Skip to main content

Polyamines in Growth and Differentiation of Plant Cell Cultures: The Effect of Nitrogen Nutrition, Salt Stress and Embryogenic Media

  • Chapter
Progress in Polyamine Research

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 250))

Abstract

In vitro culture of plant cells and tissues has an increasingly important role in the advancement of both basic and applied aspects of plant growth and development. This includes the use of plant tissue cultures for the introduction of new traits by cell selection and genetic engineering, clonal micropropagation, pathogen elimination, as well as for elucidation of several molecular and metabolic events. Controlled organo-genesis and/or embryogenesis in cell and tissue cultures (i. e. regeneration of new plants) and selection of specific cell lines, are prerequisites for the practical utilization of the aspects mentioned above. Regeneration from tissue cultures is easily achieved in some plant species such as tobacco and carrot. Several agricultural crops and most woody plants are especially recalcitrant. In most cases growth of cell cultures and in vitro embryogenesis and organogenesis is manipulated by the use of known plant hormones only, in an empirical manner, and very little is known on the underlying mechanisms, and on the use of additional or alternative means which may regulate regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Altman, Polyamines and plant hormones, in: “The Physiology of Polyamines”, U. Bachrach and Y.M. Heimer, eds., CRC Press, Boca Raton (1988).

    Google Scholar 

  2. T.A. Smith, Polyamines, Ann. Rev. Plant Physiol 36:117 (1985).

    Article  CAS  Google Scholar 

  3. N. Bagni, D. Serafini-Eracassini, and P. Torrigiani, Polyamines and cellular growth processes in higher plants, in: “Plant Growth Substances 1982”, P.F. Wareing, ed., Academic Press, London (1982).

    Google Scholar 

  4. R.D. Slocum, R. Kaur-Sawhney, and A.W. Galston, The physiology and biochemistry of polyamines in plants, Arch. Biochem. Biophys., 235:283 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. M. Schwartz, A. Altman, Y. Cohen, and T. Arzee, Localization of ornithine de-carboxylase and changes in polyamine content in root meristems of Zea mays, Physiol Plant 67:485 (1986).

    Article  CAS  Google Scholar 

  6. A. Apelbaum, A. Goldlust, and I. Icekson, Control by ethylene of arginine decar-boxylase activity in pea seedlings and its implication for hormonal regulation of plant growth, Plant Physiol 79:635 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. H.E. Flores, N.D. Young, and A.W Galston, Polyamine metabolism and plant stress, in: “Cellular and Molecular Biology of Plant Stress”, UCLA Symposia on Molecular and Cellular Biology, New Series, Vol. 22, J.L. Key, and T. Kosuge, eds., (1985).

    Google Scholar 

  8. A. Altman, R. Friedman, D. Amir, and N. Levin, Polyamine effects and metabolism in plants under stress conditions, in: “Plant Growth Substances 1982”, P.F. Wareing, ed., Academic Press, London, (1982).

    Google Scholar 

  9. N.L Shevyakova, B.P. Strogonov, and I.G. Kiryan, Metabolism of polyamines in NaCl-resistant cell lines from Nicotina Sylvestris, Plant Growth Reg. 3:365 (1985).

    Article  CAS  Google Scholar 

  10. N. Bagni, Aliphatic amines and a growth factor of coconut milk as stimulating cellular proliferation of Helianthus tuberosus (Jerusalem artichoke) in vitro, Experienta, 22:732 (1966).

    Article  CAS  Google Scholar 

  11. M.J. Montague, J.W. Koppenbrink, and E.G. Jaworski, Polyamine metabolism in embryogenie cells of Daucus carote. I. Changes in intracellular content and rates of synthesis, Plant Physiol 62:430 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. R.P. Feirer, G. Mignon, and J.D. Litvay, Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot, Science, 223:1433 (1984).

    Article  PubMed  CAS  Google Scholar 

  13. A.A. Fienberg, J.H. Choi, W.P. Lubich, and Z.R. Sung, Developmental regulation of polyamine metabolism in growth and differentiation of carrot cultures, Planta, 162:532 (1984).

    Article  CAS  Google Scholar 

  14. S.C. Minocha, and C. Robie, The role of 2,4-D and polyamines in somatic embryogenesis in carrot cell cultures, 12th Inter Conf. Plant Growth Substances, Abstracts, 116 (1985).

    Google Scholar 

  15. J. Martin-Tanguy, The occurence and possible function of hydroxycinnamoyl acid amides in plants, Plant Growth Regui 3:381 (1985).

    Article  CAS  Google Scholar 

  16. P. Torrigiani, M.M. Altamura, G. Pasqua, B. Monacelli, D. Serafini-Fracassini, and N. Bagni, Free and conjugated polyamines during de novo floral and vegetative bud formation in thin layers of tobacco, Physiol Plant 70:453 (1987).

    Article  CAS  Google Scholar 

  17. H.V Desai, and A.R. Metha, Changes in polyamine levels during shoot formation, root formation, and callus induction in cultured Passiflora leaf discs, J. Plant Physiol 119:45 (1985).

    Article  CAS  Google Scholar 

  18. S. Biondi, P. Torrigiani, A.A. Sansovini, and N. Bagni, Inhibition of polyamine biosynthesis by dicyclohexylamine in cultured cotyledon of Pinus radiata, Physiol Plant 72:471 (1988).

    Article  CAS  Google Scholar 

  19. P. Torrigiani, D. Serafini-Fracassini, and N. Bagni, Polyamine biosynthesis and effect of dicyclohexylamine during the cell cycle of Helianthus tuberosus tuber, Plant Phsyiol 84:148 (1987).

    Article  CAS  Google Scholar 

  20. J. Berlin, Formation of putrescine and cinnamoyl putrescines in tobacco cell cultures, Phytochemistry, 20:53 (1981).

    Article  CAS  Google Scholar 

  21. T.A. Smith, G.R. Best, A.J. Abott, and E.D. Clements, Polyamines in Paul’s scarlet rose suspension cultures, Planta 144:63 (1978).

    Article  CAS  Google Scholar 

  22. A.F. Tiburcio, R. Kaur-Sawhney, R.B. Ingersoll, and A.W. Galston, Correlation between polyamines and pyrrolidine alkaloids in developing tobacco callus, Plant Physiol. 78:323 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. R.L. Malmberg, Biochemistry, cellular and developmental characterization of a temperature-sensitive mutant of Nicotiana tabacum and its second site revertant, Cell 22:603 (1980).

    Article  PubMed  CAS  Google Scholar 

  24. A.C. Hiatt, J. Mclndoo, and R.L. Malmberg, Regulation of polyamine biosynthesis in tobacco, J. BioL Chem. 261:1293 (1986).

    PubMed  CAS  Google Scholar 

  25. A. Altman, R. Kaur-Sawhney, and A.W Galston, Stabilization of oat leaf protoplasts through polyamine-mediated inhibition of senescence, Plant Physiol. 60:570 (1977).

    Article  PubMed  CAS  Google Scholar 

  26. O. Huhtinen, J. Honkanen, and K. Simola, Orthinine-and putrescine-supported divisions and cell colony formation in leaf protoplasts of alders (Alnus glutinosa and A. incana), Plant Sci. Leu. 28:2 (1982).

    Google Scholar 

  27. R.D. Slocum, and A.W. Galston, Inhibition of polyamine biosynthesis in plants and plant pathogenic fungi, in: “Inhibition Polyamine Metabolism”, P.P. McCann, A.E. Pegg, and A. Sjoerdsma, eds., Academic Press, N.Y. (1987).

    Google Scholar 

  28. A. Altman, R. Friedman, and N. Levin, Alternative metabolic pathways for polyamine biosynthesis in plant development, in: “Advances in Polyamine Research”, Vol. 4, U. Bachrach, A. Kaye, and R. Chayen, eds., Raven Press, New York, (1983).

    Google Scholar 

  29. C.W Tabor, and H. Tabor, Polyamines, Ann. Rev. Biochem. 53:749 (1984).

    Article  PubMed  CAS  Google Scholar 

  30. R. Friedman, N. Levin, and A. Altman, Presence and identification of polyamines in xylem and phloem exudates of plants, Plant Physiol. 82:1154 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. A.E.A. Watad, L. Reinhold, and H.R. Lerner, Comparison between a stable NaCl-selected Nicotiana cell line and the wild type: K+, Na+, and proline pools as a function of salinity, Plant Physiol. 73:624 (1983).

    Article  PubMed  CAS  Google Scholar 

  32. K. Nomura, and A. Komamine, Molecular mechanisms of somatic embryo-genesis, Oxford Surveys of Plant Molec. and Cell Biol. 3:456 (1986).

    CAS  Google Scholar 

  33. B. Nadel, A. Altman, and M. Ziv, Regulaton of somatic embryogenesis in celery cell suspensions I. Promotive effects of mannitol on somatic embryo development, submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Altman, A., Levin, N., Cohen, P., Schneider, M., Nadel, B. (1988). Polyamines in Growth and Differentiation of Plant Cell Cultures: The Effect of Nitrogen Nutrition, Salt Stress and Embryogenic Media. In: Zappia, V., Pegg, A.E. (eds) Progress in Polyamine Research. Advances in Experimental Medicine and Biology, vol 250. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5637-0_50

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5637-0_50

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5639-4

  • Online ISBN: 978-1-4684-5637-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics