134.

    Article  PubMed  CAS  Google Scholar 

  • Schuck, S., Honsho, M., Ekroos, K., Shevchenko, A., Simons, K. 2003. Resistance of cell membranes to different detergents. Proc. Natl. Acad. Sci. USA 100: 5795–5800.

    Article  PubMed  CAS  Google Scholar 

  • Shinitzky, M. 1984. In: Shinitzky, M., Ed. Physiology of Membrane Fluidity, Vol. I. CRC Press, Boca Raton, FL, pp. 1–51.

    Google Scholar 

  • Shinitzky, M., Barenholz, Y. 1974. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J. Biol. Chem. 249: 2652–2657.

    PubMed  CAS  Google Scholar 

  • Shinitzky, M., Barenholz, Y. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim. Biophys. Acta 515: 367–394.

    Article  PubMed  CAS  Google Scholar 

  • Shmeeda, H.R., Golden, E.B., Barenholz, Y. 1994a. In: Shinitzky, M., Ed. Handbook of Biomembranes: Structural and Functional Aspects. VCH, Weinheim, Balaban Publ., pp. 1–82.

    Google Scholar 

  • Shmeeda, H., Petkova, D., Barenholz, Y. 1994b. Cholesterol homeostasis in cultures of rat heart myocytes: relationship to cellular hypertrophy. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H1689 - H1697.

    PubMed  CAS  Google Scholar 

  • Shmeeda, H., Petkova, D., Barenholz, Y. 1995. Cholesterol distribution in rat-heart myocytes. Am. J. Physiol. 268 (Heart Circ. Physiol.): H759 - H766.

    PubMed  CAS  Google Scholar 

  • Simberg, D., Weisman, S., Taimon, Y., Faerman, A., Shoshani, T., Barenholz, Y. 2003. The role of organ vascularization and lipoplex-serum initial contact in intravenous murine lipofection. J. Biol. Chem. 278: 39858–39865.

    Article  PubMed  CAS  Google Scholar 

  • Simons, K., Ikonen, E. 1997. Functional rafts in cell membranes. Nature 387:564–572. Simons, K., van Meer, G. 1988. Lipid sorting in epithelial cells. Biochemistry 27:6197–6202. Simons, K., Toomre, J. 2000. Lipid raft and signal transduction. Nat. Rev. Mol. Cell Biol. 1: 31–39.

    Google Scholar 

  • Slotte, J.P. 1999. Sphingomyelin-cholesterol interaction in biological and model membranes. Chem. Phys. Lipids 102: 13–27.

    Article  PubMed  CAS  Google Scholar 

  • Small, D.M. 1970. Surface and bulk interactions of lipids and water with a classification of biologically active lipids based on these interactions. Fed. Proc. 29: 1320–1326.

    PubMed  CAS  Google Scholar 

  • Small, D.M. 1986. The Physical Chemistry of Lipids: Handbook of Lipid Research Vol. 4, Plenum Press, New York.

    Google Scholar 

  • Snyder, B., Freire, E. 1980. Compositional domain structure in phosphatidylcholine-cholesterol and sphingomyelin-bilayers. Proc. Natl. Acad. Sci. USA 77: 4055–4059.

    Article  PubMed  CAS  Google Scholar 

  • Sot, J., Collado, M.I., Arrondo, J.L.R., Alonso, A., Goíïi, F.M. 2002. Triton X-100-resistant bilayers: effect of lipid composition and relevance to the raft phenomenon. Langmuir 18: 2828–2835.

    Article  CAS  Google Scholar 

  • Straume, M., Litman, B.J. 1987. Influence of cholesterol on equilibrium and dynamic bilayer structure of unsaturated acyl chain phosphatidylcholine vesicles as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry 26: 5121–5126.

    Article  PubMed  CAS  Google Scholar 

  • Sundaralingam, M. 1972. Molecular structures and conformations of the phospholipids and sphingomyelins. Ann. NY Acad. Sci. 195: 324–355.

    Article  PubMed  CAS  Google Scholar 

  • Talbott, C.M., Vorobyov, I., Borchman, D., Taylor, K.G., Du Pre, D.B., Yappert, M.C. 2000. Conformational studies of sphingolipids by NMR spectroscopy. II: Sphingomyelin. Biochim. Biophys. Acta 1467: 326–337.

    Google Scholar 

  • Tanford, C. 1980. The Hydrophobic Effect. John Wiley and Sons, New York.

    Google Scholar 

  • Tangirala, R., Jerome, W.G., Jones, N.L., Small, D.M., Johnson, W.J., Glick, J.M., Mahlberg, F.H., Rothblat, G.H. 1994. Formation of cholesterol monohydrate crystals in macrophage-derived foam cells. J. Lipid Res. 35: 93–104.

    PubMed  CAS  Google Scholar 

  • Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., Prusiner, S.B., Avraham, D. 1995. Cholesterol depletion and modification of COOH-terminal targeting sequences of the prion protein inhibit formation of the scrapie isoform. J. Cell Biol. 129:121–132, Erratum in J. Cell Biol. 130: 501.

    Google Scholar 

  • Thompson, T.E., Sankarin, M.B., Biltonen, R.L., Marsh, D., Vas, W.L.C. 1995. Effects of domain structure on in-plane reactions and interactions. Mol. Membr. Biol. 12:157–162. Thudicum, J.L.W. 1874. Researches in the chemical constitution of the brain. Rept. Med.

    Google Scholar 

  • Off. Privy Council New Series NO3 Ap6. Eyre and Spottiswoode, London, p. 113. Thudicum, J.L.W. 1962. A treatise on chemical constitution of the brain (reprinted, with new historical introduction by Drabkin, D.L.). Archon, Hamden, CT.

