Skip to main content
Log in

Intermediate filaments: a family of homologous structures

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • ABERNATHY, J. L., HILL, R. L. & GOLDSMITH, L. A. (1977) ε-(γ-Glutamyl) lysine cross-links in human stratum corneum.J. biol. Chem. 252, 1837–9.

    Google Scholar 

  • ANDERTON, B. H., AYERS, M. & THORPE, R. (1978) Neurofilaments from mammalian central and peripheral nerve share certain polypeptides.FEBS Lett. 96, 159–63.

    Google Scholar 

  • ANDERTON, B. H., THORPE, R., COHEN, J., SELVENDRAN, S. & WOODHAMS, P. (1980) Specific neuronal localization by immunofluorescence of 10 nm filament polypeptides.J. Neurocytol. 9, 835–44.

    Google Scholar 

  • ANTANITUS, D. S., CHOI, B. H. & LAPHAM, L. W. (1975) Immunofluorescence staining of astrocytesin vitro using antiserum to glial fibrillary acidic protein.Brain Res. 89, 363–7.

    Google Scholar 

  • AUBIN, J. E., OSBORN, M., FRANKE, W. W. & WEBER, K. (1980) Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis.Expl Cell Res. 129, 149–65.

    Google Scholar 

  • BENNETT, G. S., FELLINI, S. A., CROOP, J. M., OTTO, J. J., BRYAN, J. & HOLTZER, H. (1978a) Differences among 100 Å filament subunits from different cell types.Proc. natn. Acad. Sci. 75, 4364–8.

    Google Scholar 

  • BENNETT, G. S., FELLINI, S. A. & HOLTZER, H. (1978b) Immunofluorescent visualisation of 100 Å filaments in different cultured chick embryo cell types.Differentiation 12, 71–82.

    Google Scholar 

  • BENNETT, G. S., FELLINI, S. A., TOYAMA, Y. & HOLTZER, H. (1979) Redistribution of intermediate filament subunits during skeletal myogenesis and maturationin vitro.J. Cell Biol. 82, 577–84.

    Google Scholar 

  • BERKOWITZ, S. A., KATAGIRI, J., BINDER, H. K. & WILLIAMS, R. C. (1977) Separation and characterisation of microtubule proteins from calf brain.Biochemistry 16, 5610–7.

    Google Scholar 

  • BLOSE, S. H. (1979) Ten-nanometer filaments and mitosis: Maintenance of structural continuity in dividing endothelial cells.Proc. natn. Acad. Sci. 76, 3372–6.

    Google Scholar 

  • BLOSE, S. (1980) The microtubule organising centres, MTOCS, are surrounded by the ten nanometer filament ring of endothelial cells in interphase and mitosis.Eur. J. Cell Biol. 22, 373.

    Google Scholar 

  • BLOSE, S. & CHACKO, S. (1976) Rings of intermediate (100 Å) filament bundles in the perinuclear region of vascular endothelial cells. Their mobilisation by colcemid and mitosis.J. Cell Biol. 70, 459–66.

    Google Scholar 

  • BLOSE, S. H., SHELANSKI, M. L. & CHACKO, S. (1977) Localisation of bovine brain filament antibody on intermediate (100 Å) filaments in guinea pig vascular endothelial cells and chick cardiac muscle cells.Proc. natn. Acad. Sci. 74, 662–5.

    Google Scholar 

  • BOWDEN, P. E. & CUNLIFFE, W. J. (1980) The analysis of human epidermal proteins by SDS-polyacrylamide gradient gel electrophoresis.Br. J. Derm. 102, 739.

    Google Scholar 

  • BOWDEN, P. E. & CUNLIFFE, W. J. (1981a) The composition of prekeratin and keratin from psoriatic epidermis.Br. J. Derm. (in press).

  • BOWDEN, P. E. & CUNLIFFE, W. J. (1981b) Modification of human prekeratin during epidermal differentiation.Biochem. J. (in press).

  • BROWN, S. LEVINSON, W. & SPUDICH, J. A. (1976) Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction.J. Supramol. Struct. 5, 119–30.

    Google Scholar 

  • BRULET, P., BABINET, C., KEMLER, R. & JACOB, F. (1980) Monoclonal antibodies against trophectoderm-specific markers during mouse blastocyst formation.Proc. natn. Acad. Sci. 77, 4113–7.

    Google Scholar 

  • BURRIDGE, K. (1978) Direct identification of specific glycoproteins and antigens in sodium dodecyl sulphate gels. InMethods in Enzymology, Vol. 50 (edited by COLWICK, S. P. & KAPLAN, N. O.), pp. 54–64. New York: Academic Press.

    Google Scholar 

  • CABRAL, F. & GOTTESMAN, M. M. (1979) Phosphorylation of the 10 nm filament protein from Chinese hamster ovary cells.J. biol. Chem. 254, 6203–6.

    Google Scholar 

  • CHIU, F-C, KOREY, B. & NORTON, W. T. (1980) Intermediate filaments from bovine, rat and human CNS: Mapping analysis of the major proteins.J. Neurochem. 34, 1149–59.

    Google Scholar 

  • CLEVELAND, D. W., FISCHER, S. G., KIRSCHNER, M. W. & LAEMMLI, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulphate and analysis by gel electrophoresis.J. biol. Chem. 252, 1102–6.

    Google Scholar 

  • CLEVELAND, D. W., LAPATA, M. A., MACDONALD, R. J., COWAN, N. J., RUTTER, W. J. & KIRSCHNER, M. W. (1980) Number and evolutionary conservation of α- and β-tubulin and cytoplasic β- and γ-actin genes using specific cloned c-DNA probes.Cell 20, 95–105.

    Google Scholar 

  • COOKE, P. (1976) A filamentous cytoskeleton in vertebrate smooth muscle fibres.J. Cell Biol. 68, 539–56.

    Google Scholar 

  • CZOSNEK, H. & SOIFER, D. (1980) Comparison of the proteins of 10 nm filaments from rabbit sciatic nerve and spinal cord by electrophoresis in two dimensions.FEBS Lett. 117, 175–8.

    Google Scholar 

  • CZOSNEK, H., SOIFER, D., MACK, K. & WISNIEWSKI, H. M. (1981) Similarity of neurofilament proteins from different parts of the rabbit system.Brain Res. (in press).

  • CZOSNEK, H., SOIFER, D. & WISNIEWSKI, H. M. (1980a) Heterogeneity of intermediate filament proteins from rabbit spinal cord.Neurochem. Res. 5, 777–93.

    Google Scholar 

  • CZOSNEK, H., SOIFER, D. & WISNIEWSKI, H. M. (1980b) Studies on the biosynthesis of neurofilament proteins.J. Cell. Biol. 85, 726–34.

    Google Scholar 

  • DAHL, D. (1976) Glial fibrillary acidic protein from bovine and rat brain. Degradation in tissues and homogenates.Biochim. Biophys. Acta 420, 142–54.

    Google Scholar 

  • DAHL, D. (1979) The cyanogen bromide peptide maps of neurofilament polypeptides in axonal preparations isolated from bovine brain are different.FEBS Lett. 103, 144–7.

    Google Scholar 

  • DAHL, D. (1980) Study on the immunological crossreactivity of neurofilament polypeptides in axonal preparations of bovine brain.FEBS Lett. 111, 152–6.

    Google Scholar 

  • DAHL, D. & BIGNAMI, A. (1973) Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates.Brain Res. 61, 279–93.

    Google Scholar 

  • DAHL, D. & BIGNAMI, A. (1978) Neurofilament protein in clonal lines of mouse neuroblastoma.Devl Neurosci. 1, 142–52.

    Google Scholar 

  • DAVID-FERREIRA, K. L., & DAVID-FERREIRA, J. F. (1980) Association between intermediatesized filaments and mitochondria in rat Leydig cells.Cell Biol. Int. Rep. 4, 655–62.

    Google Scholar 

  • DAVISON, P. F. & JONES, R. (1980) Neurofilament proteins of mammals compared by peptide mapping.Brain Res. 182, 470–3.

    Google Scholar 

  • DAVISON, P. F. & WINSLOW, B. (1974) The protein subunit of calf brain neurofilament.J. Neurobiol. 5, 119–33.

    Google Scholar 

  • DAY, W. A. & GILBERT, D. S. (1972) X-ray diffraction pattern of axoplasm.Biochim. Biophys. Acta 285, 503–6.

    Google Scholar 

  • DELACOURTE, A., FILLIATREAU, G., BOUTTEAU, F., BISERTE, G. & SCHREVEL, J. (1980) Study of the 10 nm filament fraction isolated during the standard microtubule preparation.Biochem. J. 191, 543–6.

    Google Scholar 

  • DROCHMANS, P., FREUDENSTEIN, C., WANSON, J-C., LAURENT, L., KENNAN, T. W., STADLER, J., LELOUP, R. & FRANKE, W. W. (1978) Structure and biochemical composition of desmonosomes and tonofilaments isolated from calf muzzle epidermis.J. Cell Biol. 79, 427–43.

    Google Scholar 

  • EAGLES, P. A. M., GILBERT, D. S., HOPKINS, J. M., MAGGS, A. & WAIS, C. (1980) Neurofilament structure and enzymatic modification.Cell Biol. Int. Rep. 4, 731.

    Google Scholar 

  • ECKERT, B. S., KOONS, S. J., SCHENTZ, A. W. & ZOBEL, C. R. (1980) Association of creatine phosphokinase with the cytoskeleton of cultured mammalian cells.J. Cell Biol. 86, 1–5.

    Google Scholar 

  • ENG, L. F., VANDERHAEGHEN, J. J., BIGNAMI, A. & GERTL, B. (1971) An acidic protein isolated from fibrous astrocytes.Brain Res. 28, 351–4.

    Google Scholar 

  • FELLINI, S. A., BENNETT, G. S., TOYAMA, Y. & HOLTZER, H. (1978) Biochemical and immunological heterogeneity of 100 Å filament subunits from different chick cell types.Differentiation 12, 59–69.

    Google Scholar 

  • FRANKE, W. W., SCHMID, E., OSBORN, M. & WEBER, K. (1978a) The intermediate-sized filaments in rat kangaroo Pt-K2 cells. II. Structure and composition of isolated filaments.Cytobiologie 17, 392–411.

    Google Scholar 

  • FRANKE, W. W., SCHMID, E., OSBORN, M. & WEBER, K. (1978b) Different intermediate-sized filaments distinguished by immunofluorescence microscopy.Proc. natn. Acad. Sci. 75, 5034–8.

    Google Scholar 

  • FRANKE, W. W., WEBER, K., OSBORN, M., SCHMID, E. & FREUDENSTEIN, C. (1978c) Antibody to prekeratin. Decoration of tonofilament-like arrays in various cells of epithelial character.Expl Cell Res. 116, 429–45.

    Google Scholar 

  • FRANKE, W. W., SCHMID, E., WEBER, K. & OSBORN, M. (1979a) HeLa cells contain intermediate-sized filaments of the prekeratin type.Expl Cell Res. 118, 95–109.

    Google Scholar 

  • FRANKE, W. W., SCHMID, E., WINTER, S., OSBORN, M. & WEBER, K. (1979b) Widespread occurrence of intermediate-sized filaments of the vimentin-type in cultured cells from diverse vertebrates.Expl Cell Res. 123, 25–46.

    Google Scholar 

  • FUCHS, E. & GREEN, H. (1978) The expression of keratin genes in epidermis and cultured epidermal cells.Cell 15, 887–97.

    Google Scholar 

  • FUCHS, E. & GREEN, H. (1979) Multiple keratins of cultured human epidermal cells are translated from different m-RNA molecules.Cell 17, 573–82.

    Google Scholar 

  • FUCHS, E. & GREEN, H. (1980a) Changes in keratin gene expression during terminal differentiation of the keratiocyte.Cell 19, 1033–42.

    Google Scholar 

  • FUCHS, E. & GREEN, H. (1980b) Changes in keratin gene expression during terminal differentiation in mammalian epithelial cells.J. Cell Biol. 87, 178a.

    Google Scholar 

  • FULTON, A. B., WAN, K. M. & PENMAN, S. (1980) The spatial distribution of polyribosomes in 3T3 cells and the associated assembly of proteins into the skeletal framework.Cell 20, 849–57.

    Google Scholar 

  • GARD, D. L., BELL, P. B. & LAZARIDES, E. (1979) Co-existence of desmin and the fibroblastic intermediate filament subunit in muscle and non-muscle cells: identification and comparative peptide analysis.Proc. natn. Acad. Sci. 76, 3894–8.

    Google Scholar 

  • GARD, D. L. & LAZARIDES, E. (1980) The synthesis and distribution of desmin and vimentin during myogenesisin vitro.Cell 19, 263–75.

    Google Scholar 

  • GEIGER, B. & SINGER, S. J. (1980) Association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence.Proc. natn. Acad. Sci. 77, 4769–73.

    Google Scholar 

  • GILBERT, D. S., NEWBY, B. J. & ANDERTON, B. H. (1975) Neurofilament disguise, destruction and discipline.Nature 256, 586–9.

    Google Scholar 

  • GOLDMAN, J. E., SCHAUMBURG, H. M. & NORTON, W. T. (1978) Isolation and characterisation of glial filaments from human brain.J. Cell Biol. 78, 426–40.

    Google Scholar 

  • GORDON, W. E., BUSHNELL, A. & BURRIDGE, K. (1978) Characterisation of the intermediate (10 nm) filaments of cultured cells using an autoimmune rabbit antiserum.Cell 13, 249–61.

    Google Scholar 

  • GOZES, I. & LITTAUER, U. Z. (1978) Tubulin microheterogeneity increases with rat brain maturation.Nature 276, 411–3.

    Google Scholar 

  • GRANGER, B. L. & LAZARIDES, E. (1978) The existence of an insoluble z-disc scaffold in chicken skeletal muscle.Cell 15, 1253–68.

    Google Scholar 

  • GRANGER, B. L. & LAZARIDES, E. (1979) Desmin and vimentin co-exist at the periphery of the myofibril z-disc.Cell 18, 1053–63.

    Google Scholar 

  • GRANGER, B. L. & LAZARIDES, E. (1980) Synemin: a new high molecular weight protein associated with desmin and vimentin filaments in muscle.Cell 22, 727–38.

    Google Scholar 

  • GRAY, R. H., BRABEC, R. K., BYRSK, M. M. & BERSTEIN, I. A. (1977) Immunocytochemical localisation of a protein in tonofilaments as a morphologic marker for epidermal differentiation.J. Histochem. Cytochem. 25, 1127–39.

    Google Scholar 

  • HOFFMAN, P. N. & LASEK, R. J. (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons.J. Cell Biol. 66, 351–66.

    Google Scholar 

  • HUBBARD, B. D. & LAZARIDES, E. (1979) Co-purification of actin and desmin from chicken smooth muscle and their polymerisationin vitro into intermediate filaments.J. Cell Biol. 80, 166–82.

    Google Scholar 

  • HYNES, R. O. & DESTREE, A. T. (1978) 10 nm filaments in normal and transformed cells.Cell 13, 151–63.

    Google Scholar 

  • ISHIKAWA, H., BISCHOFF, R. & HOLTZER, H. (1968) Mitosis and intermediate-sized filaments in developing skeletal muscle.J. Cell Biol. 38, 538–55.

    Google Scholar 

  • IZANT, J. G. & LAZARIDES, E. (1977) Invariance and heterogeneity in the major structural and regulatory proteins of chick muscle cells revealed by two-dimensional gel electrophoresis.Proc. natn. Acad. Sci. 74, 1450–4.

    Google Scholar 

  • IZANT, J. G. & McINTOSH, J. R. (1980) Microtubule associated proteins: a monoclonal antibody to MAP 2 binds to differentiated neurones.Proc. natn. Acad. Sci. 77, 4741–5.

    Google Scholar 

  • JACOBS, M., CHOO, F. & THOMAS, C. (1980) Neurofilaments and vimentin in cultured neurones.Cell Biol. Int. Rep. 4, 778.

    Google Scholar 

  • KEMP, D. J. (1975) Unique and repetitive sequences in multiple genes for feather keratin.Nature 254, 573–77.

    Google Scholar 

  • KEMP, D. J. & ROGERS, G. E. (1972) Differentiation of avian keratinocytes. Characterisation and relationships of the keratin proteins of adult and embryonic feathers and scales.Biochemistry 11, 969–75.

    Google Scholar 

  • KRISHNAN, N., KAISERMAN-ABROMOF, I. R. & LASEK, R. J. (1979) Helical substructure of neurofilaments isolated fromMyxicola and squid giant axons.J. Cell Biol. 82, 323–35.

    Google Scholar 

  • LANE, E. B. (1980) A study of cytokeratin intemediate filaments in cultured epithelial cells using monoclonal antibodies.Eur. J. Cell Biol. 22, 371.

    Google Scholar 

  • LASEK, R. J. & BLACK, M. M. (1977) How do axons stop growing? Some clues from the metabolism of the proteins in the slow component of axonal transport. InMechanisms, Regulation and Special Functions of Protein Synthesis in the Brain (edited by ROBERTS, S., LAJTHA, A. and GISPEN, W. H.), pp. 161–69. Amsterdam: Elsevier/North Holland.

    Google Scholar 

  • LASEK, R. J., KRISHNAN, N. & KAISERMAN-ABRAMOF, I. R. (1979) Identification of the subunit proteins of 10 nm neurofilaments isolated from axoplasm of squid andMyxicola giant axons.J. Cell Biol. 82, 336–46.

    Google Scholar 

  • LASEK, R. J. & WU, J.-Y. (1976) Immunochemical analysis of the proteins comprisingMyxicola (10 nm) neurofilaments.Neurosci. Abstr. 2, 40.

    Google Scholar 

  • LAZARIDES, E. (1980) Intermediate filaments as mechanical integrators of cellular space.Nature 282, 249–56.

    Google Scholar 

  • LAZARIDES, E. & GRANGER, B. L. (1978) Fluorescent localisation of membrane sites in glycinerated chicken skeletal muscle fibres and the relationship of these sites to the protein composition of the Z disc.Proc. natn. Acad. Sci. 75, 3683–7.

    Google Scholar 

  • LAZARIDES, E. & HUBBARD, B. D. (1976) Immunological characterization of the subunit of the 100 Å filaments from muscle cells.Proc. natn. Acad. Sci. 76, 4344–8.

    Google Scholar 

  • LEE, L. D., KUBILUS, J. & BADEN, H. P. (1979) Intraspecies heterogeneity of epidermal keratins isolated from bovine hoof and snout.Biochem. J. 177, 187–96.

    Google Scholar 

  • LENK, R., RANSOM, L., KAUFMANN, Y. & PENMAN, S. (1977) A cytoskeletal structure with associated polyribosomes obtained from HeLa cells.Cell 10, 67–78.

    Google Scholar 

  • LIEM, R. K. H., YEN, S.-H. SOLOMON, G. D. & SHELANSKI, M. L. (1978) Intermediate filaments in nervous tissue.J. Cell Biol. 79, 637–45.

    Google Scholar 

  • MANDELKOW, E. & FRANKE, W. W. (1980) Comparative X-ray diffraction study of several types of intermediate (10 nm) filaments.Eur. J. Cell Biol. 22, 370.

    Google Scholar 

  • MARROTTA, C. A., STROCCHI, P. & GILBERT, P. M. (1979) Subunit structure of synaptosomal tubulin.Brain Res. 167, 93–106.

    Google Scholar 

  • MATUS, A. I., NG, M. & HUGH JONES, D. (1979) Immunohistochemical localisation of neurofilament antigen in rat cerebellum.J. Neurocytol. 8, 513–25.

    Google Scholar 

  • MICKO, S. & SCHLAEPFER, W. W. (1978) Protein composition of axons and myelin from rat and human peripheral nerves.J. Neurochem. 30, 1041–9.

    Google Scholar 

  • MILSTONE, L. M. & McGUIRE, J. (1981) Different polypeptides from the intermediate filaments in bovine hoof and esophageal epithelium and in aortic endothelium.J. Cell Biol. 88, 312–6.

    Google Scholar 

  • MORI, H. & KUROKAWA, M. (1979) Purification of neurofilaments and their interaction with vinblastine sulphate.Cell Struct. Funct. 4, 163–7.

    Google Scholar 

  • NELSON, W. J. & TRAUB, P. (1980) A protease that degrades intermediate-sized filament protein.Cell Biol. Int. Rep. 4, 733.

    Google Scholar 

  • O'CONNOR, C. M., BALZAR, D. R. & LAZARIDES, E. (1979) Phosphorylation of subunit proteins of intermediate filaments from chicken muscle and non-muscle cells.Proc. natn. Acad. Sci. 76, 819–23.

    Google Scholar 

  • OGAWA, H., TANEDA, A., SEBINE, T. & KANOODA, Y. (1979) The histochemical distribution of protein bound sulphydryl groups in human epidermis by the new staining method.J. Histochem. Cytochem. 27, 942–6.

    Google Scholar 

  • OSBORN, M. & WEBER, K. (1977) The detergent-resistant cytoskeleton of tissue culture cells includes the nucleus and the microfilament bundles.Expl Cell Res. 106, 339–49.

    Google Scholar 

  • PAETAU, A., VIRTANEN, I., STENMAN, S., KURKI, P., LINDER, E., VAHERI, A., WESTERMARK, B., DAHL, D. & HALTIA, M. (1979) Glial fibrillary acidic protein and intermediate filaments in human glioma cells.Acta Neuropath. 47, 71–4.

    Google Scholar 

  • PANT, H. C., POLLARD, H. B., PAPPAS, G. D. & GAINER, H. (1979a) Phosphorylation of specific, distinct proteins in synaptosomes and axons from squid nervous system.Proc. natn. Acad. Sci. 76, 6071–5.

    Google Scholar 

  • PANT, H. C., SHECKET, G., GAINER, H. & LASEK, R. J. (1978) Neurofilament protein is phosphorylated in the squid giant axon.J. Cell. Biol. 78, R23–7.

    Google Scholar 

  • PANT, H. C., TERAKAWA, S. & GAINER, H. (1979b) A calcium activated protease in squid axoplasm.J. Neurochem. 32, 99–102.

    Google Scholar 

  • PRUSS, R. M., MIRSKY, R., RAFF, M. C., ANDERTON, B. H. & THORPE, R. (1980) A monoclonal antibody demonstrates that intermediate filaments share a common antigen.J. Cell Biol. 87, 178a.

    Google Scholar 

  • PYTELA, R. & WICKE, G. (1980) High molecular weight (270 000–340 000) from cultured cells are related to hog brain microtubule-associated proteins but co-purify with intermediate filaments.Proc. natn. Acad. Sci. 77, 4808–12.

    Google Scholar 

  • RAMAEKERS, F. C. S., OSBORN, M., SCHMID, E., WEBER, K., BLOEMENDAL, H. & FRANKE, W. (1980) Identification of the cytoskeletal proteins in lens-forming cells, a special epithelial cell type.Expl Cell Res. 127, 309–27.

    Google Scholar 

  • RICE, R. V., ROSLANSKY, P. F., PASCOE, N. & HOUGHTON, S. M. (1980) Bridges between microtubules and neurofilaments visualised by stereo electron microscopy.J. Ultrastruct. Res. 71, 303–10.

    Google Scholar 

  • ROSLANSKY, P. F., CORNELL-BELL, A., RICE, R. V. & ADELMAN, W. J. (1980) Polypeptide composition of squid neurofilaments.Proc. natn. Acad. Sci. 77, 404–8.

    Google Scholar 

  • RUEGER, D. C., HUSTON, J. S., DAHL, D. & BIGNAMI, A. (1979) Formation of 100 Å filaments from purified glial fibrillary acidic proteinin vitro.J. molec. Biol. 135, 53–68.

    Google Scholar 

  • RUNGE, M. S., DETRICH, H. W. & WILLIAMS, R. C. (1979a) Identification of the major 68K dalton protein of microtubule preparations as a 10 nm filament protein and its effect on microtubule assemblyin vitro.Biochemistry 18, 1689–98.

    Google Scholar 

  • RUNGE, M. S., HEWGLEY, P. B., PUETT, D. & WILLIAMS, R. C. (1979b) Cyclic nucleotide phosphodiesterase activity in 10 nm filaments and microtubule preparations from bovine brain.Biochemistry 76, 2561–6.

    Google Scholar 

  • SCHACHNER, M., HEDLEY-WHYTE, E. T., HSU, D. W., SCHOONMAKER, G. & BIGNAMI, A. (1977) Ultrastructural localisation of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labelling.J. Cell Biol. 75, 67–73.

    Google Scholar 

  • SCHECKET, G. & LASEK, R. J. (1979) Phosphorylation of neurofilament protein.J. Cell Biol. 83, 143a.

    Google Scholar 

  • SCHECKET, G. & LASEK, R. J. (1980) Preparation of neurofilament proteins from guinea pig peripheral nerve and spinal cord.J. Neurochem. 35, 1335–44.

    Google Scholar 

  • SCHLAEPFER, W. W. (1978) Observations on the disassembly of isolated mammalian neurofilaments.J. Cell Biol. 76, 50–6.

    Google Scholar 

  • SCHLAEPFER, W. W. & HASLER, M. B. (1979) Characterisation of the calcium-induced disruption of neurofilaments in rat peripheral nerve.Brain Res. 168, 299–309.

    Google Scholar 

  • SCHLAEPFER, W. W. & LYNCH, R. G. (1977) Immunofluorescence studies of neurofilaments in the rat and human peripheral and central nervous system.J. Cell Biol. 74, 241–50.

    Google Scholar 

  • SCHLAEPFER, W. W. & MICKO, S. (1979) Calcium-dependent alterations of neurofilament proteins of rat peripheral nerve.J. Neurochem. 32, 211–9.

    Google Scholar 

  • SCHMID, E., GHOSAL, D. & FRANKE, W. W. (1980) Biosynthesis of an intermediate filament protein, vimentin,in vivo and by translationin vitro.Eur. J. Cell Biol. 22, 374.

    Google Scholar 

  • SCHOLLMEYER, J. V. & DAYTON, W. R. (1979) Properties of a Ca2+-activated protease from normal and transformed fibroblasts.J. Cell Biol. 83, 318a.

    Google Scholar 

  • SCHWEIZER, J. & GOERTTLER, K. (1980) Synthesisin vitro of keratin polypeptides directed by m-RNA isolated from newborn and adult mouse epidermis.Eur. J. Biochem. 112, 243–9.

    Google Scholar 

  • SKERROW, D. (1974) The structure of prekeratin.Biochem. biophys. Res. Commun. 59, 1311–6.

    Google Scholar 

  • SKERROW, D. (1977) The isolation and preliminary characterisation of human prekeratin.Biochim. Biophys. Acta 494, 447–51.

    Google Scholar 

  • SKERROW, D. & HUNTER, I. (1978) Protein modifications during the keratinisation of normal and psoriatic human epidermis.Biochim. Biophys. Acta 537, 474–84.

    Google Scholar 

  • SMALL, J. V. & SOBIESZEK, A. (1977) Studies on the function and composition of the 10 nm (100 Å) filaments of vertebrate smooth muscle.J. Cell Sci. 23 243–68.

    Google Scholar 

  • STARGER, J. M., BROWN, W. E., GOLDMAN, A. E. & GOLDMAN, R. D. (1978) Biochemical and immunological analysis of rapidly purified 10 nm filaments from baby hamster kidney (BHK-21) cells.J. Cell Biol. 78, 93–109.

    Google Scholar 

  • STARGER, J. M. & GOLDMAN, R. D. (1977) Isolation and preliminary characterisation of 10 nm filaments from baby hamster kidney (BHK-21) cells.Proc. natn. Acad. Sci. 74, 2422–6.

    Google Scholar 

  • STEINERT, P. M. (1975) The extraction and characterisation of bovine epidermal α-keratin.Biochem. J. 149, 39–48.

    Google Scholar 

  • STEINERT, P. M. (1978) Structure of the three-chain unit of the bovine epidermal keratin filament.J. molec. Biol. 123, 49–70.

    Google Scholar 

  • STEINERT, P. M. & GULLINO, M. I. (1976) Bovine epidermal keratin filament assemblyin vitro.Biochem. biophys. Res. Commun. 70, 221–7.

    Google Scholar 

  • STEINERT, P. M. & IDLER, W. W. (1975) The polypeptide composition of bovine epidermal α-keratin.Biochem. J. 151, 603–14.

    Google Scholar 

  • STEINERT, P. M., IDLER, W. W. & GOLDMAN, R. D. (1980a) Intermediate filaments of baby hamster (BHK-21) cells and bovine epidermal keratinocytes have similar ultrastructures and subunit domain structures.Proc. natn. Acad. Sci. 77, 4534–8.

    Google Scholar 

  • STEINERT, P. M., IDLER, W. W. & WANTZ, M. L. (1980b) Characterisation of the keratin filament subunits unique to bovine snout epidermis.Biochem. J. 187, 913–6.

    Google Scholar 

  • STEINERT, P. M., IDLER, W. W., & ZIMMERMAN, S. B. (1976) Self-assembly of bovine epidermal keratin filamentsin vitro.J. molec. Biol. 108, 547–67.

    Google Scholar 

  • STEINERT, P. M., ZIMMERMAN, S. B., STARGER, J. M. & GOLDMAN, R. D. (1978) Ten-nanometer filaments of hamster BHK-21 cells and epidermal keratin filaments have similar structures.Proc. natn. Acad. Sci. 75, 6098–101.

    Google Scholar 

  • SUN, T.-T. & GREEN, H. (1977) Cultured epithelial cells of cornea, conjunctive and skin: absence of marked intrinsic divergence of their differentiated states.Nature 269, 489–93.

    Google Scholar 

  • SUN, T.-T. & GREEN, H. (1978a) Immunofluorescent staining of keratin fibres in cultured cells.Cell 14, 469–676.

    Google Scholar 

  • SUN, T.-T. & GREEN, H. (1978b) Keratin filaments of cultured human epidermal cells. Formation of intermolecular disulphide bonds during terminal differentiation.J. biol. Chem. 253, 2053–60.

    Google Scholar 

  • SUN, T.-T., SHIH, C. & GREEN, H. (1979) Keratin cytoskeletons in epithelial cells of internal organs.Proc. natn. Acad. Sci. 76, 2813–7.

    Google Scholar 

  • THORPE, R., ANDERTON, B. H., COHEN, J. & WOODHAMS, P. (1980) The identity and structure of neurofilament polypeptides.Biochem. Soc. Trans. 8, 614–5.

    Google Scholar 

  • THORPE, R., DELACOURTE, A., AYERS, M., BULLOCK, C. & ANDERTON, B. H. (1979) The polypeptides of isolated brain 10 nm filaments and their association with polymerised tubulin.Biochem. J. 181, 275–84.

    Google Scholar 

  • TUSZYNSKI, G. P., FRANK, E. D., DAMSKY, C. H., BUCK, C. A. & WARREN, L. (1979) The detection of smooth muscle desmin-like protein in BHK-21/C-13 fibroblasts.J. biol. Chem. 254, 6138–43.

    Google Scholar 

  • VIAC, J., SCHMITT, D., STAQUET, M. J., THIVOLET, J., ORTONNE, J. P. & BUSTAMANTE, R. (1980) Binding specificity of guinea pig anti α-keratin polypeptide sera on human keratinocytes; comparison of their receptors with those of human epidermal cytoplasmic antibodies.Acta Dermat. 60, 189–96.

    Google Scholar 

  • VIRTANEN, I., LEHTO, V.-P., LEHTONEN, E., KURKI, P., DAHL, D. & BADLEY, R. A. (1980) Intermediate filaments in cultured cells.Eur. J. Cell Biol. 22, 372.

    Google Scholar 

  • WANG, C., ASAI, D. J. & LAZARIDES, E. (1980) The 68 000-dalton neurofilament-associated polypeptide is a component of non-neuronal cells and of skeletal myofibrilsProc. natn. Acad. Sci. 77, 1541–5.

    Google Scholar 

  • WANG, E., CROSS, R. K. & CHOPPIN, P. W. (1979) Involvement of microtubules and 10 nm filaments in the movement and positioning of nuclei in syncytia.J. Cell Biol. 83, 320–37.

    Google Scholar 

  • WANG, E. & GOLDMAN, R. D. (1978) Functions of cytoplasmic fibres in intracellular movements in BHK-21 cells.J. Cell Biol. 79, 708–26.

    Google Scholar 

  • WHALEN, R. G., BUTLER-BROWNE, G. S. & GROS, F. (1976) Protein synthesis and actin heterogeneity in calf muscle cells in culture.Proc. natn. Acad. Sci. 73, 2018–22.

    Google Scholar 

  • WILLARD, M. B. (1976) Genetically determined protein polymorphism in the rabbit nervous system.Proc. natn. Acad. Sci. 73, 3641–5.

    Google Scholar 

  • WILLARD, M., SIMM, C., BAITINGER, C., LEVINE, J. & SKENE, P. (1980) Association of an axonally transported polypeptide(H) with 100 Å filaments. Use of immunoaffinity electron microscope grids.J. Cell Biol. 85, 587–96.

    Google Scholar 

  • WISNIEWSKI, H., SHELANSKI, M. L. & TERRY, R. D. (1968) Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterior horn cells.J. Cell Biol. 38, 224–9.

    Google Scholar 

  • WOLOSEWICK, J. J. & PORTER, K. R. (1979) Microtrabecular lattice of the cytoplasmic ground substance. Artefact or reality.J. Cell Biol. 82, 114–39.

    Google Scholar 

  • WOOD, J. N. & ANDERTON, B. H. (1981) Monoclonal antibodies to mammalian neurofilaments.Biosci. Rep. 1, 263–8.

    Google Scholar 

  • YEN, S.-H., DAHL, D., SCHACHNER, M. & SHELANSKI, M. L. (1976) Biochemistry of the filaments of brain.Proc. natn. Acad. Sci. 73, 529–33.

    Google Scholar 

  • YEN, S.-H. & FIELDS, K. L. (1981) Antibodies to neurofilament, glial filament, and fibroblast intermediate filament proteins bind to different cell types of the nervous system.J. Cell Biol. 88, 115–26.

    Google Scholar 

  • ZACKROFF, R. V. & GOLDMAN, R. D. (1979)In vitro assembly of intermediate filaments from baby hamster kidney (BHK-21) cells.Proc. natn. Acad. Sci. 76, 6226–30.

    Google Scholar 

  • ZACKROFF, R. V. & GOLDMAN, R. D. (1980)In vitro reassembly of squid brain intermediate filaments (neurofilaments): purification by assembly-disassembly.Science 208, 1152–5.

    Google Scholar 

  • ZIEVE, G. W., HEIDEMAN, S. R. & MCINTOSH, J. R. (1980) Isolation and partial characterisation of a cage of filaments that surrounds the mammalian mitotic spindle.J. Cell Biol. 87, 160–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderton, B.H. Intermediate filaments: a family of homologous structures. J Muscle Res Cell Motil 2, 141–166 (1981). https://doi.org/10.1007/BF00711866

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711866

Keywords

Navigation