    Google Scholar 

  • Tirosh, O., Kohen, R., Katzhendler, J., Alon, A., Barenholz, Y. 1997. Oxidative stress effect on the integrity of lipid bilayers is modulated by cholesterol level of bilayers. Chem. Phys. Lipids 87: 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Tso, J.Y., Green, J.M. 2002. Identifying anti-tumor targets or agents by lipid raft immunization and proteomics. U.S. Pat. Appl. 269010/10, Oct. 10.

    Google Scholar 

  • Veiga, M.P, Arondo, J.L.R., Goni, F.M., Alonso, A., Marsh, D. 2001. Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry 40: 2614–2622.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, S., Gerlier, D., Manie, S.N. 2000. Measles virus assembly within membrane rafts. J. Virol. 74: 9911–9915.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, I., Bu, B., Erickson, R.P. 2003. Understanding Niemann-Pick type C disease: a fat problem. Curr. Opin. Neurol. 16: 155–161.

    Article  PubMed  CAS  Google Scholar 

  • Webb, M.S., Bally, M.B., Mayer, L.D., Miller, J.J., Gardi, P.G. 1998. Patent assignee: Inex Pharmaceuticals Corporation. Sphingosomes for enhanced drug delivery. U.S. Patent 05,814,335, Sept. 29.

    Google Scholar 

  • Wieland, F.T., Bruegger, B., Gorgas, K., Helms, J.B., Lehmann, W-D., Malsam, J., Nickel, W, Sandhoff, R., Wegehingel, S. 2000. Evidence for segregation of sphingomyelin and cholesterol during formation of COPI-coated vesicles. J. Cell Biol. 151: 507–517.

    Article  PubMed  Google Scholar 

  • Williams, K.J. 2002. U.S. Patent 06,367, 479.

    Google Scholar 

  • Williams, K.J., Tall, A.R. 1988. Interactions of liposomes with lipoproteins: relevance to drug delivery systems and to the treatment of atherosclerosis. In: Gregoriadis, G., Ed. Liposomes as Drug Carriers, John Wiley and Sons Ltd., pp. 93–111.

    Google Scholar 

  • Williams, K.J., Werth, V.P., Wolff, J.A. 1984. Intravenously administered lecithin liposomes: a synthetic antiatherogenic lipid particle. Perspect. Biol. Med. 27: 417–431.

    PubMed  CAS  Google Scholar 

  • Wolf, C., Koumanov, K., Quinn, PJ., Tenchov, B. 2001. Cholesterol favors phase separation of sphingomyelin. Biophys. J. 89: 163–172.

    CAS  Google Scholar 

  • Xu, X., London, E. 2000. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39: 843–849.

    Article  PubMed  CAS  Google Scholar 

  • Xu, X.L., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C., London, E. 2001. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). J. Biol. Chem. 276: 33540–33546.

    Article  PubMed  CAS  Google Scholar 

  • Yeagle, P.L. 1985. Cholesterol and the cell membrane. Biochim. Biophys. Acta 822: 267–287.

    Article  PubMed  CAS  Google Scholar 

  • Yeagle, P.L. 1988. Cholesterol and the cell membrane. In: Yeagle, P.L., Ed. Biology of Cholesterol. CRC Press, Boca Raton, Chapter 6, pp. 121–145.

    Google Scholar 

  • Yeagle, P.L. 1993a. The Membrane of Cells, 2nd ed. Academic Press, San Diego, pp. 69–165.

    Google Scholar 

  • Yeagle, P.L. 1993b. The Membrane of Cells, 2nd ed. Academic Press, San Diego, pp. 13–17.

    Google Scholar 

  • Yechiel, E., Barenholz, Y. 1985. Relationships between membrane lipid composition and biological properties of rat myocytes: effects of aging and manipulation of lipid compo-sition. J. Biol. Chem. 260: 9132–9136.

    PubMed  CAS  Google Scholar 

  • Yechiel, E., Henis, Y.I., Barenholz, Y 1986a. Aging of rat heart myocytes and fibroblasts: relationship between lipid composition, membrane organization and biological properties. In: Freysz, L., Dreyfus, H., Massarelli, R., Gatt, S., Eds. Enzymes of Lipid Metabolism II. Plenum Press, New York, pp. 519–533.

    Chapter  Google Scholar 

  • Yechiel, E., Henis, Y.I., Barenholz, Y. 1986b. Aging of rat heart fibroblasts: relationship between lipid composition membrane organization and biological properties. Biochim. Biophys. Acta 859: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Yedgar, S., Barenholz, Y, Cooper, V.G. 1974. Molecular weight, shape and structure of mixed micelles of Triton X-100 and sphingomyelin. Biochim. Biophys. Acta 363: 98–111.

    Article  PubMed  CAS  Google Scholar 

  • Zeidel, L., Hill, W.G. 2000. Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J. Biol. Chem. 275: 30176–30185.

    Article  PubMed  Google Scholar 

  • Zhang, J., Pekosz, A., Lamb, R.A. 2000. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74: 4634–4644.

    Article  PubMed  CAS  Google Scholar 

  • Zomber, G., Bogin, E., Barenholz, Y. 1996. Effect of i.v. injection of small unilamellar liposomes of egg phosphatidylcholine on cholesterol in plasma and erythrocytes, serum enzymes and liver function in dogs. J. Liposome Res. 6: 455–477.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barenholz, Y. (2004). Sphingomyelin and Cholesterol: From Membrane Biophysics and Rafts to Potential Medical Applications. In: Quinn, P.J. (eds) Membrane Dynamics and Domains. Subcellular Biochemistry, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5806-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5806-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3447-5

  • Online ISBN: 978-1-4757-5806-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics